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Semiclassical spin polarons
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The observed properties of the higher-spin analogs of the lanthanum cuprates motivate a study of
charge carriers in a classical two-dimensional antiferromagnet. Even for classical spins there is a re-
markable dependence on the position of the carrier wave vector in the magnetic Brillouin zone. At the
zone center, there is a tendency toward ferromagnetic alignment of the spins, while at the zone boundary
this tendency is suppressed and a more complex spin polaron can be formed.

I. INTRODUCTION

The absence of superconductivity' in the spin-1 and
spin- —', analogues of the lanthanum cuprates (La2Ni04
and La2CoO~, respectively) is striking. In contrast to the
cuprates, the cobaltates do not even become metallic
upon doping, and the nickelate only approaches the me-
tallic state when doped with 50%%uo Sr. '

Enhanced trapping, or localization, of the carriers
would seem to be an obvious interpretation, although its
origin is unclear. There are at least two simple explana-
tions based on effective-mass enhancement. First, the en-
ergy levels of the transition-metal ion are less closely de-
generate with the oxygen p states, leading to a narrower
bandwidth, facilitating localization. Second, the coupling
of the charge carriers to the spins may lead to different
types of magnetic (spin) polarons when the spins have
different magnitudes, and hence perhaps to different
effective masses.

A single-band model, appropriate to the nickelates and
cobaltates, was derived in Ref. 3. The principal feature is
that only one d orbital is itinerant —the d 2 2 orbital asx —y
in the cuprate. The other orbitals have either zero (be-
cause of symmetry) or reduced matrix elements for hop-
ping, and so are in the "insulating" local moment regime.
The magnetic moment comes from both the itinerant and
localized states, as has been demonstrated by neutron
scattering. '

The Hamiltonian of Ref. 3 is

We will neglect the Hubbard U term for the itinerant
electrons, which is consistent with the decline in U in.

moving from Cu to the left across the transition metals.
Any differences in physics as the spin of the ions is in-

creased should be most dramatically revealed in the clas-
sical limit of large spin, S~~. This is the opposite limit
to the cuprates. Happily this limit is also mathematically
tractable, as the Holstein-Primakoff transformation

simplifies there. The classical limit has a long history,
starting with the work by de Gennes, reviewed in Refs. 7
and 8, where the nature of the spin polarons formed due
to the coupling between the spins and the charge carriers
is discussed. In this paper we will focus on how the na-
ture of the distortion in the spin system depends on the
wave vector of the polaron. In the spin- —,

' case there is a
striking distinction between a tendency to maximize the
spin within the polaron when the polaron momentum is
near the Brillouin-zone center, and to minimize the spin
when the momentum is at the (magnetic) zone boundary.
This has a quantum-mechanical origin, as it is due to a
difference in sign of the superpositions of spins states. In
the classical limit it is not clear what result will be ob-
tained.

A convenient feature of the classical limit S~~ is
that it coincides with the adiabatic limit for the carrier-
spin system. This is demonstrated in Appendix A. We
can therefore regard the spins as a set of classical angular
momentum variables that provide a spin-dependent po-
tential for the carrier. The spins adopt a Neel
configuration in the absence of the carrier; whereas in its
presence the total energy can be reduced by distorting the
Neel state with the carrier bound to the potential well
created. Because a quantum-mechanical particle will
bind to any attractive potential U(r) in two dimensions

[ fdr rU(r) &0] it might be supposed that the carrier
will be bound to the spin system whatever the strength of
interaction j. As the strength of the potential is reduced
the particle binds only weakly and the wave function has
a correspondingly large spatial extent. Although it will
turn out that a certain critical strength of coupling is re-
quired to bind the particle, it is still true that the binding
energy can be small and the length scale correspondingly
great compared with the lattice parameter. In this limit
the antiferromagnet can be represented conveniently by
the classical nonlinear o. model

H, ;„,=—,'J d x Sp + Vm

where p is the magnetization density and m is the sublat-
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tice magnetization. The precise definitions of co and p are
given in Appendix B. Here and elsewhere we take the
unperturbed co to lie in the z direction. Of course, the
spin and space degrees of freedom are uncoupled in our
model, so that co and p could always be subjected to a
spatially homogeneous rotation.

