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Effect of d-wave energy-gap symmetry on Raman shifts
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We have calculated the shift and change in width, due to superconductivity, for a q=o Raman-active
phonon in a two-dimensional, tight-binding band, structure with a d-wave pairing interaction. We find
that additional structure appears in the phonon self-energy due to the van Hove singularity, which
occurs in two dimensions. A more general model of a superconductor with nodes in the gap function is
also examined and related to both the d-wave model and another model for layered superconductors. In
contrast to the usual isotropic s-wave case where a phonon with frequency less than twice the gap value
is softened and narrowed, we find softening with broadening in these models. Comparison of the aniso-
tropic models is made with experiment.

I. INTRODUCTION

While the mechanism for superconductivity in the
high-T, oxides remains an open question, there is grow-
ing interest in the possibility of the pairing interaction ex-
hibiting non-s-wave symmetry. Such an explanation is
persuasive, as other exotic superconductors, such as the
heavy-fermion and organic superconductors, are now
thought to be possibly described in terms of d-wave or
unconventional pairing. For the high-T, oxides, the ex-
perimental evidence for quasiparticle states extending
down to zero frequency inside a supposed gap region sup-
ports the idea of nodes existing in the gap function. Ex-
perimental evidence for states within the gap include tun-
neling, ' optical conductivity, Raman intensity, and
penetration depth, to name a few. Other support for a
pairing interaction with nodes comes from the unusual
NMR relaxation rate as a function of temperature below
T, . In particular, the ratio of the relaxation rate in the
a-b plane to that in the c direction in YBa2Cu307 displays
an unusual S shape which has only found explanation, at
present, in terms of a d-wave model with the existence of
nodes. Hence it is of interest to study the effect of
different gap symmetries on various superconducting
properties to look for signatures which may be defined in
experiment.

In this paper we wish to examine how nodes in the gap
function affect Raman phonon shifts and widths. To this
end we will focus on the d-wave symmetry of the gap
function, although we will show our results are more gen-
erally applicable to nodes in the gap function. The
motivation for choosing the d-wave symmetry arises from
theoretical results based on two-dimensional Hubbard-
model calculations which appear to favor this symmetry.
In addition, Pines and co-workers ' have proposed a
phenomenological model for antiferromagnetic paramag-
nons in the Cu-O planes giving rise to d 2 2 symmetry. '

Their model is based upon examination of the NMR
relaxation-rate experiments and deducing from them a
susceptibility which pairs in the d-wave channel. Here
we will not espouse a specific interaction, but rather will

choose to use the gap symmetry corresponding to this
d 2 2 state and work within a BCS model. We will com-

x —y
ment briefly on results of strong-coupling calculations at
the end of the paper.

II. THEORY

Following the lead of many authors on this subject
and, in particular, the notation of Zhou and Schulz, "we
base our work on a two-dimensional tight-binding model
on a square lattice with nearest-neighbor interactions.
The mean-field Hamiltonian in this model for supercon-
ductivity with spin-singlet pairing is given as

H= y Gkak ak + y (Akak$a kg +H. c. ),
ko. k

where the dispersion relation for nearest-neighbor in-
teractions on a square lattice is given by

ek= —2t [cos(k„a )+cos(k~a )]—p .

Here a is the lattice spacing, ak (ak ) is the creation
(annihilation) operator for a particle with spin cr and
momentum k, p is the chemical potential, and t is the
hopping parameter. The above energy dispersion corre-
sponds to a bandwidth of St. The anisotropic gap param-
eter 6k is solved self-consistently from

(2)

1
~k rf ~kk' ( a —k' 2 ak' t ~

T
kk' 2 + 2+~2

~kk' ~ Ik lk' ~

where, for the symmetry of interest here,

2)k=cos(k a ) —cos(k~a ) .

(4)

where X is the number of sites, T is the temperature, and
co„ is the fermion Matsubara frequency. In this expres-
sion the pairing interaction must be specified, which, in a
BCS approximation, we choose to be
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This leads to a solution for 6& of the form

bz=bgz=b, [cos(k„a ) —cos(k a )],
which gives a maximum gap of 2A. Lines of nodes occur
in the gap function along the direction (+,vr/a, +sr/a ) in
the Brillouin zone.

