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Magnetic relaxation over the Bean-Livingston surface barrier is considered in high-temperature
superconductors at fields H ) H„(where H~ ) H, i is the first Beld for flux penetration) using
the Clem model for a critical state with a surface barrier. The relaxation rates for vortex entry
and exit are expressed through the basic thermodynamic characteristics of a superconductor. For
the Bux exit the magnetization M(t) depends logarithmically on time whereas for the case of entry
M(lnt) appears to be a strongly nonlinear function with downward curvature, as has been found
experimentally. The initial relaxation rate, dM/d lnt, proves to be much larger for flux entry than
for exit, in contrast to the case of conventional bulk creep. The competing interplay between this
surface relaxation and the usual bulk one, which results in a crossover in the M(lnt) curves, is
discussed.

I. INTRODUCTION

Magnetic relaxation, being one of the key methods
for investigation of irreversible properties in supercon-
ductors, provides important data on the pinning of the
Abrikosov vortices, their dynamic properties, structure
of the critical state, etc. Since the discovery of the irre-
versibility line ' and the giant flux creep in the high-
temperature superconductors (HTSC), numerous exper-
imental and theoretical investigations of the flux motion
and magnetic relaxation in these compounds were carried
out. DifI'erent original models, e.g. , vortex glass, vortex
lattice melting, and others were introduced to explain
the unusually high relaxation rates in HTSC.

Present descriptions of magnetic relaxation are based
conventionally on the Bean critical-state model and the
theory of the thermally activated flux creep. " The lat-
ter predicts the logarithmic decay of the magnetic mo-
ment M in time. Recent papers are mostly devoted
to theoretical and experimental study of such a decay
in YBaqCuaO7, BigSrqCaCu20, and other HTSC
compounds. This approach is very fruitful for eval-
uation of the characteristic pinning energies U, their dis-
tribution, and, in turn, critical currents. The conven-
tional Bean and Anderson-Kim schemes have been elab-
orated significantly to provide better fit to the experi-
mental data. The former was generalizedis 2o for rather
complicated dependencies of the critical current J, on the
local field 13, which enables one to explain the peak in the
dependence of the logarithmic relaxation rate, dM/d ln t,
on the external field H. The Anderson-Kim creep theory
was modified in order to account for the possible non-
linear dependence of the activation energy U on J„col-
lective creep phenomena, etc. But, nevertheless, some
important properties of relaxation phenomena in HTSC
are far from consistent understanding yet. Thus, non-

logarithmic time dependencie's of M have been reported
recently and the dependence of the relaxation rate
on the external field H and temperature T appears to be
rather complicated. In Refs. 14 and 17 the presence of
crossover in the M(lnt) dependence was reported. All
these peculiarities imply that there should exist other
mechanisms for magnetic relaxation rather than the con-
ventional flux creep.

In this paper we will describe the surface contribution
to the relaxation process and prove that at some condi-
tions, especially at high temperatures T T„ the sur-
face relaxation becomes more important than the usual
bulk creep in HTSC. As has been shown by Bean and
Livingston, at the surface of the type-II superconduc-
tors there appears a potential barrier that prevents the
vortices from entering and leaving the sample. The Bean-
Livingston (BL) barrier arises from the competition be-
tween the repulsion of a vortex from the surface due to
its interaction with the exponentially decreasing external
field (or, in other words, with the shielding current), and
the Magnus hydrodynamic attraction to the surface. The
latter force is usually described as an interaction of a vor-
tex with its mirror imaged "antivortex. " Such a barrier
inhibits flux penetration inside the sample at the first
critical field, H, i, where penetration first becomes ther-
modynamically favorable. Instead of H, i, penetration
starts at the first field for flux penetration, H„& H, q,
where the barrier disappears. In the case of an ideal sur-
face, H„ is approximately equal to the thermodynamic
field, H, v H, i/ln(v) )& H, i, where K = A/( is of or-
der 100 in HTSC (A is the penetration depth and ( is the
coherence length) .