In the natural long-wavelength motion of the spins, p
is much smaller than co, and the constraints co =1 and
co p=0 are approximately conserved by the equations of
motion. The presence of a carrier changes this situation:
later we will see that p can be of the same order as, or
even greater than, the perpendicular deviations co~ of the
sublattice magnetization. Hence we must formulate the
constraint more precisely, using the definitions in terms
of spin operators. We find co +p =1 and co-@=0. These
constraints are preserved by the equations of motion.

II. CONTINUATION BETWEEN SUBLATTICKS

Corresponding to the continuum limit for the spins we
can also make a continuum approximation for the elec-
tronic degrees of freedom. Since, in general, the wave
function takes a diff'erent form on the two sublattices ( A
and 8), the continuum approximation leads us to define a
four-component spinor

yA
'

~a
l

where i belongs to the 3 sites and P; is a continuation of
the B-site wave function on to the A sites. Methods for
making this continuation and an estimate of its accuracy
are given in Appendix B. The four-component object
need only be defined on one sublattice, so that there is no
doubling of the number of degrees of freedom. The same
is true for the spins: the redundant spin operators intro-
duced in Ref. 10 to help define the magnetization and
sublattice magnetization of an arbitrary spin state can be
replaced by interpolated quantities for the slowly varying
states considered here.

Using this notation we rewrite the Hamiltonian of Eq.
(1) as

H= t g Pt/3g, + —,'Jf—d x[8p +(Vro) )
(i,j)

+j f d x[M p+Q co],

where

g $,13$, =2f d x gt(x)P(cosk„+cosk )g(x) .
(i,j )

III. ZONK CENTER

Near k=a the kinetic energy is of order 4t and the two
bands are well separated. The operator jco a couples the
two bands and consists of terms of different orders with
respect to co~, the deviation from Neel order,

with tan2k=j /e(k), or

H'=P+e(k) +j +j a~ co~ ,'j a, (cp—j+—p~)

+jX'.)M, +O(co~),

where X,'=X, and

cr~

Xi=cos2A
p

0 p
+sin2A,

Oy izXo.
—izXcr

0

A further transformation to eliminate the remaining odd
parts gives [ep=E(0)=4t]

&oH"=p+e +j +j )M~ X .
Qe'+ j' (5)

The spatial derivatives in (5) appear at second order;
second derivatives of the perpendicular spin deviations
have been neglected. The effective Hamiltonian describ-
ing the carrier and its interaction with the spin system is
finally

2

H„,„;,„+H;„,=f3+Ep+j + — PV4+v+ z

Ep
+J P~ &

Qe2+j2

j ri) a =j Q 1 —
co~

—p a, +j co~ a .

Having adopted a four-component description of the car-
rier, it seems natural to apply successive Foldy-
Wouthuysen transformations" to eliminate the interband
transitions. This leads to an effective single-band Hamil-
tonian for the carrier. First we eliminate the effect of the
uniform, unperturbed spin system. The transformed
Hamiltonian is

A,Pa —A,PaH'=e 'He

and

Q=g af .

Here f3 and a are the Dirac matrices, and X is the 4X4
spin matrix, all in the Weyl representation.

In Eq. (3) we have preserved the lattice notation for the
kinetic energy. Although the lattice expression involves
variables of both sublattices, these can be understood as
continuations of four-component objects of the A sublat-
tice. Using k, the operator conjugate to the site operator
R, we can express the kinetic energy as

There is no remaining interaction with the sublattice
magnetization co. The effect of the carrier is to polarize
the antiferromagnetic background. Since p.co =0,
p, &&p~, and the polarization is effectively perpendicular
to z. For a stationary carrier this distortion minimizes
the energy

1 J d ~ 8p +
+e2+ 2

so that the magnetization density at equilibrium is
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=(E+Qea+j )u . (8)

Similarly, if the lower band was completely filled with
electrons, their net polarizing efFect would be zero and we
could again confine our attention to a two-component
wave function for a carrier added to the upper band.