Gap anisotropy effects with relation to the Raman
cross section have been previously discussed by Abriko-
sov and Falkovsky' and Monien and Zawadowski. '

The purpose of this paper is to answer the following ques-
tion: In comparison with s-wave superconductivity, how
does a d-wave symmetry (or, more generally, a supercon-
ductor with nodes in the gap function) aff'ect the shifts
and widths of phonons observed in Raman light-
scattering experiments. The phonon self-energy at q=0

I

has been calculated for the high-T, oxides assuming s-
wave pairing by Zeyher and Zwicknagl' and Marsiglio,
Akis, and Carbotte. ' An electronic mechanism has been
investigated by Nicol and Carbotte. ' Arguments for the
justification of these calculations have been set forth in
the papers of Zeyher and Zwicknagl. ' The Zeyher-
Zwicknagl theory' has been used by many experimental-
ists in an attempt to extract an energy gap from the
data. ' The question one might ask is, how would the ex-
perimental interpretation of the data change if the sym-
metry of the pairing interaction is d wave? Could a
feature still be identified as being related to the energy
gap? We will attempt to answer these questions here.

Following the work of Zeyher and Zwicknagl, ' the
phonon self-energy, assuming a polarization bubble with
no vertex corrections, is given by

Xz(q;iv„)= —g g Igz(k, k+q)l Tr[r3G[k+q, i(co„+v„)]r3G(k,iso )],

where r3 is a Pauli matrix, G(k, i co ) is the fully interact-
ing Green's function, co (v„) is the fermion (boson)
Matsubara frequency, and g&(k, k+q) is the electron-
phonon matrix element for scattering of an electron of
momentum k to k+q with momentum transfer q to or
from a phonon with branch index A, . In BCS theory the
superconducting Green's function is

l &m +~k%3+ 6k%1
G(k, iso„)=-

~a+ ~m +~1

Substitution of Eq. (8) into Eq. (7) and taking q=O yields
r

E), ~j', Iggg I'
X~(iv„)= —— tanh

N „2T Ea[(2Ev) +v„]
where Ez = ( sz+ hz)' and g&z

—=gz(k, k). The usual
quantity to show is the difference between the supercon-
ducting and normal-state self-energies,

EX(iv„)=X (iv„)—X (iv„),
where X is obtained from Eq. (9) by setting b. =O. In the
case of the above expression, which is for the clean limit
(i.e. , no impurity scattering), X =0. AX(iv„) is then
analytically continued (i v„~v+i 5), and the real part de-
scribes the shifts in phonon frequencies and the imagi-
nary part describes the change in phonon widths upon
entering the superconducting state.

The simplest method for evaluating Eq. (9) for the
band structure given in Eq. (2) and the gap parameter
given in Eq. (6) is to numerically evaluate Eq. (9) on a lat-
tice. ' We have done so in this paper.

The band structure of Eq. (2) in two dimensions gives
rise to a van Hove singularity in the electronic density of
states,

(9), (2), and (6), an approximation can be made that will
reduce the number of integration variables by 1 facilitat-
ing the more numerically intensive Eliashberg strong-
coupling calculation. A transformation is employed of
the form'

cos(k a)= —e —(1—Iel)cos8,

cos(k~a ) = —s+ (1 —
I s I

)cos9, (12)

for —1 c ~ 1 and 0~ 0~m. . This transformation maps
out constant-energy c surfaces in the first quadrant of the
square Brillouin zone. Assuming that t is very large and
can be taken to infinity and that we are at a filling where
we are far away from the van Hove singularity such that
we can assume a constant density of states around the
Fermi level, which will be

N(0) = 1

2&2~tlpl'" '

[P=p/(2t)], then

(13)

AX~(iv„)= — J d8 J de tanh
0 QO 2T

~slg~el'
X

E[(2(E) +v„]
(14)

Here &=(s +b,s)', g~& is the electron-phonon matrix
element in these new variables with the assumption that
this quantity will only depend upon the angle but not on
the energy, and

6@=Aa cosO,

N(co)= —g 5(co Eq) . —=1 (10)
with

~= —(2—IPI) (16)

If one is willing to sacrifice an exact evaluation of Eqs. Under this approximation the problem has been reduced
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to a gap parameter of the form 6&=hacosO with only
one integration variable, as the c. integral can be done
analytically in most cases. This is much easier to handle
numerically for Eliashberg strong-coupling calculations
and is also a more general form of a gap parameter which
exhibits nodes. This expression is particularly simple for

I

b,X2(v+i5) 1 AX&(v+i 5)
(17)

where

the real part at T =0 and for the imaginary part at any
temperature, as it can be reduced analytically to'

