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1jz expansion for the Ising and Heisenberg models in an external field
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Using an expansion in 1/z, where z is the coordination number of the lattice, we examine the effects of
fluctuations on the magnetic susceptibility and specific heat of a spin-s ferromagnet in an external field.
As expected, the first-order Auctuation correction to the transition temperature calculated from the
zero-field susceptibility agrees with previous results obtained from the expansion of the order parameter.
The temperature of the peak in the Auctuation specific heat of the Heisenberg model increases linearly
with the external field.

Expansions in 1/z, where z is the number of nearest
neighbors in the lattice, were first formulated' to study
the properties of ferromagnets over 30 years ago. The
original, unrenormalized 1/z expansion was abandoned
for two reasons. First, "anomalies" were discovered in
the fluctuation corrections to the order parameter and
free energy at the mean-field (MF) Curie temperature.
Second, the Curie temperatures calculated from the 1/z
expansions of the order parameter and magnetic suscepti-
bility disagreed. In order to circumvent these
difticulties, each order of the expansion was renormal-
ized ' by including an infinite number of higher-order
terms. Recent work ' has demonstrated that the so-
called anomalies of the unrenormalized expansion are, in
fact, required to make the theory consistent. For exam-
ple, the divergence of the 1/z correction to the order pa-
rameter at the MF Curie temperature signifies a shift in
the transition temperature. The discontinuity of the
first-order correction to the entropy at the MF Curie
temperature can be explained in a similar way. In this
Brief Report, we show that the second condition for the
consistency of the expansion is also satisfied: We demon-
strate that the expansions of the magnetic susceptibility
and order parameter yield the same shifted Curie temper-
ature, at least to first order in 1/z.

The lowest-order term in any 1/z expansion is simply
the MF result, which neglects the correlation of Auctua-
tions on neighboring lattice sites. Higher-order correc-
tions include the effects of spin correlations. In the for-
mal limit z~~ (only really possible in infinite dimen-
sion), the MF experienced by every spin diverges and MF
theory is recovered. The fluctuation corrections become
increasingly important as the coordination number z de-
creases. So a 1/z expansion is only sensible when MF
theory already provides a good starting point for describ-
ing the physical properties of a system. When MF
theory is not qualitatively accurate, such as for a two-
dimensional Heisenberg model, the 1/z expansion about
MF theory is not meaningful.

In previous work, Fishman and Liu (FL) developed
the unrenormalized I/z expansion for the order parame-
ter M = (S„)and normalized free energy F/NzJ of the
spin-s Heisenberg and Ising models with exchange con-
stant J. The 1/z correction to the order parameter is

evaluated by exactly summing an infinite series which
couples the spin fluctuation over an increasing number of
lattice sites. As shown by FL, the divergence of this
first-order correction to —~ at the MF Tc signals the
decrease in the Curie temperature from its MF value.

By expanding the free energy in powers of 1/z, FL also
found that the 1/z correction to the specific heat of the
Heisenberg model contains a peak at the temperature
T=0.17zJs. Fishman and Vignale have associated this
peak with a crossover from a low-temperature spin-wave
regime to a high-temperature nonlinear regime. In the
classical limit s ~~, the crossover temperature T ~ zJs
vanishes on the scale of Tc ~zJs . Above the crossover
temperature, the strong coupling between longitudinal
and transverse spin fluctuations produces new dynamical
effects.

We now generalize the work of FL for finite fields.
Since the formalism is very similar to the one in zero
field„we will primarily emphasize the effects of a finite
field. The Hamiltonians of the Ising and Heisenberg
models with external magnetic field h,„,along the z direc-
tion are

Ht= —J g S; S, —h,„,+S;, ,
(ij) i

[Sia, Sj tj ] e apy~ij Si y

with A'=1. As usual, we separate the Hamiltonian into
three terms:

HI H =H,~+Hi +H2,
where

(4)

H ff' gHMF

H MF
= —(zJMo+ h,„,)S;,

HH= —Jg S; Sj.—h,„, gS;,
(ij) i

where the sum runs over all nearest-neighbor sites. The
spin operators S; of the Heisenberg model obey the com-
mutation relations
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is the MF Hamiltonian, and Mo= (S,, )~„is the MF or-
der parameter. Both the constant term H& =NzJM0/2
and the Auctuation Hamiltonian H2 are the same as in
the zero-field case. The fluctuation Hamiltonian H2 cou-
ples spin fluctuations on neighboring lattice sites.