The spinor equation (8) has solutions in which the spin
and space degrees of freedom separate as v (x)y, where y
is a constant spinor with components

I y, I

=
I A&I and v (x )

satisfies a scalar nonlinear Schrodinger equation. If the
coupling j is large enough the energy eigenvalue becomes
negative. The polaron is then unstable to collapse be-
cause the energy scales as L, where L is a lengthscale
which can be chosen freely. For a rotationally invariant
wave function v (r) the critical value of the coupling can
be found by numerical integration of the nonlinear

1

8J 1/ e0+j

Because the Hamiltonian (6) does not couple the upper
and lower pairs of components of g, we can suppose that
the particle remains in lower band, so that gtXig in (7)
can be replaced by u o.~u, where u is the lower pair of
components of f. Substituting this form for the magneti-
zation into the Hamiltonian (6) gives a two-dimensional
(2D) nonlinear Schrodinger equation for the two-
component spin wave function of the carrier:

2 ~ 2 2
&o 2 j' &o

V u- [uto u] ou
4 Q~2+j2 8J Q~&+J2

Schrodinger equation; this gives
'2

=0.931 13,
8m.J t/16t +j

which depends only on the parameters j, J, and t. Al-
though in this section we have made no assumptions
about the relative sizes of these parameters, we have nev-
ertheless required the polarization of the spin system to
be small, so that the magnetization is not saturated. We
should verify that this leads to no inconsistency. For a
particle wave function of spatial extent L,
u +au =0 ( I /L ), so that we require

j &o 1
p «1 .J~2+ zL&

If the polaron is unstable we can combine this with (9) to
obtain t/jL «1, which can be satisfied if the carrier
wave function extends over a large enough area.

IV. ZONE BOUNDARY

A study of the problem at the zone center is useful for
orientation, but in the systems of interest the states of
lowest energy for the added carrier lie at the boundary of
the magnetic Brillouin zone. Here the kinetic energy
t cosk~ is small and we may treat it as a perturbation on
the spin splitting induced by the background sublattice
magnetization.

To take into account the background we use the
transformed Hamiltonian (4) with X=~/4:

CO +0 PH'= j
ca~ e~+izXo -p —eo. /j

o .co —
I.zXo"p —eo /j
CO +0 P

(10)

The off-diagonal terms in (10) are small compared with j,
so that we can perform a further Foldy-Wouthuysen
transformation regarding these "odd" terms as a pertur-
bation. The result is

H"=j (p, +@~ toi)c», + —,
' [p~, e] o

+ .j [~,+ ,'(~i+pi))— operator

Note that the second-order terms in ej and p~ have can-
celed exactly. This should not surprise us: if the hopping
were switched oft; the electron spin would align with the
local spin direction, making the energy independent of co

and p. Hence, the terms in the Hamiltonian that do not
involve the hopping integral t must reduce to a constant
after the Foldy-Wouthuysen transformation.

In (11), E is the differential
—2t(cosk„+cosk ), or

—
—,'i[to~, e]Xz o+ e '/3,j

in which [,] and [, ] denote the commutator and anticom-
mutator, respectively. Using p, +p~-co&-—p-co=0 and

e(k)= 4t cos —,'(k,—+k )cos—,'(k, —k )

4t cos(k„/v'2)cos(k, /—+2),

co +co~+p —1

to, + —,
'

( coal+ pi ) = I +0 ( tvi, pi ),
or

we find the upper (+) and lower (
—) 2 X 2 blocks of H"

T

1H'+ =+ j+ e ,'i [a)i,e]Xz—t—r + ,' [pi, ~.] tr .—.
2J

whe~e k„=~/v 2 and k, =0 are the components of k
resolved parallel and perpendicular to the normal of the
Brillouin-zone boundary. It is helpful to extract the rap-
idly oscillating factor ( —1)"+» from the wave functions.
Then e= 4t sin( i%'„/+2) —=2v'2t—i%„is an op'erator
acting on the slowly varying envelope of the wave func-
tion. With this understanding, the Hamiltonian may be
taken to be
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4tH'+ =j— . V„+&2to [iV„pi+piiV„j
+z X(V„toi)] . (12)