Redye(v+i5)
N(0)

2
tan '

( 1
—2) 1/2

V

( 1
—2)1/2

for v&1,

1
—

(
—2

1 )1/2
In[2v —1+2v(v —1)'/ ] for v) 1,

(18)

Imb, Xs(v+ i5)
N(0)

0 for v&1,
tanh( v /4 T) v&
v(v —1)

(19)

where vg =—v/(25&). This form can be easily implement-
ed for model fits to data. Using any general choice of
symmetry for the gap function, Eqs. (17)—(19) can be
evaluated using the appropriate angular integration
(within a constant density-of-states approximation).
While the form of Eqs. (15) and (16) contains the physics
of Eq. (6), with a= 1, it is also equivalent (in the limit of
large anisotropy in the gap parameter) to the form ob-
tained for an anisotropic layered superconductor with an-
isotropy in the z direction.

In this model of a layered superconductor, which has
been studied extensively in the context of copper oxide
superconductivity by many authors, ' electrons hop
between planes with a hopping parameter t and propa-
gate freely in the planes. The dispersion relation for the
electrons is given as

, (k +k )+ cos(k, c),1 p p t

2m m
(20)

51,=6[1+b cos(k, c)] .

Here b is the anisotropy parameter, with b =0 corre-
sponding to pure s-wave symmetry. In this model we can
once again evaluate Eq. (14) with

bs=b(1+b cos8) . (22)

When b is very large, this model approaches the o,A cosO
form.

In the following we will present the phonon self-energy
for the d & 2 model. We will then compare this modelx —y
with the ahcosO model to demonstrate what features
have been lost in the approximations. The aA cosO form
will then be used to compare with the standard s-wave

with c the lattice constant in the direction perpendicular
to the planes and m * the effective mass. This band struc-
ture yields an open, hour-glass-shape Fermi surface for
the Fermi energy Ez) t/m*. In this limit the density
of states is constant and a gap ansatz is used, which is of
the form

calculation and to make general statements about gap
structure with nodes. Finally, we will exhibit results for
the gap symmetry relevant for a layered superconductor
and demonstrate that, with large anisotropy, it approxi-
mates a gap function with nodes.

III. RESULTS

A. d-wave symmetry: h„=h[cos(k„a )—cos(k~a ) ]

The first result that we will exhibit is the exact evalua-
tion of the phonon self-energy given in Eq. (9) at zero
temperature using the gap ansatz of Eq. (6) and the band
structure of Eq. (2). We have also taken gi, ~ g1„assum-
ing that the electron-phonon interaction exhibits the
same anisotropy as the interaction which renormalizes
the electron Green's function in the superconducting
state. (We will have more to say about this further on).
The calculation was done on a lattice, ' and therefore the
curves exhibit some rounding due to finite-size effects.
The results are shown in Fig. 1. The upper frame is the
real part of the phonon self-energy, corresponding to
shifts in the phonon frequency, and the lower frame is the
imaginary part, commenting on changes of phonon
widths or, equivalently, lifetime effects. Curves are
shown for different p (which can be related to the filling
factor) as labeled in the figure caption. In this figure,
b.:5/(2t)=0. 1, t =1.0 —eV, and we have used a lattice
size of 1024X 1024 with 5=0.008 (iv„~v+i5)
Throughout this paper 60 refers to the zero-temperature
value of b, . At half-filling (i.e., p=0), a phonon with fre-
quency below 460 (or twice the maximum gap) softens,
while above 46o it would be hardened, with considerable
hardening just above 460. As we move away from half-
filling, hardening can occur for frequencies as low as
v-2b, o(2 —

~p~) and the sharp peak structure at 460 di-
minishes and moves to higher frequency. To understand
fully this structure, it is better to look at the imaginary
part of the self-energy for the change in phonon widths
and compare this to the density of states. The real part is
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related to the imaginary part of the phonon self-energy
by Kramers-Kronig transformation.