Because of these large values of z, the BL barrier
should be very pronounced in HTSC, as has already been
discussed, 3 even if being diminished by surface im-
perfections. Some evidence for the BL barrier in HTSC
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was achieved last year. Namely, the magnetization curves
in very clean untwinned samples near T, were founders i7

to be described well by the Clem model, 2s where the bulk
pinning is totally neglected and only the surface barrier
is responsible for the irreversible properties. According
to that model, the magnetization loop proves to be very
asymmetric, in contrast to the Bean model for bulk pin-
ning. Particularly, the magnetization M should be negli-
gibly small at the decreasing external Geld H, which has
been observed experimentally. The first penetration
field, H„, was proved to be larger than H, j and to vary
significantly within the interval H, ~ ( H„& H, as a
function of temperature, which results in a strongly
nonlinear dependence of H„on T near T, . And probably
the most direct evidence for the BL barrier was achieved
by an electron irradiation of the sample23 after which H„
reduced drastically due to suppression of the barrier by
surface damage introduced by the irradiation (the bulk
T, remains constant after the irradiation, which confirms
that this is really a surface eKect). The BL barrier was
also reported to afFect the relaxation data 4 and the
low-temperature behavior of the H, i field in YBa2CusO
(Ref. 26) and TlzBa2CaCuzO~ (Ref. 13).

The goal of this paper is to obtain the basic rela-
tions for the thermoactivated surmounting of the bar-
rier by an Abrikosov vortex and thus to make predic-
tions about the surface relaxation. We will consider the
usual Abrikosov vortices, which should be relevant to
YBa2CusO~, and then compare the results with the case
of two-dimensional "pancake" vortices, which have al-
ready been discussed. s It will be proved that the fiux
entry in and exit from the sample (or, in other words, the
relaxation "in" and "out, " respectively) are very asym-
metric. While the rate of flux exit, R,„=dM/dint is
constant throughout the whole relaxation process, that
of Aux entry, B,„, starts from very high values at the
initial stage of the relaxation in and then continuously
decreases. Since the experimental "time window" in
most cases is enough to observe only this initial stage,
we predict R,„)R,„ in the experiment. Also the
temperature dependence of R,„,R,„ is quite different.
Finally we discuss the interplay between the bulk and
surface relaxation, which results in the appearance of a
crossover in the M(ink) curves, which has been observed
experimentally.

It should be emphasized that our analysis difFers from
the recent calculations of relaxation, where some mod-
ifications of the Bean critical-state model and the
Anderson-Kim creep theoryi were made. Instead of the
Bean-like models, we use the Clem model, where the bulk
pinning is neglected completely and the magnetization
loop is determined by the BI surface barrier only. Then
we discuss a formation of the vortex nucleus near the
surface and its spreading over the barrier in a similar
manner to that done by Petukhov and Chechetkin2s and

by Koshelev. This approach has an apparent advantage
that the activation energy U is not introduced as a given
parameter, as in the bulk-creep models, but is calculated
directly. Therefore, the answer is expressed through the
basic thermodynamic characteristics of superconductor.
It is worth mentioning that our consideration difFers from

the case where some enhancement of pinning near the
surface of Nb was considered due to increase of the pin-
ning site concentration there.

II. MAGNETIZATION LOOP
WITH THE SURFACE BARRIER

Magnetization loop M(H), where H is the exter-
nal field, embraces the area of metastable states M(H)
around the equilibrium Abrikosov magnetization curve
M,~(H), see Fig. 1. The magnetization curve is given by
the boundary values for fiux entry, M,„(i.e. , obtained
in the increasing H) and that for fiux exit, M,„(for de-
creasing H) provided the experimental measurements are
fast enough to ignore all the relaxation processes. In the
classic Bean model and its modifications, ~ M,„and
M,„are determined by the critical current J,(B), sam-

ple size and shape, history of the process, etc. In the M
vs H phase diagram the relaxation means that a point
M(H) moves at given H towards the thermodynamically
equilibrium value, M,~. Thus the understanding of the
relaxation requires detailed knowledge about the struc-
ture of the metastable states M,„&M & M,„.

The case of negligible bulk pinning, where only the sur-
face contribution is taken into account, was considered by
Clemzs (see also Ref. 33). We reproduce his considera-
tion below in greater detail.

