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Uniform magnetic susceptibility of the t J model on the 4 X4 lattice
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We study the temperature and doping dependence of the uniform susceptibility, y, for the t-J model
by calculating exactly the low-lying states of the 4X4 system with periodic boundary conditions. We
find that at low doping and temperatures around J/3 the susceptibility increases with doping. Further-
more the peak in its temperature dependence shifts to lower temperatures with doping. These features
are in agreement with high-temperature expansions. At higher dopings (6 holes or larger) the suscepti-
bility begins to decrease with increasing doping, again consistent with high-temperature expansions.

The two-dimensional t-J model' has emerged as a
paradigm for studying the low-energy electronic proper-
ties of the copper-oxide-based high-temperature super-
conductors. Although the model appears very simple, it
has been difficult to determine its low-temperature ther-
modynamic properties, in dimensionality greater than
one. Some insight into the different phases and proper-
ties of the two-dimensional model has been gained by ex-
act diagonalization of small systems, and variational
wave function studies. More recently, high-temperature
expansions, ' and Monte Carlo simulations have also
been applied to the model. High-temperature expan-
sions suggest interesting low-temperature behavior for
the magnetic susceptibility. It has been argued that the
behavior looks remarkably 1ike the experiments on doped
cuprates. However the high-temperature expansions do
not show good convergence at temperatures much below
J. Thus it is very important to study the low-temperature
properties by other theoretical methods, which can pro-
vide complementary information.

Here we wish to use finite-size diagonalization to study
this system at low temperatures. The Lanczos method is
used to calculate exactly many low-lying states in
different symmetry sectors of the Hilbert space for the
4X4 system with periodic boundary conditions. Thus
the calculated low-temperature properties are essentially
exact for the finite system under consideration. At high
temperatures our results match on to the high-
temperature expansions. At low temperatures they verify
most of the qualitative features obtained in the high-
temperature expansions. The main difficulty with the
finite-size calculations are gaps in the spectra that arise
due to the finite size, which cause the thermodynamic
properties to vanish rapidly at low temperatures. Thus,
while we do find a downturn in the susceptibility at low
temperatures it is difficult to tell from this calculation
alone if such a behavior will survive in the thermo-
dynamic limit.
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where the sums (i,j ) run over nearest-neighbor pairs of
sites on the square lattice, c; is the standard electron
creation operator, S, =—,'cr; is the electron-spin operator
and ni is the particle number operator on site i. The pro-
jection operators P ensure that no hopping causes any
site to be doubly occupied.

The uniform susceptibility per lattice site, y, is defined
by the relation
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Here the angular brackets refer to thermal averaging
with respect to the canonical distribution. We can write
this in terms of the total spin operator ST as
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In terms of the eigenstates of the Hamiltonian with eigen-
value E„and the total spin s„, this can be expressed as
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Once the energy and total spin of the different eigenstates
are known the susceptibility is readily calculated from (4).

The spectra of (1) for a given number of holes
(nh =0, 1,2, . . . , 16) was calculated by using the Lanczos
tridiagonalization algorithm. Using this method the
lowest 15—20 eigenvalues, for each different sector of the
Hilbert space (to be discussed below), were estimated.
The numerical accuracy in these eigenvalues decreases as
their relative position increases in the eigenspectrum.
The numerical error in the finite temperature calculations
such as Eq. (4) will be of order of exp —(E„,s Eg, )IkT, —
where E„,s is the lowest neglected energy (i.e., not calcu-
1ated in the Lanczos diagonalization and E, is the
ground-state energy for the particular hole density.

In order to minimize this error we explore the sym-
metries of (1) by splitting the Hilbert space associated
with (1) in the largest number of disjoint sectors possible.
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FIG. 1. Plots of the uniform susceptibility as a function of
temperature for t/J=0. 3 for 0, 2, 4, and 6 holes on the 4X4
lattice.

FICx. 2. Plots of the uniform susceptibility as a function of
temperature for t/J=0. 5 for 0, 2, 4, and 6 holes on the 4X4
lattice.

For a given number of holes nh we separate the sectors
according to the number of up spin (n„=0, 1,
2, . .. 16—

nI, ), momenta

K=(2~1„/4, 2~1 /4)(l„, l =0, 1,2, 3),

rotation quantum numbers co = exp(i2m r /4)
(r =0, 1,2, 3), and in the sectors with equal number of up
(n„) and down (nd) spins we also use the spin-reversal in-
variance.

The SU(2) symmetry of (1) can also be used to improve
the precision of our numerical calculations. If a given
eigenenergy occurs in a sector with z component of the
spin s, =(n„nd )/2 and qua—ntum numbers K and co,

then it should also occur in all the other sectors with
lower s, values and same quantum numbers K and co. In
this way, by matching the first few digits we can replace
the eigenenergies appearing in the relatively higher posi-
tion (lower precision) in the spectrum by those calculated
in the sectors with high spin values and appearing in rela-
tively lower position in the spectrum (higher precision).
The spin of the eigenstates can also be determined by the
largest s, sector in which they appear.

Plots of the susceptibility as a function of temperature
for 0,2, 4, and 6 holes are shown in Figs. 1 and 2 for real-
istic values of J/t. By comparing with the high-
temperature expansions we find that the uncertainties in
our calculations are of order 15%%uo, at temperatures of or-
der J. For the finite system itself, the errors are much
smaller at lower temperatures. We observe the following.
(a) The susceptibility around T=J/3 increases with dop-
ing at small doping. (b) This trend is reversed at larger
dopings. (c) The susceptibility has a maximum as a func-
tion of temperature. This maximum occurs at a tempera-
ture around J for the Heisenberg model. ' (d) This peak
moves to lower temperature with doping. (e) The magni-
tude of the susceptibility increases with decreasing J/t
for small number of holes. These features are in complete
qualitative agreement with high-temperature expansions.
Many of these features are very similar to experiments on
doped cuprates.

One of the most intriguing experimental features is the
downturn in the susceptibility as measured in the
Knight-shift experiments, as one goes below room tem-
perature in the metallic phase. " This behavior has been
interpreted as an opening of a spin gap. In finite systems
there is always a gap coming from the discreteness of the
energy levels. Thus, although we see such a behavior in

our calculations, we cannot disentangle a downturn
caused by a finite-size gap from those that will survive in

a thermodynamic system.
We have also calculated the free energy and specific

heat for these systems. In principle, the specific heat can
provide information on the critical points related to
phase separation in the model. ' Once again, however,
the finite-size gap behavior dominates these functions at
low temperatures and we are unable to draw any
significant conclusion about the thermodynamic behav-
ior.

To conclude, we have studied the finite temperature
properties of the t-J model by calculating many low-lying
states for the 4 X4 system with periodic boundary condi-
tions. Our most interesting result is the behavior of the
uniform susceptibility. We find that at temperatures
around J/3, the uniform susceptibility increases with
doping at low doping and the peak in its temperature
dependence shifts to lower temperatures. These features
are in agreement with high-temperature expansions. We
also see a "spin-gap"-like behavior in the calculated sus-
ceptibility. Unfortunately, there is also a large finite-size
gap in these systems and it is not possible to disentangle
the thermodynamic spin-gap behavior from the gap aris-
ing in finite systems.
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