In the imaginary part of the phonon self-energy (bot-
tom frame of Fig. 1), the phonon is always broadened in
the superconducting state with greater broadening occur-
ring in two places. These two positions of increased
broadening can be understood from an examination of
the corresponding density of states shown in Fig. 2. The
density of states shown here was evaluated from Eq. (10)
by a lattice calculation and for the same parameters as
shown in Fig. 1. Zhou and Schulz" have already per-
formed a similar calculation for this quantity and have
given a very thorough discussion of the features observed
here. We summarize here their main results. There is a
finite number of quasiparticle states at all frequencies,
with a linear variation in frequency as co~0. The 6rst
peak at low frequency is due to the superconductivity and
is a logarithmic divergence rather than the usual square-
root divergence. This is due to the two dimensionality.
This frequency corresponds to co, =2t h(2+P )/
(I+6 )' [=2th(2+P ) for A=6, /(2t) « I]. The
higher-energy peak is due to the van Hove singularity
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FIG. 2. Quasiparticle density of states calculated on a lattice
for the d-wave model discussed in the text. Curves are drawn
for p=D. O (solid curve), —0.2 (dot-long-dashed curve), —0.3
(dot-short-dashed curve), —0.5 {short-dashed-curve), and —1.0
(long-dashed curve). The same parameters are used as for Fig.
1. The lower-frequency peak corresponds to the superconduct-
ing singularity, and the higher-frequency peak corresponds to
the van Hove singularity which occurs in two dimensions. At
p, =0 the two peaks combine into one.
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FICx. 1. q=0 phonon self-energy, in BCS theory, at zero tem-
perature and in the clean limit for the d-wave model described
in the text. The top frame is the real part, and the bottom frame
is the imaginary part. The curves have been normalized to give
the usual zero-frequency limit for the real part. This calculation
has been performed on a lattice with the parameters given in the
text. Curves are drawn for p, =0.0 (solid curve), —0.2 {dot-
long-dashed curve), —0.3 (dot-short-dashed curve), —0.5
(short-dashed-curve), and —1.0 (long-dashed-curve). Negative
(positive) values correspond to softening (hardening) in the top
frame and broadening (sharpening) in the bottom frame.

which always occurs in two dimensions. For ~P~/2&5
it is positioned at r02=2tb(2 P)/(I+—b, )'~ and for
tP t /2 )6 (the expected situation in the high-T, oxides)
coz=2t(P +46, )' . If p=O, both peaks combine into
one peak at co =26. (Note that in Fig. 2 the peaks are not
as sharp as they should be because of the fact that the
calculation was done on a finite-size lattice. ) We see very
clearly a reflection of this density of states in the imagi-
nary part of hX with the dips occurring at twice the fre-
quencies of the peaks in Fig. 2. This is a result of the
process whereby the phonon scatters with a particle-hole
pair and is broadened. This particle-hole pair may be
created only at co ~ 26O in an s-wave superconductor as
two quasiparticles must be liberated from the supercon-
ducting condensate, costing a minimum in energy of 25O.
However, in a superconductor with nodes in the gap
function, particle-hole pairs can be created at arbitrarily
low energy (at the nodes) and contribute to scattering.
Likewise, at the peaks in the quasiparticle density of
states, more quasiparticle scattering is available to relax
the phonon with a factor of 2 showing up in the self-
energy as, in all instances, both a particle and a hole must
be created. The main conclusion of the overall discussion
here is that for a d-wave superconductor there is a region
in which a phonon will be broadened and softened which
is unlike the behavior of an s-wave superconductor, as we
will shortly discuss.

B. General gap anisotropy with nodes: h, z= a4 cos8

In Fig. 3 we display the result of evaluating the phonon
self-energy in the constant density-of-states approxima-
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neglects the van Hove singularity entirely. It is also not a
great loss as the singularity is somewhat artificial since
three-dimensional effects, strong-coupling effects, etc. , are
likely to smear and reduce it considerably. The aA cosO
form, however, correctly captures the singularity due to
the superconductivity which occurs at v=26.o(2 —~P~).
In the constant density-of-states approximation, changing
p merely scales the x axis on the curves in Fig. 3 to
maintain the singularity at v=260(2 —~P~). Note that
the singularity always occurs at twice the maximum gap
[i.e., 2b,o for Eq. (6)j minus 2b, o p~ which corresponds to
the maximum gap on the Fermi surface. If the electron-
phonon coupling has no anisotropy, as might be the case
if the superconductivity is due to a mechanism other than
electron-phonon coupling, the effect is primarily to
reduce the amount of softening near 2b, o (long-dashed
curve). The main feature of this figure is the comparison
between the case of nodes in the gap function and s-wave
superconductivity (that is, no nodes). According to Fig.
3, in s-wave superconductivity a phonon with frequency
below 2b,p will soften and not be altered in width (or be
narrowed in the case of impurity scattering). For a su-
perconductor with nodes in the gap function (d-wave or
otherwise), a phonon can be broadened and softened in
the superconducting state.

