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Using an expansion in 1/z, where z is the coordination number of the lattice, we examine the effects of
fluctuations on the magnetic susceptibility and specific heat of a spin-s ferromagnet in an external field.
As expected, the first-order fluctuation correction to the transition temperature calculated from the
zero-field susceptibility agrees with previous results obtained from the expansion of the order parameter.
The temperature of the peak in the fluctuation specific heat of the Heisenberg model increases linearly

with the external field.

Expansions in 1/z, where z is the number of nearest
neighbors in the lattice, were first formulated! ™ to study
the properties of ferromagnets over 30 years ago. The
original, unrenormalized 1/z expansion was abandoned
for two reasons. First, “anomalies” were discovered? in
the fluctuation corrections to the order parameter and
free energy at the mean-field (MF) Curie temperature.
Second, the Curie temperatures calculated from the 1/z
expansions of the order parameter and magnetic suscepti-
bility disagreed.? In order to circumvent these
difficulties, each order of the expansion was renormal-
ized®? by including an infinite number of higher-order
terms. Recent work™® has demonstrated that the so-
called anomalies of the unrenormalized expansion are, in
fact, required to make the theory consistent. For exam-
ple, the divergence of the 1/z correction to the order pa-
rameter at the MF Curie temperature signifies a shift in
the transition temperature.”> The discontinuity of the
first-order correction to the entropy at the MF Curie
temperature can be explained in a similar way.® In this
Brief Report, we show that the second condition for the
consistency of the expansion is also satisfied: We demon-
strate that the expansions of the magnetic susceptibility
and order parameter yield the same shifted Curie temper-
ature, at least to first order in 1/z.

The lowest-order term in any 1/z expansion is simply
the MF result, which neglects the correlation of fluctua-
tions on neighboring lattice sites. Higher-order correc-
tions include the effects of spin correlations. In the for-
mal limit z— o (only really possible in infinite dimen-
sion), the MF experienced by every spin diverges and MF
theory is recovered. The fluctuation corrections become
increasingly important as the coordination number z de-
creases. So a 1/z expansion is only sensible when MF
theory already provides a good starting point for describ-
ing the physical properties of a system.” When MF
theory is not qualitatively accurate, such as for a two-
dimensional Heisenberg model, the 1/z expansion about
MF theory is not meaningful.

In previous work, Fishman and Liuv’® (FL) developed
the unrenormalized 1/z expansion for the order parame-
ter M =(S,,) and normalized free energy F/NzJ of the
spin-s Heisenberg and Ising models with exchange con-
stant J. The 1/z correction to the order parameter is
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evaluated by exactly summing an infinite series which
couples the spin fluctuation over an increasing number of
lattice sites. As shown by FL, the divergence of this
first-order correction to — o at the MF T signals the
decrease in the Curie temperature from its MF value.

By expanding the free energy in powers of 1/z, FL also
found that the 1/z correction to the specific heat of the
Heisenberg model contains a peak at the temperature
T~0.17zJs. Fishman and Vignale® have associated this
peak with a crossover from a low-temperature spin-wave
regime to a high-temperature nonlinear regime. In the
classical limit s— o, the crossover temperature T <zJs
vanishes on the scale of T xzJs2. Above the crossover
temperature, the strong coupling between longitudinal
and transverse spin fluctuations produces new dynamical
effects.? _

We now generalize the work of FL for finite fields.
Since the formalism is very similar to the one in zero
field, we will primarily emphasize the effects of a finite
field. The Hamiltonians of the Ising and Heisenberg
models with external magnetic field h.,, along the z direc-
tion are’

Hi==J3 8iSj=hex 23S » (1)
(i, j) i

HH=_JZ Si'sj—hext'zsi > (2)
(i) i

where the sum runs over all nearest-neighbor sites. The
spin operators S; of the Heisenberg model obey the com-
mutation relations

[Si(l’SjB]:iEaB‘ySijSi‘y ’ (3)
with #i=1. As usual, we separate the Hamiltonian into
three terms:

H y=Hg4+H,+H,, 4)
where
Hg=3Huyr , (5)
i
Hie=—(2JMy+h,,)S, (6)
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is the MF Hamiltonian, and My={(S,, ) is the MF or-
der parameter. Both the constant term H,=Nz/M3}/2
and the fluctuation Hamiltonian H, are the same as in
the zero-field case. The fluctuation Hamiltonian H, cou-
ples spin fluctuations on neighboring lattice sites.