Consider the case where the mean distance d between
the Abrikosov vortices is less than the penetration depth
A, so the field distribution in the sample can be described
by the average local flux density 4(x); see Fig. 2. This
condition practically always holds and is used also in the
Bean model, where 4 (x) form linear or more complicated
profiles. s is zo Clemzs has shown that in the absence of
bulk pinning the solution for 4'(x) being in force balance
(but not in the thermodynamic equilibrium) with the ex-
ponentially decreasing external field, H exp( —x/A), is

4 (x) = Be(xy —x)

H
P
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0 H Hc1 p

FIG. 1. The Clem magnetization loop for the surface irre-
versibility without any bulk pinning. Arrows indicate relax-
ation in (from m „to m ~) and out (from m ).
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an approximation for Eq. (4):

m,„=H — H2 —H2 = Hp/2H,p (5)
0 0 0 0 0 0 0 0 0 0 0 0000000 00 00 000
0 0 0 0 0 0 0 0 0 0 0 0

vortices
~rX

PIC. 2. Structure of the vortex lattice near the surface
and formation of a vortex-free region of width xy.

where I, = H —B = —47rM (M is the true magnetic
moment, but we will use below the reduced value, m,
for simplicity). This value should be compared with the
equilibrium (Abrikosov) value m, q ——H —Bcq to prove
that our consideration is self-consistent. The latter has
been discussed in detail recently and the evaluation is

(H)
~i Hcl

l
PHc2

m, q
= n (6)

where 8 is the Heavyside step function, B is the magnetic
induction inside the sample, and xy is the vortex-free
region of the width

xy = A cosh (H/B).

Equation (2) can be derived in a straightforward manner
from the condition that the superposition of the external
field H exp( —x/A), the field of vortices at x & xy, and
their mirror images at 2: & —xy form a constant Beld
B at x ) xy, so the vortices are force balanced. The
mirror images should be added, similarly to Ref. 21, to
satisfy the boundary condition h(0) = H where h(x) is
the local field. %'e perform averaging over the distances
of order d « A; therefore h(x) differs from C (x), unlike
the Bean models, where they coincide due to averaging
over distances of order A. At x & xy they are equal in
our case too: C(x) = h(x) = B, but at 0 & x & xy,
where 4(x) = 0, one obtains

h(x) = B cosh[(xy —x)/A]. (3)

(H2 + B2)1/2 (4)

The condition d « A holds everywhere along the
hyperbola (4), except the very vicinity of H„, where
B & H, i (dashed in Fig. 1). At H & H„one can use

The condition of penetration of a new vortex from the
surface into the bulk means that the force of interac-
tion, (Pp/4m) dh/dx, of this test vortex with the field
h(x), which pushes it into the sample, dominates upon
the vortex-image attraction, ($2p/8vr2As) Ki(2x/A),
which prevents penetration (here Pp is the unit fiux and
Ki is the modified Bessel function). The latter force
increases sharply (as 1/x) at x = (, where dh/dx re-
mains almost constant, so the condition of penetration
is determined at the cutoK x = ( as (dh jdx) —p

(Pp/2vrAs)Ki(2(/A) = Pp/4vrA2(. For the first penetra-
tion field, H„[where there is no fiux yet in the sample,
so B = 0 and h(x) = Hexp( —x/A)], we have H„
pp/4irA( H„where H, —y H, iH, 2

—~2rHci/1n(K)
is the thermodynamic critical Beld. In most cases the
vortex-image attraction is diminished by the surface im-
perfections, so the condition H„H, should be replaced
by H, i & H„& H, . At H & H„, where B g 0, we derive,
using the same condition for (dh/dx) p and'Eqs. (2) and
(3), the equation for the magnetization curve in the as-
cending external field (fiux entry) (see Refs. 25 and 33),

III. FORMATION OF A VORTEX NUCLEUS
AND SURMOUNTING THE BARRIER

Consider Brst the case where the external Beld, aft;er
a fast increase from 0 to H, is kept at this value, so the
moment m decreases from its initial value m, „given by
Eq. (5), where the barrier is absent, to m, ~; see Fig. l.
This means that new vortices are to be created near the
surface and to surmount the barrier, which grows as m
decreases. The energy profile V(x) for vortex nucleation
at x & 2:y can be written as

4p B t'xy -x
V,„(x)=—

4
+ m.q

—m+ S (8)

(see Fig. 3), where S includes the attraction of the nu-

where a, P 1. The dependence m, ~(H) is very smooth
(logarithmic), so from Eq. (6) we have

rn.,(H„) = H., /2

(since Hz H, and H, 2 /H, = K) and, using Eq. (5),

m „/m q Hp/HciH Hc2/H » l.