In Fig. 4, we show the same case as for the short-

FIG. 3. q =0 phonon self-energy, in BCS theory, at zero tem-
perature and in the clean limit for three cases. The solid curve
is the s-wave result (Refs. 14—16). The short-dashed curve cor-
responds to the ab, cosO model with a=1 and gi, taken to be
proportional to acosO. And the long-dashed curve illustrates
the same model as the short-dashed curve, but with gi, taken to
be a constant. The top frame is the real part, and the bottom
frame is the imaginary part. This calculation has not been per-
formed on a lattice, but evaluated numerically by a standard in-
tegration routine. Here it is clearly illustrated that only for the
gap function with nodes can there be the possibility of softening
accompanied by broadening.

tion of Eq. (14) with T=0, which reduces to the very
simple result of Eq. (17). For this calculation and all that
follows hereafter, we have not done a lattice calculation
as the integrals are easily solved by exact numerical in-
tegration. Here we take a=1, which corresponds to
p= —1. The solid curve is the BCS s-wave result in three
dimensions, the short-dashed curve is the aA cos(9 model
with g&~a cosO, and the long-dashed curve is for the
ab, cos8 model with gs equal to a constant (i.e. , in this
latter instance, we assume that the anisotropy in the su-
perconducting pairing interaction is completely unrelated
to the electron-phonon coupling). First, comparing the
result of the short-dashed curve (the ab, cos8 model) with
the corresponding p= —1 curve of Fig. 1 (the long-
dashed curve), we see that other than a small overall
magnitude factor (related to the choice of b, in Fig. 1), the
curves are essentially the same, indicating that the con-
stant density-of-states approximation is good for p away
from zero (away from half-filling). The main feature not
captured by the approximation as p approaches zero is
the higher-frequency structure due to the van Hove
singularity. This is not surprising as the approximation
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FIG. 4. q=0 phonon self-energy, in BCS theory, at finite
temperature and in the clean limit for the case of the ah cos8
model with anisotropy in the electron-phonon coupling
gk ~ acos8. Curves are drawn for T/T, =0.0 (solid curve), 0.5
(dot-long-dashed curve), Oe75 (short-dashed curve), 0.9 (long-
dashed curve), and 0.95 (dot-short-dashed curve). Again, nega-
tive (positive) values corresponding to softening (hardening) in
the top frame and broadening (sharpening) in the bottom frame.
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C. Layered suyerconductors: h„=h[1+b cos(k, c)]

In Fig. 5 we display the results for the phonon self-

energy in the model of a layered superconductor at T =0,
with an anisotropic gap function b,k=6, [1+b cos(k, c)j.
We have also used the same anisotropy in the electron-
phonon interaction gk cc 1+b cos(k, c ). Curves are

z

3.0

—e.o
0.0

1

0.5
I

1.0
p/25p

1.5 2.0

dashed curve of Fig. 3 (the ab, cos8 form with anisotropy
in gs) but now for several temperatures below T„with
the temperature dependence of the gap parameter solved
self-consistently from Eq. 3 with ok=a. and b«=ahcosO,

1~ Xo
k

The anisotropy slightly reduces the temperature depen-
dence of the gap function below that of BCS. With in-
creasing temperature the curves decrease in magnitude
and shift to the left as the gap closes, with the singularity
always tracking 6( T). Softening with broadening always
remains as a feature for phonons with energy below
2b, ( T).

drawn for different values of the anisotropy parameter b
as indicated in the figure caption. For b =0 the standard
isotropic s-wave result is recovered (solid curve). For
b&0 there exist three regions of behavior. For frequen-
cies below twice the minimum gap, the behavior is entire-
ly s-wave-like, with softening accompanied by no change
in phonon width. In the region corresponding to
2b (1 b)—( v (2b (1+ b), i.e., bounded by twice the
minimum and maximum gaps, the behavior is like that
for a gap parameter with nodes (i.e., the ab, cos8 model).
Here, once again, we see a region of softening with
broadening. Finally, for frequencies above twice the
maximum gap, the behavior is similar to both s- and d-
wave behavior for high frequencies, i.e., broadening with
hardening. In this model, therefore, it is also possible to
have a region of frequency where a phonon could be
softened and broadened, due to the d-wave-like piece in
the gap function.

