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The influence of ordinary (nonmagnetic) impurities on the transition temperature of a traditional
singlet-pairing superconductor is revisited. The theory of Anderson is juxtaposed with that due to Abri-
kosov and Gor’kov (AG). Whereas Anderson’s treatment leads to no substantial decrease of T, with im-
purity substitution, the Abrikosov-Gor’kov theory predicts a large decrease of T, linear in the impurity
concentration. This latter result is not well known because an unallowed mathematical manipulation
canceled a large T, decrease required by a correct evaluation of the AG theory. The controversy that
arises is herein settled in favor of Anderson. The Green’s functions employed in the AG method are not
appropriate for an impure Bardeen-Cooper-Schrieffer superconductor. It is shown that if the required
projected Green’s functions (not derivable from a Dyson equation) are employed, Anderson’s theorem is

recovered.

I. INTRODUCTION

The purpose of this study is to show that Anderson’s
theory! of dirty superconductors is in serious conflict
with the method developed by Abrikosov and Gor’kov?
(AG) when the AG analysis is completed without
mathematical compromise. The controversy which is
then presented can be resolved by observing that the
Green’s functions employed in the AG treatment are
inappropriate. One must use instead projected Green’s
Sfunctions which respond only in eigenstate channels hav-
ing energy within #iw, of the Fermi energy Ep. This
modified theory agrees with Anderson’s theorem: impur-
ity scattering does not significantly alter the supercon-
ducting transition temperature 7,. (Our attention here is
confined to nonmagnetic solutes.)

The discussion will be facilitated by embracing a num-
ber of traditional simplifications: (i) The conduction
band has a constant density of states N, and has a width
2Ep (i.e., electron-hole symmetry). (ii) The superconduct-
ing gap parameter A of the host superconductor is isotro-
pic in k space (i.e., there will be no decrease in T, with in-
itial solute additions). (iii) The Frohlich pairing interac-
tion V(k,k') is a constant (—V) independent of
q=k’'—k. (iv) The weak-coupling version of the
Bardeen-Cooper-Schrieffer (BCS) theory® may be used
(i.e, A=NoV <1). (v) Solute additions alter neither the
band structure, the phonon spectrum, nor the electron-
phonon interactions. (vi) Scattering of conduction elec-
trons by solute ions is isotropic. This last simplification is
for convenience only; it is not essential. (vii) The
Coulomb repulsion between electrons is neglected.

Anderson’s theory! is based on the observation that the
exact eigenstates, with impurities present, occur in time-
reversed, degenerate pairs. Accordingly the BCS pairing
scheme can be carried out without change. The unitary
character of the transformation between scattered states
and the momentum representation, together with the first
five assumptions listed above, lead to an unchanged BCS
gap equation. Accordingly 7, remains equal to Ty, the
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pure host value. However, in Sec. III we point out that
Anderson’s theory is valid only to first order in the im-
purity concentration.

Scattering of the conduction electrons by solute ions
does lead, however, to a decrease in the density of states
at the Fermi level. This effect is small. Nevertheless we
will derive the T, decrease caused by this term because it
will provide a diagnostic tool for interpreting the out-
come of the AG method.

We suppose that n is the number of atoms per unit
volume and that the scattering potential of each solute
ion, on using assumption (vi), is u8(r). Accordingly the
density of states (per spin) is No=n/2Eg, and the
scattering rate 1/7 from the “golden rule” is

-1—=37—T—u2Nonc , (1)

where c is the atomic fraction of solute ions. The energy
shift AE =F —e of each conduction-band state is given
by Brillouin-Wigner perturbation theory

Er Nyu Zne

AE= —
E ~Er E—e€

de . (2)
(E and € are measured relative to the Fermi level.) The
principal value of (2) is

EF_E
Ep+E

2Nou’*ncE

AE = —ncu’N,l ~ ,
ncu “Nyln £,

(3)

for |E| <<Ep. Accordingly, the density of states at the
Fermi surface is reduced:

2Nou’nc

N=N, £,

1+ (4)

On replacing Ny by N in the BCS T, equation, we find

hTCO

Te=To™ E.r

(5)
Equation (1) has been used to reexpress the T, decrease in
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terms of the scattering time 7. (1/7 is, of course, propor-
tional to the solute concentration c.)

The magnitude of the correction term in Eq. (5) can be
surmised from the value

#i

<1072, 6)
EFT (

for a 1% concentration of a typical solute. Clearly this
small decrease in N and its concomitant reduction in T,
can usually be neglected.