Consider now the flux exit, following Ref. 25. As H
decreases, xy decreases also [see Eq. (2)], whereas B re-
mains constant because, while 2;y is Bnite, vortices can-
not leave the sample. Finally xy vanishes at H = B,
where vortices are free to leave. Consequently, for vor-
tex exit we have B = H, or m, = 0, as has been
observed. There exists a problem whereby at very
small m « H, q the width of the vortex-free region 2:y
becomes smaller than the mean intervortex distance d
at x ) xy. To solve it and expand this approach down
to m = 0, Clem25 considered separately the interaction
of a test vortex at 2: = xy with its mirror image. He
derived that the surface barrier exists and prevents flux
exit at m & mp = Pp/16vrA « m, q, so the picture of
flux exit appears also to be self-consistent. The moment
mp determines the descending branch, m,„,of the mag-
netization curve in Fig. 1. Since mo is much less than all
the other moments in our problem, we can put m,„=0,
as above. It is worth mentioning that Ternovskii and
Shekata, ss who analyzed the same problem simultane-
ously with Clem, came to slightly different result for mo
and have not emphasized the formation of the vortex-free
region 2:y.
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FIG. 3. The generalized Bean-Livingston potential for
vortex entry, where 2: the depth nucleus penetration (in the
isotropic case this is just the radius of the nucleus, see in
the text). The dashed line accounts for the "mirror-image"
interaction, S, at x

&,~ = (Pp/4~A) cosa. exp(r, ~/A)/r, ~,

cleus to its own "mirror image, " normalized by S(xf ) =
0, and we used the expansion of Eq. (3) at xf « A. At
x & xf we get V,„(x m,„—m, so vortex penetration
becomes thermodynamically unfavorable as soon as m
decreases till m = m, ~, that explains the normalization
chosen in Eq. (8). The latter provides a natural gener-
alization of the Bean-Livingston energy profile,

2 which
was considered in their original work for the case B = 0
(i.e. , at H ( H„).

Let us estimate S and show that it can be neglected
at x &) (. The vortex nucleus, which has just appeared
near the surface and penetrated to the depth a &( A,

has the shape of a semi-ellipsis (circle in the isotropic
superconductor); sso see Fig. 4. Thus S is the energy
of interaction of this semi-ellipsis with its mirror image
and can be calculated using a universal method devel-
oped by Brandt, s where the flux line is considered as a
composition of the pointlike vector elements, see Fig. 4.
In the isotropic case the nucleus is a semicircle of radius
a (( A and the interaction between its two elements, dr;
and dr~, becomes

where r,z and n are the distance and the angle between
these two elements. If we take r,~

= a and average over n,
we get S —gga/8vr4A . The self-energy of the semicircle
is E = spma, where sp = (Pp/47rA) ln r is the energy of
flux line per unit length; therefore E/S (as ln v)/2 )) 1
and S proves not to be essential for our analysis. The
anisotropy does not afFect this estimation significantly.

The energy profile given by Eq. (8) forms a barrier,
which a vortex has to surmount while entering or leav-
ing the sample. This problem is similar to those where
the string movement in external potential is considered,
and the algorithm for its solution is as follows. First
we have to find the equilibrium form of a nucleus, then
determine the energy of the nucleus, which has reached
the same energy level from which it started to propagate
(this means that spreading of the nucleus over the barrier
becomes energetically favorable), and finally estimate the
rate of this spreading. This problem was considered by
Petukhov and Chechetkin at H, q & H & H„, who con-
cluded that such a penetration is practically impossible
because the characteristic activation energies U exceed
kT by Ave orders of magnitude. Below we will prove
that at H & H„, as it follows from the results of the
previous section, the barrier is much less which, together
with large T, in HTSC, result in observable relaxation
rates.