Note that as the anisotropy parameter b increases, the
curves very quickly approach the o.hcosO model. For
the b =0.6 curve, very little difference can be seen be-
tween the layered and ahcosO models. The position of
the singularity in this instance will be at twice the max-
imum gap, which is at v=2aho in the aA cosO model and
at v=26, o(1+b ) in the layered model. Such large anisot-
ropy is probably unlikely and hence, in this model, we
would expect the region of broadening with softening to
be quite narrow. A very interesting point to note is that
the gap function does not have to have zeroes in it to ex-
hibit behavior in the phonon self-energy which is d-
wave-like.

Finally, in Fig. 6, we present finite-temperature results
for this model for a value of the anisotropy b=0.2.
Again the BCS gap equation [Eq. (3)] has been solved
self-consistently for the temperature dependence of the
gap. Increasing the anisotropy parameter increasingly
reduces the temperature dependence of the gap below
that of BCS, but not by very much. Again, as in Fig. 4
for the o.A cosO model, we see the curves shift to the left
for increasing temperature, tracking the gap as it closes
to zero, with the two structures at 2b, (T)(1 b) and-
2b. ( T)(1+b). The overall magnitude also decreases.
Measurements of phonon shifts and widths as a function
of temperature would effectively map out an image of the
basic shape of these curves, as the phonon at different
temperatures will resonate with the frequencies of the
different features in these curves.

D. Kliashberg strong-coupling calculations

FIG. 5. q=0 phonon self-energy, in BCS theory, at zero tem-
perature and in the clean limit for a model pertinent to layered
superconductors with gap anisotropy given by
kg= 60[ 1 +b cos( k, c ) j. Here we have taken g„ to be propor-
tional to 1+b cos{k,c). The top frame is the real part, and the
bottom frame is the imaginary part. Curves are drawn for
different values of the anisotropy parameter b: b =0 or s wave
(solid curve), 0.2 (dot-long-dashed curve), 0.4 (short-dashed
curve), 0.6 (long-dashed curve), and 0.8 (dot-short-dashed
curve). For large anisotropy the curves approach those of the
o. cosO model in Fig. 3.

With regard to strong-coupling calculations, the
nhcosO and layered superconductor models have been
used in a calculation of the phonon self-energy with
strong-coupling effects. These results will be reported in
detail elsewhere. We mention here that, overall, there
is very little difference between the strong-coupling re-
sults and the results presented here. The main effect of
strong coupling is to produce a reduction in magnitude of
the phonon self-energy by a factor of 1+A, , where A, is the
electron-boson mass renormalization parameter. This is
in agreement with work presented on this point in the
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FIG. 6. q=O phonon self-energy, in BCS theory, at finite
temperature and in the clean limit for the case of the
1+b cos( k, c ) model with anisotropy in the electron-phonon
coupling gz ~1+bcos(k, c). Curves are drawn for T/T, =O.O

(solid curve), 0.6 (dot-long-dashed curve), 0.75 (short-dashed
curve), 0.9 (long-dashed curve), and 0.95 (dot-short-dashed
curve). Again, negative (positive) values correspond to soften-
ing (hardening) in the top frame and broadening (sharpening) in
the bottom frame.

context of s-wave pairing by Nicol and Carbotte. ' If a
calculation could be performed for the strong-coupling
version of the planar d-wave model of Fig. 1, we would
expect to see the second structure due to the van Hove
singularity greatly reduced by the strong inelastic scatter-
ing 27~ 24

Generally, strong-coupling effects add little to the pho-
non self-energy other than an overall magnitude change.
The phonon self-energy is particularly sensitive to nodes
in the gap function with qualitatively different behavior
occurring compared with s-wave pairing.

E. Comparison with experiment

Interestingly enough, data have been presented by
Thomsen et al. ' for the phonon shifts and by Freidl,
Thomsen, and Cardona' for the phonon widths, which
have been fit to the s-wave theory of Zeyher and Zwick-
nagl' for the real and imaginary parts of the phonon
self-energy, respectively. In Fig. 7 we reproduce their
data upon which we superimpose curves for three mod-
els: isotropic s-wave, planar d-wave, and the layered an-
isotropic superconductor models, with the parameters
given in the figure caption. We have taken 25o=380