The appearance of gradient terms involving the magneti-
zation and sublattice magnetization is plausible as the
transfer of a carrier from one site to its neighbor involves
both a spin Aip (with amplitude —jpi) and a hop
( -it V'„) via an intermediate state separated in energy by
j. We can interpret the interaction terms as a local cou-
pling of the spin current i[u o'(V„u ) —(V„u )o'u ] to the
magnetization density p~ and of the spin density with the
gradient of the sublattice magnetization.

Again we can discuss the possibility of self-trapping of
the carrier. At first sight it appears that the coupling is
weakened as it depends only on gradients of the magneti-
zation fields. This is true to an extent: the equilibrium
conditions on p and co imply

pi = — i[u cr(V„u) —(V„u )ou],
v'2t .

(13a)

v'2t d'x'
8J 2w

ln x —x' V„' zXu ou (13b)

Since the total spin current carried by a stationary parti-
cle must be zero, the total induced magnetization given
by (13a), i.e., f1 x )Mi(x), will also be zero for a polaron
exactly at the zone boundary: the effect of the particle on
the magnetization is in this sense reduced compared with
the zone-center case. Nevertheless, when the coupling j
exceeds a certain critical value the carrier-spin system is
unstable, just as before; but here the mechanism for insta-
bility can be either the coupling to p or to m~. The easier
case to understand is the coupling of spin current to mag-
netization which leads to the local polarization given by
(13a). We make the following variational ansatz for the
envelope wave function of the carrier:

at the zone center, the carrier s polarizing effect is similar
on the two sublattices and results in a high-order mul-
tipolar field from a large spin polaron. ' At the zone
boundary the polarizing effect is staggered with respect to
the two sublattices, maximizing the effect on the sublat-
tice magnetization.

V. DYNAMICAL EFFECTS
AT THE ZONE CENTER

The continuum Hamiltonian (6) for the coupled
carrier-spin system enables us to give a microscopic
derivation of the dynamical equations which were de-
rived using general phenomenological arguments in Ref.
10. In particular, we can show how a long-range spin de-
formation is induced by a moving carrier.

From the results of Appendix B we have the following
commutation relations for the continuum variables:

Sci) 5H /5' 8Jpy +gu 0 y u

Sp = —5H/5' =JV co

in which we have written g for the interaction strength
jeo/Qeo+j . After eliminating the inagnetization pi
we find

ajj 8J V Mg=gS z X u ~c7u (15)

For the carrier wave function, Hamilton's equations lead
directly to Schrodinger's equation,

[co (x),py(x')]=[@ (x),coy(x')]=iso, (x)5 (x—x')/S,

[p (x),py(x')]=[co ( )x, co (rx)]=i@,(x)5 (x x')—/S .

In the limit of small deviations away from Neel order,
p, «m, =l, so that u~ and zXp~ can be regarded as
canonically conjugate coordinates and momenta. Hence
we can use the Hamiltonian equations of motion

r jI.2 2

u (r, 8)= e'
L 2

(14) . Bu
l

Bt
5H

&

=H" [)Mi]u,
5u

(16)

which represents a normalized state with a nonzero den-
sity of spin current. It is easy to see that the kinetic ener-
gy of the carrier is of order t /jL, while the magnetiza-
tion energy is of order —t /JL, so that the total energy
becomes negative when j exceeds some value of order J.
A similar criterion for instability can be obtained from
the relaxation of the sublattice magnetization. Both p
and co will contribute to the formation of the spin pola-
ron. This demonstrates that an instability is possible,
though we cannot expect to find a quantitative result
from such a simple variational function.

Equation (13b) shows incidentally that the carrier may
induce a static dipolar twist at large distances in the sub-
lattice magnetization,

t x-n
c0 —— (zxo &

r

where (cr ) = f d x u t(x)cru(x). This is to be contrasted
with the zone-center case, where any distortion is dynam-
ically induced (see below). The difference is simply that,

Eu =H" [pi]u,
[(Sv V) —8J V ]ei= —gSv. V[zXu tru],
8JI.l+ gu t~iu = S(v V)z X~i— .