Consider the case where the external field is parallel to
the c axis. Let y be parallel to the sample surface along
the c axis and x, as in the previous section, is directed
into the sample; see Fig. 4. The energy of a curved vortex
nucleus x(y) placed into an external potential V(x) can
be written as

d V()jd4~

(9)

where p = m, /m~g is the anisotropy parameter, m, , and
m i, are the efFective masses along the c axis and in

the ab plane. This expression accounts for the increase
of the vortex energy through the increase of its length
(which implies that the characteristic curvatures should

be much less than 1/(), partially compensated due to
the anisotropy p. Since p is a large parameter (p —25
for YBa2CusOq), the range of applicability of the Eq.
(9) is very wide and covers most of possible vortex con-

figurations; see a detailed discussion in Ref. 31. Varying
Eq. (9) with respect to x(y), we find the condition for the
equilibrium form of nucleus, xp(y), and for the activation
energy U; see Ref. 29:

(10)

FIG. 4. Vortex nucleus (semicircle) with its mirror image
(dashed) near the surface.

where V(xi) = V(x2), so for flux entry xi = 0 and &a

is determined by V(x2) = 0; for flux exit x2 = 2:f and

V(~i) = V(&f)
+fu~ entry (rr.fazation "in"). For the case of flux entry

into the sample we get [see Eq. (8) and Fig. 3] &i = 0
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and

(x/ —xg)/xf = 1 —m, q/m.

Then, using Eqs. (10) and (ll), we obtain

U „(m,„) (PpAm q/3+)(H ~/H) (m q/m „) —0

Uen(meq) —(4'pAmeq/27r) (Hcl/H)

as m decreases.
The activation energy U determines the main (expo-

nential) term in the Arrhenius expression for the char-
acteristic time r for surmounting the barrier (per unit
surface area)

1/r = v exp( —U/kT), (14)

where v has the meaning of the "attempt" frequency. 7

Its estimation found by Petukhov and Chechetkin, who
solved the Pokker-Planck equation for vortex spreading
into the sample at H = H, q, is

PpA 1 H, g
Uen 2' p B gmmeq

+—(m —m, q) ln
1 ~m —qm, q

m+ gm, q

(12)

Since m, „))m, q [see Eq. (7)], we can expand Eq. (12)
over m, q/m in most of the relaxation region, m,„)m )
m, q, and get a more convenient expression:

cpm. qA /'i H„m.,q
"'

3~ IpB my
Thus, using the condition B H && m, q, one can see
from Eq. (13) that the activation energy increases from

As follows immediately from Eq. (16), the dependence of
ln t as a function of m is very similar to that of U. Thus,
for flux entry we get (entry)

ln(t/tp) = U (m(t)) —U (m(tp)) /kT, (17)

As m increases from its ini.tial value m,„ till m, q (see
Fig. 1), U,„ increases as well from U,„(m,„) —0 till
U,„(m,q) = (/pm, qA/2m)(H, q/B) /, which coincides
with U,„(m,q) because at m = m, q the limits in the
integral in Eq. (10) are the same for both entry and exit:
xq = 0 and x2 = xf. Using Eqs. (16) and (18), we im-
mediately get (exit)

(
m(t) —m(tp) =

~
p ~

kT ln(t/tp). (19)
pA q H~p

IV. ESTIMATION OF THE PARAMETERS

where U,„(m) is determined by Eq. (12) and tp is the
initial time. This function is plotted in Fig. 5. We
see that for flux entry the dependence m(lnt) proves to
be strongly nonlinear if considered in the whole region
m,„(m ( m, q. Such a behavior has been observed by
Donglu Shi and Ming Xu in BiqSr2CaCuqO at 40 K,
though their explanation of the efFect is rather different.
Certainly the experimental "time window" can be too
small to observe the whole curve in Fig. 5. We will esti-
mate it in the next section and discuss the experiment
more.

F/ux exit (reloxation "out"). The procedure of calcu-
lation of the activation energy U,„ for flux exit is quite
similar to that for flux entry. We should use Eq. (8),
where the expansion over (x/ —x) already accounts for
the circumstance that the interaction between the test
vortex and its image is not important in this case as well

as for flux entry. Then, similar to Eqs. (12) and (13), we

obtain

PpA /'1 H, g ) '/

B)

where q is the viscosity coeKcient for flux flow. We will
not actually use this expression, since the crucial term
in Eq. (14) is the exponent provided U/kT is sufficiently
large, as in the case of the usual bulk creep. ~ Prom Eq.
(14) we conclude that

dm/dt = Pp(A, /A/) vp exp( —U/kT)

In the preceding section we have proved that the re-
laxation starts at m, „[see Eq. (5)] for flux entry and at

where A, and Af are the side and face areas of the sample
(vortices penetrate through the side).