Of course, the MF theory of the Ising and Heisenberg
models is the same. For any operator A, the MF expec-
tation value is

( A )MF= —I—Tr(e ABHeﬁA) N (7)
Z,
where
Zo=Tr(e "Tem) (8)

is the MF partition function and B=1/7. It is easy to
see that all MF expectation values depend only on the di-
mensionless temperature =T/zJ and field
h¥,=h./zJ. If HMF is written as —hS,,, then the

effective field is h.g=2J/M,+h,,, and the corresponding

dimensionless effective field is hfz=M,+h’,. The MF
partition function can be written Z,= Z 00» Where
sinh[B*h (s +1)]
eff 2 , (9)

Z =
® sinh(1B*h%;)

with 8*=1/T*. The MF order parameter M(T*,h %) is
then obtained from the well-known self-consistent equa-
tion®

My=(s +1)coth[B*hiz(s +1)]—Lcoth(1B*h ¥ (10)

Expanding for small M, in zero field, the MF transition
temperature T¢ is given by T =s(s +1)/3.
The exact expectation value for any operator A4 is

(4)=LTr(e PHemy Pl 4) (1n
Z
where
Z =Tr(e "Heme P2 (12)

is the exact partition function. The 1/z expansion is pro-
duced® by expanding both the numerator and the denom-
inator of Eq. (11) in powers of the fluctuation Hamiltoni-
an H,. For any dimensionless operator A, the expecta-
tion value { 4 ) can be expanded as

>+, (13)

(A)=Ay(T* h:x,)+%A (T* k%,
where Ay=( A )yr is the MF value and the coefficients
A,(T*,h%,) only depend on z through the dimensionless
temperature and field. As discussed by FL, the first-order
correction A, to any one-body expectation value such as
M=(S,,) can be written as the sum over bubble dia-

gram and an infinite number of tadpole diagrams.
For example, the 1/z correction to the order parameter
can be written as
M (T*h%,)= zM"”(T* h¥D, (14)

n=2

where M{" is produced by the H’ terms in the expan-

sions of Egs. (11) and (12). Because the series in Eq. (14)
is geometric, the summation yields

M (Tt h* ) _(T':_f_:L (15)
ext f(T* h:n ’

where the scaling function

f(T* h:xt)_B*<(Slz_M0)2>MF

=B*(G,—M3}) (16)
is the same for the Ising and Heisenberg models. Here
we have introduced the dimensionless functions

G, (T*, h:xt)~(S§'z+‘) MF
s *m *
z n+1e'B heﬂ' . (17)

ZOO m=—s

In terms of these functions, the bubble contributions M {*
for the Ising and Heisenberg models are

1

MP(T*,h%,) = S {—2M3+M{G, —M}G,
—3M,G}+G,G,} , (18a)

MP(T*ht )= 2;*2(—2M3+M8(§+SGI)“M3G

+My{1G [s(s +1)—1]—1G?}
—1is(s +1)G, +36G,G,) .
(18b)

These results are the same as in FL except that M, and
G, now depend on field h}, as well as on temperature
T* Because the external field suppresses the correlation
of spin fluctuations, M, decreases with increasing h 2.
For any nonzero field, M; no longer diverges to — o at
T, and the Curie temperature is no longer defined.
In general, the MF magnetic susceptibility is given by
dM

X=— (19)

ext

which like the order parameter can also be expanded in
1/z. 1Identical results for the zero-field susceptibility
would be obtained with the definition

x=[M(h%,)—M(0)]/h%,. Itis straightforward to show
that the MF susceptibility defined by Eq. (19) is given by
B*(G,—M3)
Xl TR ) =m0 (20)

1—B*(G,—M})

In zero field, x, diverges to + o both above and below
T,, as shown in the inset to Fig. 1. In a nonzero field,
however, the MF susceptibility is continuous with a peak
near T,.

By differentiating M, with respect to the external field
and expressing the result in terms of M and G,,, we have
also evaluated the 1/z correction Y, which is plotted in
Fig. 1 versus T* /s (s +1) for the Heisenberg model with
three different fields. In zero field, x, diverges to + o
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FIG. 1. First-order susceptibility x, vs T*/s(s +1) for the
spin-3 Heisenberg model, with A, =0 (solid curve), 0.05 (long-
dashed curve), and 0.1 (short-dashed curve). Inset is the MF
susceptibility near T, for the same fields.

below T, and to —c above T,. As discussed below,
these divergences signify a decrease in the Curie tempera-
ture from its MF value. In a nonzero field, the suscepti-
bility becomes a continuous function of temperature as
shown in Fig. 1.

The first-order correction to the transition temperature
can now be calculated from y,. Near the MF Curie tem-
perature, Y approaches the limits

3 1 2s(s+1)+1

I_, — 21

XIZ 90 1—f ss+1) X9 @b

g 1 1 4s(s+1)+3 -

X1—>"7 1—f sGs+1) Xo » (22)
above T, and

;3 1 2s(s+1)+1 ’3

Xl__>5 l_f S(S+1) XO) ( )

a1 1 4s(s+1)+3 ”

= T—F s+ X0 24
below T,.