(17)

Note that for small v the sublattice magnetization is pro-
portional to v and the change in the wave function u is
proportional only to v . For any v less than the spin-

where the effective single-band Hamiltonian operator
H" [pi] is the lower 2X2 block of Eq. (5). We can find
uniformly translating solutions of the dynamical equa-
tions (15) and (16) together by applying the usual formu-
las of the Galilean transformation. We express the wave
function as

u(x, t) =u(x vt)expi[mov. x ——
—,'mov t Et], —

where mo is the unrenormalized mass 2+@0+j /eo.
Similarly expressing the classical fields co~ and py in the
form f (x—vt), we obtain
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wave speed c =2&2J/S, (17) implies that to~ has a (dis-
torted) dipolar from at large distances,

gS y v (x —vt)
gzXcT /

2vrJ [yv (x vt—)] +[vXx]
where y is the velocity-dependent factor I/'t/1 —u /c .

Finally, the effective mass of the spin polaron can be
estimated from the O(u ) change in the energy of the
spin system,

—,
' mu —Jf d x ro~V co~

d x co~'zX v'V u o 0gS

2S2

J3L 2

or ~ g2S2/J3L 2

VI. CONCLUSIONS

We have investigated the dependence on wave vector
of the spin distortion around a carrier in a classical two-
dimensional antiferromagnet. At the zone center there is
a tendency towards ferromagnetic distortion, which is
similar to what happens in the extreme quantum limit
S =

—,'. This leads to self-trapping of the carrier if the ex-
change coupling j is large enough. Motion of the carrier
causes a long-range, dipolar distortion of the sublattice
magnetization.

At the zone boundary the induced magnetization den-
sity is proportional to the spin current due to the carrier.
Surprisingly, this does not necessarily convict with the
results for S =

—,'. The total magnetization induced is pro-
portional to the integrated spin current of the carrier, and
this will vanish for a stationary carrier. There remains
the possibility of self-trapping and the formation of a
complex spin polaron in which the magnetization and
sublattice magnetization are both involved. Neutron-
scattering results from the nickelate' suggest that there
is a magnetic superlattice whose nature changes with the
degree of doping. This perhaps corresponds to a spin
spiral whose pitch correlates with the concentration of
carriers. It remains to be seen if the pitch is related to
spin distortion calculated in this paper, evaluated at the
"Fermi surface" of a gas of such polarons.
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APPENDIX A:
ADIABATIC APPROXIMATION FOR SPINS

We would like to show that the classical limit for spins,
S~~, leads directly to the adiabatic approximation for
the carrier-spin system. For simplicity we consider only
the stationary states of our starting Hamiltonian:

H=T„,„;,„+—go;.S +
2 g S; S, .

J

We follow the usual derivation of the Born-
Oppenheimer approximation for molecules and solids.
One significant modification is necessary owing to the
noncommutativity of the components of the spin opera-
tors, so that we cannot use a representation in which they
are diagonal. Instead we shall exploit the smallness of
the spin fluctuations about a classical equilibrium
configuration to help us define a classical effective poten-
tial for the carrier.

We seek a solution of Schrodinger's equation

in the form

(A 1)

T„„„„+jger; n, P =U ([n, })P (A2)

and have amplitudes P,. on the lattice sites. Equation
(A2) describes the carrier moving in a rigid background
of classical spins with directions a; The wave functions
and the eigenvalues U depend parametrically on these
directions. If we substitute the form (A 1) for the wave
function into Schrodinger's equation we find

Here the g are multicomponent spinors describing spin
configurations close to a classical configuration defined by
unit vectors n, . The functions P are the orthonormal
solutions of

g S, S.+ U (In; I )+—g P;of; (S; —Sn;) Ey = ——g— g P;oP .; (S;—Sn;)g (A3)

So far we have made no approximation. Let us write
(A3) in the abbreviated form

(H E)y = g K—
m'Wm

(A4)

and expand the functions g, m&0, in terms of the
eigenfunctions of the operator H

where

IImnm, =Emunmu .