In the next section we will estimate the value of U/kT
for the case of YBa~Cu30~ and show that the character-
istic values are 10—100, so the relaxation can be observ-
able in contrast with the predictions for H & H„obtained
in Ref. 29. Nevertheless the exponent in Eq. (15) is small,
and the solution of Eq. (15) for the relaxation rate, R,
with the exponential accuracy reads

R = dm/d lnt kT(dU/dm)

F 4
E

3
tion "in")

(relaxation "out")

In (t/t )

FIG. 5. Surface relaxation in and out.
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m,„=0 for fiux exit, and then develops in both cases
towards m = m, q. The activation energy U grows from
0 in the beginning up to its maximum value, U(m, ~),
which coincides for both entry and exit. As we see from
Eq. (17), the number of time decades, which is enough
to observe the whole relaxation process from m, „or m,„
till m, q is of order U(me~)/kT. For YBazCusO~, when
H is parallel to the c axis, we can use A Ap/~w, where
Ap 1400 A. (Ref. 36) and r = (T, T)/—T,. Substituting
these values together with r. 100, p 25 (Ref. 36) and
B H into Eq (1.2) [or Eq. (18)], we have

U(meq) 4 x 10 H~
kT" = T H

j

I

At H/H~ = 10, w = 0.1 we get U(m, ~)/kT —50, which
is not so large ( 10 ) as has been obtained for relaxation
at H = H, i. s In the layered superconductors, where p
is very large, the estimation can be an order of magni-
tude less, which could explain the observation of a whole
curve m(lnt) from m,„ till me~ for relaxation in (see
Fig. 5) in Bi2Sr2CaCu20 . Nevertheless, it looks very
difficult (even in the very vicinity of T, ) to perform an
experiment with the time window large enough to ob-
serve the whole relaxation process in YBa2Cu30 . Thus
the experimental picture will be usually confined by the
initial stage of the relaxation process, see Fig. 5, and we
can just substitute m = m,„ into Eq. (17) and get for
flux entry:

R,„=dm/d ln t
~

(2o)

If we compare the flux entry rate, A,„, with that for
flux exit:

2~ / H &'~'
R,„= [p I

kT
pA ( H iy

[see Eq. (18)], which does not depend on m, we see that
the relaxation over the surface barrier proves to be very
asymmetric: the vortex entry at m = m,„ is faster than
exit by factor 3(m,„/m, ~) ~ 3K ~ (H„/H) ~ = 100
for reasonable values as r 100 and H/H„10. This
concerns only the beginning of the relaxation process be-
cause, as we see from Eqs. (12) and (17), the rate of
vortex entry (as a function of ln t) decreases and finally
becomes smaller than that for exit, see Fig. 5. Neverthe-
less only the first stage, where the relaxation rates are
very asymmetric, is observable in an experiment with the
time window of a few decades. The reason for such an
asymmetry is that the width of the barrier for entry, 2:2,
increases from x2(m, „) = 0 till x2(me~) = xf, while for
exit the width remains constant and equal to xf. More
accurately, the width varies slightly due to change in S;
see Eq. (8), but this can be ignored. It is worth rnention-
ing that relaxation in from me„ till meq takes approxi-
mately the same time (in logarithmic scale) as relaxation
out from mex = 0 till m, q, see Fig. 5. This follows
from Eqs. (16) and (18), where U,„(m,q) = U,„(m,q)
and Uen(men) ~ Uex(mex)

FIG. 6. Dependence of the rate of relaxation in (R, ) and
out (R,„) on temperature at constant H. Near T, (dashed
lines), where H H, 2, our analysis is not applicable.

We get more difference between the relaxation in and
out if we consider the temperature dependence of B,„and
A,„at given H; see Fig. 6. While A, appears to be just a
linear function of T [note that in Eqs. (20) and (21) the
product AH, i is temperature independent], Re„show1t2

a maximum at T = 0.4 T, due to the additional factor
men ~eq

We have shown that if the relaxation process is deter-
mined by the surface barrier only in the absence of any
bulk pinning, its properties become very unusual and
asymmetric if we compare relaxation in and out. Cer-
tainly the bulk irreversibility cannot be removed com-
pletely, and we now discuss the surface and bulk effects
together.