In zero field, the total susceptibility must diverge at the
shifted Curie temperature T%. Therefore we impose the
condition
-1

=0. (25)
h¥ =0,7*=T2

ext

1
+—
Xo zXl

Since the zero-field MF susceptibility xo(T*=T,+ T, /z)
contains terms of order 1/z, this condition can be written
x(T*)

T\=— lim ——
r*_1, dXo/dT

(26)

which can be evaluated either above (using Egs. (21) and
(22)] or below [using Egs. (23) and (24)] the MF Curie
temperature. In either case, the results for 7| are the

same and given by

Ti=—1ls(s+1)—4, @7n

10
TH=—1s(s+1)—1. (28)

These expressions agree with the corrections obtained by
expanding the order parameter in zero field.> The same
results can also be obtained from the correlation func-
tion'® in the paramagnetic regime above T.

We have further extended the work of FL to calculate
the fluctuation free energy in a finite field. Following the
same methodology as before, we find that the first-order
free energies for the Ising and Heisenberg models are
Fi(T*,h%,)

ext

Nad =—1B*(M5—G,), (29)

FH(T* h}

ext

NzJ
=—1B*((M2—G P+ 1[s(s +1)—G, P—1M3} .
(30)

Again, the only difference between these expressions and
those in FL is that M, and G, now depend on the exter-
nal field. In zero field, the first derivative of F, is discon-
tinuous at T*=T,. As explained in FL, however, the to-
tal entropy S =—dF/dT=S,+S,/z is continuous
across the shifted Curie temperature 7¢=T,+T,/z. In
a finite field, the first derivative of the free energy be-
comes continuous, but the second derivative becomes
very large and positive near T,.
The first-order correction to the specific heat is given
in terms of F; by
ClT%he) 4 d? F

ext

N T dT*? NzJ °

(31)

Evaluating this expression numerically, we plot C, /N for
the spin-3 Heisenberg model in Fig. 2. As expected, the
fluctuation specific heat is suppressed by an external field.
More surprisingly, for small nonzero fields, C,/N be-
comes very negative in the vicinity of T,. This behavior
is produced by the large second derivative of the free en-
ergy F| /NzJ in this region.

The most interesting feature of C, /N is the small peak
below the transition temperature. In zero field, the tem-
perature of the peak is given by T =~0.177zJs. As dis-
cussed by Fishman and Vignale,® this peak marks the
crossover from a low-temperature spin-wave regime to a
high-temperature nonlinear regime. Within the spin-
wave approximation, the peak is produced when the
transverse free energy enters an equipartition regime® in
which spin waves of all momenta contribute to the free
energy. For the Ising model, the peak is absent. In a
nonzero field, the temperature of the peak is given by
T=0.177(zJs +h,,,), which increases linearly with the
field. As shown in the inset to Fig. 2, the peak is both
flattened and shifted by the external field. So by
suppressing quantum fluctuations of the spin, the exter-
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FIG. 2. First-order specific heat C,/N vs T*/s(s+1) for
the same spin and fields as in Fig. 1. Inset is the quantum peak
for the Heisenberg model with A %, =0 (solid curve), 0.05 (long-
dashed curve), and 0.1 (short-dashed curve).

nal field also increases the crossover temperature above
which quantum fluctuations play a crucial role.

Very close to T, the MF specific heat C,/N contains a
hump.> When C,/N is added to the fluctuation specific
heat C, /zN for z 2 6, the total specific heat also contains

a hump near the crossover temperature 7. This hump
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has been observed experimentally in gadolinium and ter-
bium compounds.'"!? Of course, it would be most in-
teresting to observe the peaks in C,;/N directly by sub-
tracting off the MF contribution to the specific heat.

A troubling feature of these results is the large negative
contribution to the specific heat and susceptibility near
T, for a nonzero field. In zero field, the divergence of x,
and the discontinuity in S|, = —dF,/dT at T, signify the
shift in T& from T, to Ty+T,/z<T,. But in a finite
field, no such interpretation is possible. Although Y, and
S, are now continuous at T, the large negative contribu-
tions of y, and C,/N=(T/N)dS,/dT near T, are
difficult to interpret physically.

To summarize, this Brief Report has examined the
effects of an external field on the fluctuation contributions
to the magnetic susceptibility and specific heat. As ex-
pected, the external field suppresses quantum fluctuations
of the spin. In this Brief Report, we find that the first-
order corrections of the Curie temperatures evaluated
from the order parameter and susceptibility are identical.
Hence the final objection to the unrenormalized 1/z ex-
pansion has been removed.
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