In the inhomogeneous equation (A4) we suppose that all
the y in (Al) are small compared with yo so that we can
neglect all but one of the terms on the right-hand side;
then

—gc, g g(E, E)c,g, =K oyo
—. (A5)



47 SEMICLASSICAL SPIN POLARONS 8129

What is the significance of the functions g, ~ If the
directions n; correspond to an equilibrium configuration
of the classical spin system in the presence of the carrier,
the g, are the few-magnon states when the carrier is in
an excited state of the potential provided by the spins. If
the ground state of the carrier is separated from the oth-
ers by a gap 6, the difference (E, E)—in (A5) is approx-
imately constant, only slightly exceeding A. Therefore,
we can approximate the left-hand side by hg, c

, so that

X =
~ & ohio=

—
~ & 0';~4'o;. (S;—Sn;)Xo .
AS

The operator (S—Sn) is approximately Si, the spin-
deviation operator, and is of order V'S. It follows that

X = —
~S g 0;~4o;.Si;Xo- —Xo .

S

This is consistent with our earlier assumption that g
was small for m&0. The states of the carrier satisfy a
Schrodinger equation (A2) which does not involve S, so
that 5 is independent of S.

So far we have estimated the matrix elements for tran-
sitions between the states of a carrier in a classical spin
configuration. At the next order with respect to I /&S
we should try to include the effect of the slow spin Auc-
tuations. If S„, and S, are spin components perpendicu-
lar to n; we can use a representation in which one of
these is diagonal; for example, S;=&SX, and
S, = —i&S 8/BX;. After we have included the terms
jo „g,. /&S in the Schrodinger equation (A2) for the car-
rier, the wave functions P will contain corrections that
are functions of the coordinates X, . The only significant
change to the wave equation (A3) for the spins is that the
right-hand side will involve only the components S,- of
the spins: the argument can be carried through as before
to show that the functions X for m&0 are of order
I /&S compared with Xo.

To summarize, if the carrier's state is separated from
the others by a gap, the ground-state wave function of the
carrier-spin system separates as a product of spin and
carrier parts:

+=X,y, +O(1/&S ) .

Note that this result for the wave function is different
from the more usual one for molecules in that it fails at
first order in the adiabaticity parameter I/VS, com-
pared with failure of the Born-Oppenheimer approxima-
tion at third order in the adiabaticity parameter
(m/M)'".

APPENDIX 8: CONTINUATION
QF FUNCTIONS AND QPERATQRS

When can dynamical variables f„,defined at the points
n of a lattice, be replaced by field variables defined
throughout space? To simplify matters we first suppose
that the f„can be obtained by sampling a smooth, slowly
varying function, so that f„=f(n), where f (x) varies
smoothly over many lattice spacings. The problem is

then to find equations of motion for the continuum vari-
able, given the equations for the discrete variables. In
fact, if the analytical expression representing the rate of
change of a lattice variable can be derived by sampling
some expression involving continuum variables, then we
can be sure that this variable will remain smooth under
the dynamics of the system, and we will also have a rep-
resentation of the dynamics of the corresponding contin-
uum variable.

We must at the very least show that some smooth,
slowly varying function f(x) can be obtained directly
from the lattice quantities f (n). (There is, of course, no
reason to expect this representation to be unique. ) This is
easy for functions containing only spatial frequencies less
than m". the well-known formula

f (x)= gw(x —n)f (n)=g f (n) (Bl)
m.(x —n )

How far does f(x) deviate from f(x)? We have, using
Poisson's summation formu1a,

f(x)= g w(x —n)h (n/L)

=g Jdp e '"~h(p/L)w(x —p)
k

d Ct7 i~xe'""LhL(„2 k),
k

—~ 2~

where the subscript on h denotes the Fourier component.
In this way we find

f(x)=f(x) —J e'" i h
l~l)~L, 2m

des+ g e h
k %0 vrL 277

(B2)

The correction terms to f (x) depend on the nature of the
function h (x). For infinitely differentiable h (x), h van-
ishes for large ~co~ faster than any negative power of co; it
follows that the corrections in (B2), which involve h for
~co~ )~L, vanish faster than any negative power of L. We
shall denote equality to within such rapidly vanishing
terms by

f(x)=f(x), L~~ .