V. INTERPLAY BETWEEN THE SURFACE
BARRIER AND BULK PINNING

Consider the case where the surface barrier and the
bulk pinning determine the irreversible properties to-
gether, as has been already discussed. i i7 In Ref. 14 it
was concluded that, since a vortex has to surmount first
the surface barrier before it experiences the bulk pinning
potential, anyway there should exist two successive pro-
cesses determined by the surface barrier and the bulk
pinning, respectively. In Ref. 17 the inverse sequence is
proposed, i.e. , bulk relaxation precedes the surface one.
These two different regimes are characterized by difFerent
slopes, dM/dint; thus there appears a crossover in the
M(ln t) curves. i4 i7 We will try to elaborate this scenario
and show that one should compare the activation ener-
gies, Ub„~k and U,„,g, in order to conclude which kind of
relaxation takes place first.

In Fig. 7(a), the initial state (t = tp) for fiux entry
is presented. The magnetic induction is now spatially
dependent: B = B(x). We plotted the simplest Bean
profile, where [ dB/dx [= (4+J/c) = const, since the
particular form of B(x) is not important for our further
qualitative consideration. At t = tp, of course, J = J,.
It will be convenient to divide the total moment, M,
into two parts: Mb„~k(J) and Me„,r. The latter is de-
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FIG. 7. Competition between the surface and bulk relax-

ation for the cases where the surface barrier is (a) stronger

and (b) weaker than the bulk pinning.

termined by the finite step of the Beld at the surface:
M,„,f = 4~[H —B(0)], and varies from M,„ to M,q; see
Sec. II. Usually the variation of flux density due to bulk
pinning is very small at distances of order A, whereas
only such distances from the surface are involved into
our analysis of M,„,p in previous sections. Thus we can
apply all the results obtained above for the surface just
by using B = B(0). Then the relaxation in can be real-
ized as follows: first a vortex surmounts a surface barrier
U,„, which is determined by Eq. (12) [i.e. , by H and
B(0)], and then it has to overcome the series of "bulk"
barriers in order to leave the surface and penetrate into
the bulk of the sample. The bulk barriers are related to
the bulk activation energy Ub„~k considered in the con-
ventional flux-creep models, which vanishes at J = J,
and grows as J decreases. One should not expect a dras-
tic difference in the pre-exponential factors for bulk and
surface creep, since both are determined by the viscous
flux-flow coeKcient. Let us show that during the relax-
ation, the condition U,„=Ub„~g should hold. For in-
stance, if at some moment U,„,g is significant and Ub„~k
is small (i.e. , J —1,), then the vortices, which penetrate
into the sample, will leave the surface area very quickly if
compared with the rate of surmounting the surface bar-
rier. Thus the next vortex, overcoming the barrier, is
not affected by the previous, since the latter is already
far away. Therefore B(0), M,u f and, consequently, U,u f
do not change, while J and Mb„~k decrease and Ub„~k
gro~s. This continues until Ub„~k = U,„,g, where the
rates of surface and bulk creep become equal and U,„,f
starts to increase simultaneously with Ubu~k. As a result,
the condition Ub„~p = U,„,p holds from the very initial
state at t = to, where Ub„~g = U,„,g = 0 and start to
grow together. Then two possible situations can be out-
lined.

(1) The surface activation energy is sufficiently larger
than the bulk one:

This means that the same change of both Ub„~k and U,„,g
from 0 till Ubu~k(J = 0) corresponds to total vanish-
ing of Mb„~p and to very little deviation in M,„,p from
its initial value, M,„. Therefore, while Mb„~k decreases,
the change of the total moment, M = Mb„~g + M,„,g,
is mainly due to Mb„~k, see Fig. 7(a). At this stage
the relaxation rate is determined by that of bulk re-
laxation, dM/d ln t = d Mbu~k/d ln t,; see Fig. 8. After
the bulk relaxation is over, i.e. , J = 0, Mbug, = 0, and
B =const throughout the sample, the surface relaxation
starts [see Fig. 7(a)], so dM/dint —dMb„~k/dint. The
crossover between these two regimes can be observed as
a change in slope in M(ln t) curves as has been found in
experiments.

(2) The bulk pinning dominates over the surface
Usurf(Men) «Ubulk(Jc = 0), or, more ex-

actly, U,„,f(M,„,f = 0) « M,„dUbu~k/dMbu&k, where
dUbu~k/dMbug, can be expressed through dUbu~k/d J using
the geometrical parameters of the sample. Then, for the
same reasons as above, we should expect that the initial
stage is actually the surface relaxation, where M,„,~ de-
creases at approximately constant J; see Fig. 7(b). Once
M,„,f = Ms&, the slope in dM/dint changes (decreases)
and the relaxation continues owing to the bulk one.