Of course, the MF theory of the Ising and Heisenberg
models is the same. For any operator A, the MF expec-
tation value is

M I
'
( T*,h,*„,)

M, ( T*,h,*„,) =
1 f (T—*,h,"„,)

where the scaling function

f (T*,h,*„,)=p'((S„—Mo) )st„

(15)

sions of Eqs. (11) and (12). Because the series in Eq. (14)
is geometric, the summation yields

=p*(6, —Mo) (16)

where

ZO=Tr(e '
) (8)

is the same for the Ising and Heisenberg models. Here
we have introduced the dimensionless functions

is the MF partition function and P=1/T. It is easy to
see that all MF expectation values depend only on the di-
mensionless temperature T*= T/zJ and field
h,*„,=h,„,/zJ. If H; " is written as —h,&S;„ then the
effective field is h,z=zJM0+h, „, and the corresponding
dimensionless effective field is h,'&=M0+h,*„,. The MF
partition function can be written Z0 =Z00, where

n+1 ~ ea1
s pe h

00 m= —s
(17)

In terms of these functions, the bubble contributions M'& '

for the Ising and Heisenberg models are

M' '(T*,h,*„)= [
—2MO+M06, —M 62

1

sinh [P*h,*ff(s + —,
'

) ]
ZOO

sinh( —,'P"h,*ff )
(9) —3M06, +6,62], (18a)

with p'=1/T*. The MF order parameter Mo(T', h,"tr) is
then obtained from the well-known self-consistent equa-
tion

M =(s+ —,')coth[p*h; (s+ —,')]—
—,'cath( —,'p*h; ) . (10)

Expanding for small M0 in zero field, the MF transition
temperature Tc is given by To =s(s +1)/3.

The exact expectation value for any operator 2 is

(A)= —Tr(e ' e 'A),
Z

''
where

Z y (
eff 2) (12)

is the exact partition function. The 1/z expansion is pro-
duced by expanding both the numerator and the denom-
inator of Eq. (11) in powers of the fiuctuation Hamiltoni-
an H2. For any dimensionless operator A, the expecta-
tion value ( A ) can be expanded as

( A ) = A 0 ( T*,h,*„,) +—A, ( T*,h,*„,) +
z

(13)

M i ( T*,h,*„,) = g M I"'
( T*,h,*„,),

n =2
(14)

where M', "' is produced by the H2 terms in the expan-

where A o
= ( A )st„ is the MF value and the coefficients

A„(T",h,*„,) only depend on z through the dimensionless
temperature and field. As discussed by FL, the first-order
correction A I to any one-body expectation value such as
M=(S„) can be written as the sum over bubble dia-
gram and an infinite number of tadpole diagrams.

For example, the 1/z correction to the order parameter
can be written as

M' '(T', h,*„,) = ( —2MO+Mo( —'+56 ) —M 61

+MOPGi[s(s+1) —1]——,'Gi ]

—
—,'s(s+1)62+ —,'6, 62) .

(18b)

These results are the same as in FL except that M0 and
G„now depend on field h,*„, as well as on temperature
T*. Because the external field suppresses the correlation
of spin fluctuations, M& decreases with increasing h,„,.
For any nonzero field, M, no longer diverges to —~ at
T0 and the Curie temperature is no longer defined.

In general, the MF magnetic susceptibility is given by

dM'
dh,*„' (19)

which like the order parameter can also be expanded in
1/z. Identical results for the zero-field susceptibility
would be obtained with the definition
g= [M(h;„, ) —M(0)]/h,*„,. It is straightforward to show
that the MF susceptibility defined by Eq. (19) is given by

P*(G, —Mo)
yo( T*,h,*„,) =

1 —P"(6, —Mo)
(20)

In zero field, g0 diverges to + ~ both above and below
T0, as shown in the inset to Fig. 1. In a nonzero field,
however, the MF susceptibility is continuous with a peak
near T0.

By differentiating M& with respect to the external field
and expressing the result in terms of M0 and G„, we have
also evaluated the 1/z correction g„which is plotted in
Fig. 1 versus T*/s(s +1) for the Heisenberg model with
three different fields. In zero field, g& diverges to + ~
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dT*2 XzJ
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