We can extend the method explained here to any two-
or three-dimensional crystal lattice. The weights used in
(B1) have a natural generalization

tk.xw(x —R)= J e'""» (2~)'

in which the k integral is taken over the first Brillouin

exactly reproduces f (x) from the discrete set of values
f(n). This is a little too restrictive, in practice, so we
consider instead a class of smooth, slowly varying func-
tions f (x)=h (t/L), where h is infinitely differentiable
and L is a lengthscale, L ))1. We then define an approxi-
mate interpolation using the same weights as in (Bl),

f(x)= gw(x —n)f(n) .
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zone. The continuation

f(x)=gw(x —R)f(R)=f(x), L~m
R

is exact if f (x) has Fourier components only within the
first Brillouin zone of k space, but otherwise provides an
interpolation formula for smooth, slow functions of
lengthscale L. The weights used here for illustration are
particularly simple but there is considerable freedom that
can be exercised in their choice. For example, the long-
distance behavior w (x)—IxI, can be modified by re-
placing w (x) (in 1D) by

dqw(x)= e't w
277

where m is an infinitely differentiable function of q which
is constant for —Q (q (Q. Such a weight function w (x)
decreases at large distances faster than any negative
power of IxI.

The Schrodinger equation (A2) for the carrier wave
function in a classical spin configuration involves the
product of the wave function with S„=p„+co„,where we
assume that p and co are smooth and vary slowly in
space. It is not difficult to show that the continuum ap-
proximation to products such as p„f„, where f is also
smooth and slow, is given —again to better than power
law accuracy —by the product p(x)f (x). In other
words, the equations of motion for smooth, slow quanti-
ties are given directly by the lattice equations expressed
in terms of smooth, slow quantities.

Finally we show that a formula similar to (Bl) can be
used to make a continuation of the spin operators in an
antiferromagnet; and that this continuation preserves the
matrix elements of spin operators and matrix elements of
their commutation relations taken between smoothly
varying antiferromagnetic spin states.

First we assume that the matrix elements of A- and B-
site spins are smooth, slow functions so that we can inter-
polate them by

S"(x) =g w [—,'(x —2m ) ]S2

S (x)= g w[ —,'(x —2m —1)]S2

Then the operators S and S commute, as they are con-

structed from variables from different sublattices, while

Jdy f (y)[S. (x),S„"(y)]

f dy f(y)w( —,'y —m) w( —,'x —m)S, z
m

If the test function f (y) is smooth and slow we have

dy y w —,'y —m =2 2m, L~~,
so that

dy y S, x,S& y =ie,b, 2 2m

X w ( —,'x —m)S, 2

=2ie,b,f (x)S,"(x), L ~ co

(B3)

for the spin states of interest, or

[S,"(x),S„"(y)]=2ie, bS,"(x)5(x —y) . (B4)

Using the commutation relations for S and S we find

[p.(x» pb(y) 1
=

I ~.(x»~b(y) ]

=ie,b, is, (x )5(x —
, y) /S (BSa)

and

[p, ( ),xc(oyb)]=ie, , b(co)6x( —xy)/S . (Bsb)

The commutation relation for p(x) shows that it can
be interpreted as the density of spin or magnetization.
The relations (B5) should be interpreted in the same sense
as (B4): when multiplied by a smooth, slowly varying test
function, the matrix elements taken between smooth,
slowly varying antiferromagnetic states will be given by
(B3) to within quantities that vanish faster than any in-
verse power of the lengthscale L.

There is a corresponding commutation relation for the
operators S .

We are now in a position to define the operators p(x)
and co(x) by

S"(x)=S[p(x)+co(x)],
S (x)=S[p(x)—to(x)] .
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