FIG. 7. Comparison between the data of Thomsen et al.
(Ref. 17) (real part) and Friedl, Thomsen, and Cardona (Ref.
17) (imaginary part) and three models discussed in the text. All
models are given in the clean limit. The experimental data has
been plotted assuming 260= 380 cm '. The solid curve is the
isotropic s-wave result, the dashed curve is the planar d-wave
model {i.e., b&=50[cos(k„a)—coslk~a)]) for P= —0. 1, and
the dot-dashed curve is for the layered superconductor model
for the anisotropy parameter b =0.125. The BCS curves have
been scaled by a strong-coupling factor (Ref. 16) corresponding
to A, =2. In the two anisotropic models presented here, the
value of v/260=1 does not simply correspond to twice the en-
ergy gap.

cm ' in presenting the data. There are several points to
note about this figure: (l) The curves are drawn for the
clean limit. Impurity scattering can be expected to round
some features and reduce the amount of anisotropy in the
d-wave-like models. (2) We have not attempted to find a
set of parameters which would best fit the data. (3) Our
BCS curves are scaled by a factor of 3, which would cor-
respond to a strong-coupling renormalization parameter
A, of 2. '

The main conclusion which we draw from this figure is
that several different types of models are capable of fitting
the data equally well. We cannot say from this figure
whether there is d- or s-wave pairing. Certainly, the data
for the shifts appear to favor a d-wave interpretation, and
this would be consistent with the finite Raman intensity
observed in the superconducting state down to zero fre-
quency, below a supposed energy-gap region. In the ex-
perimental papers from which the data were taken, fits
were made to the Zeyher-Zwicknagl' theory with some
impurity scattering. The agreement in their case was not
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as good for the shifts, but is equally as good for the
change in widths.

Finally, in light of this figure, it is not clear what the
value of the energy gap might be. For the s-wave curve,
the singularity at v/2b, o= 1 corresponds to twice the en-

ergy gap; in the planar d-wave model, this point is twice
the maximum gap minus a function of the chemical po-
tential, and for the layered superconductor model, the
value of v/2b, 0=1 corresponds to the average of the
minimum and maximum gaps. While there appears to be
support for the existence of a gap, this figure illustrates
that it is unclear as to exactly what the gap value might
be in this case and which symmetry of the gap function is
correct for the high-T, superconductors.

IV. CONCLUSIONS

We have calculated the q =0 phonon self-energy in the
superconducting state for a BCS model where the gap
function has d-wave symmetry ( 61,= b, [cos(k„a )
—cos(k a)]), for a more general model where the gap
function has nodes A&=ahcosO and for a model per-
tinent to layered superconductors with b,&=b, [1
+b cos(k, c)]. The d-wave model can be related to the
aA cosO model in a constant density-of-states approxima-
tion, away from half-filling, and the layered superconduc-
tor model can be related to the aA cosO model in the lim-
it of large anisotropy b. In all cases it is found that when
the gap parameter has nodes or a constant with a piece
with nodes, a phonon has the possibility of being both
broadened and softened in the superconducting state,
which cannot occur in the clean limit if the gap parame-
ter has pure s-wave symmetry. Therefore experimentally
observed broadening with softening could be a signature
of a gap parameter exhibiting nodes.

Another possible mechanism which would predict
broadening accompanied by softening would be paramag-
netic impurity scattering (or a similar pair-breaking
mechanism), but the frequency region over which this

could occur is expected to be very small for realistic
values of the scattering rate.

On a cautionary note, if there exists a van Hove singu-
larity due to two dimensionality, the corresponding struc-
ture in the phonon self-energy may be mistakenly
identified as the gap singularity. Care must be taken in
this regard. Also, the superconducting singularity cannot
be identified as twice the energy gap (as in the s-wave
case), but is shifted from the maximum d-wave gap by an
amount related to the chemical potential, so that once
again caution must be exercised in the interpretation of
data which might reAect unconventional pairing. We
suggest that experiments interpreted within the s-wave
model of Zeyher and Zwicknagl' could possibly be inter-
preted with equal success within one of the models
presented here. More experiments would have to be done
to differentiate between the possibilities, but it would ap-
pear that an interpretation that incorporates nodes in the
gap function cannot be ruled out at this point.

In conclusion, Raman light-scattering experiments
could be a very useful probe of the gap symmetry as in
that case there is distinctly different behavior predicted
for a gap function with no nodes and one with nodes.
This could be used as a test for the high-T, superconduc-
tors and, in principle, for heavy-fermion and organic su-
perconductors, if in the latter case arguments could be
found for neglecting vertex corrections to the polarizabil-
ity.
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