We see that the initial stage of relaxation is determined
by the weakest one of two sources of the irreversibil-
ity: the bulk and the surface. Some samples show very
small bulk irreversibility, 4 especially at high tem-
peratures T = T„ if compared with the surface barrier.
Therefore it seems reasonable that the first stage in re-
laxation in Ref. 17 and, probably, in Ref. 14 is due to the
bulk. Then, after Mb„~g is exhausted, the surface relax-
ation starts, so the relaxation rate after the crossover is
determined by the surface barrier. It should be empha-
sized that Ub„~k depends on temperature very strongly
(exponentially), unlike U,„,f, therefore, as temperature is
reduced, the bulk pinning becomes dominant and all the
surface effects are suppressed. This can provide an ex-
planation for the asymmetry in the initial rate, dM/d ln f,
for relaxation in and out, which has been observed in Ref.
14 at low temperatures only, while at higher tempera-

laxation

ation

Usurf (Msurf ™en)» Ubulk(~ = 0) &

or, more exactly,

Ub»k( J = o)

« Mbuik( J = ~c)dUsurf/dMsurf (Msurf = Men) ~

FIG. g. Crossover in M(lnt) in the case where the surface

barrier is stronger than the bulk pinning.
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tures the rates are equal. At higher temperatures the
bulk pinning is weak, so the bulk relaxation takes place
first [see case (1) above] and the initial stage is quite
symmetric for Hux entry and exit, as usually happens for
bulk relaxation. As temperature is reduced, Ub„~k grows,
and we come to case (2), where the initial relaxation is
of surface nature, and, therefore, the diKerence between
the rates of vortex entry and exit should be observed.

It is worth mentioning that the M(lnt) curves for re-
laxation in reported in Ref. 15 for Bi2Sr2CaCuzO show
no interplay between bulk and surface but are evidence
of a pure surface relaxation. This can be owing to a very
weak bulk pinning in the sample, where Mb„~k (& M,„,g.

VI. CONCLUSION

We have obtained the activation energies and relax-
ation rates, R = dM/d ln t, for the Aux relaxation
over the Bean-I. ivingston surface barrier using the Clem
model of the critical state in superconductors where all
the irreversibility is due to such a barrier in the absence
of any bulk pinning. The activation energies U and re-
laxation rates are expressed through the basic thermo-
dynamic parameters of superconductor. The relaxation
rate for flux exit, R,„=dM/d 1nt, appears to be con-
stant throughout the relaxation process, while that for
Aux entry R,„depends strongly on M and exceeds R,„
signi6cantly in the initial stage of relaxation. The tem-
perature dependencies of B,„and B,„are strongly dif-
ferent and can serve as a tool for distinguishing between
the surface and bulk relaxation. If, as usually happens,
the bulk pinning cannot be ignored and the bulk and sur-
face irreversibilities interplay, then the relaxation at its
initial stage is determined by the lowest of the activa-

tion energies, Ub„ik and U,„,r. If, say, the bulk pinning is
weak: Ub„ii, ( U,„,g, then the bulk relaxation should be
observed first (with some rate Rb„ii,), which means that
J decreases from J, to 0, while the step at the bound-
ary almost does not change. Only after this process is
over, the surface relaxation starts with the difFerent rate,
&surg & Rbu~g If Ubu~g & Usurp the order is inverse The
change between these two regimes can be observed as a
crossover in M(ink) plots.

To conclude, it is worth mentioning the following. The
case considered in this paper is a superconducting cylin-
der with a field parallel to its axis and strong surface
barrier. Experimentally we deal usually with thin plates,
where the demagnetization factor is very important. For
instance, the condition we used, d (( A, where d is the
mean intervortex distance, can be broken due to demag-
netization since Aux penetration starts at very low exter-
nal fields; see Ref. 23. Then, the barrier can be sup-
pressed very significantly because of surface imperfec-
tions, so that H„/H, i is not large (we used above in most
formulas H„H, )) H, i). These circumstances can
be rather important for description of the experimental
results and should be considered further.
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