II. EVALUATION OF THE AG THEORY

We will now show that the AG theory leads to a result
significantly different from that described above. We set
the spin-dependent scattering potential of the AG Hamil-
tonian to zero and keep only the nonmagnetic potential
u. In our notation, the AG T, equation which follows
Eq. (21) of Ref. 2, becomes (with 7, =0 )

= dk , (7)
3 z f 2 2+6
where
_ 1
m= 2|w|7_ ’ (8)

7 being the scattering time associated with the solute ions
[Eq. (1)] above. The w’s are

0, =2n+ 7T, , (9)

for all integers n between — o and <. (# and kp have
been taken to be 1.) The integral over the electron ener-
gy is confined to the narrow strip within o, of the Fermi
energy. Equation (7) is then, with A=N,V,

1=AT, _y__, f_wD mz +€ —— 5 de . (10)

AG’s next step is to add and subtract (o2 +€2)”! to (and
from) the integrand. The sum involved in the added term

7 3 1

n=—ow

can be evaluated exactly, since4

s = liannx . (12)
o 2n +1)27%+4x2  x

Equation (10) can now be written as

l—kf_ -2:t anh
“p

2T

™ 1
wf,*rﬁ-f—ez wf,-*—ez

AT, S [ de . (13)
®p

—

AG evaluate the two integrals of the last term by extend-
ing the limits to . Then, for each n, the two integrals
cancel identically, so that only the first term remains, i.e.,
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=2 [ € amn

, 14
wp 2€ (14)

2T

which is the BCS T, equation for a pure superconductor.
Thus follows the (incorrect) deduction from the AG for-
malism,

T,=T,, (15)

in apparent agreement with Anderson’s theorem.

It is not permissible, however, to change the limits
from wp to o as AG have done. The finite integration
limits must be respected in the last two integrals of Eq.
(13). Before evaluating these two terms, which we call R,
we reexpress the first term of Eq. (13) with the help of an
integration by parts (and x =€/2T,), i.e.,

1=A[In(x)tanhx Jo? ">

op /2T,
-—kf D In(x)dx

> TAT.R . (16)
0 cosh”x

Now we can perform the same manipulation with Eq.
(14):

17

/2T,
1=A[In(x)tanhx Jo?"*70—2 fo <o In(x)dx

cosh?x

in which T,y appears instead of 7.. Note that at the
upper limits of Egs. (16) and (17) tanhx is exponentially
close to unity and cosh™2x is exponentially small. So on
subtracting (17) from (16) we obtain

0=In(T,,/T.)+T.R . (18)
We return to the evaluation of R, which can be written as

1

R=4 de . (19)
2 f co2 7]2+6 wf, +e?
The integrals are elementary:
R=4 Yy — [tan~ —tan~! . (0
n=0 @, ®,M n

The sums can be carried out to the required precision, to
terms linear in 1/7 [Eq. (1)], by using

1

tan” ‘x=x , x<1, (21a)
LS (21b)
2 x

[It may be noted that tan”'x equals the mean of (21a)

and (21b) at x =1.] Equations (8) and (9), together with?
z 1

2 (2k—1)

k=1

~1[C+In(n)]+In2 , (22)

where C is Euler’s constant, lead to

— 2¢w
R=——1 2|1 23)
7T, wpT 7T, 2
But the solution to the BCS T, [Eq. (14)] is
2ew
T,=——2¢ 174, (24)

m
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so the first term in Eq. (23) is just 1/A. This result, com-
bined with Eq. (18), shows that a significant T, decrease
results from a correct evaluation of the AG theory:

—1

TOpT

1 1
42
A2

T, =T.exp . (25)

[The difference between T, and T, has been neglected in
Eq. (24). To include the difference would lead only to a
higher-order correction.]

The T, decrease in Eq. (25) is initially linear in 1/7 and
therefore is linear in the solute concentration ¢ [cf. Eq.
(17,

1 1

A2

Tc 0

T.=T,,— (26)

TOpT

This decrease is incorrect theoretically as we elaborate
below and is in striking disagreement with experiment.
1/wp7 is not a small quantity. The “physics” of the (in-
correct) decrease in Eq. (26) can be surmised by compar-
ing the 1/A term with the corresponding term of Eq. (5).
The AG formalism has apparently incorporated a reduc-
tion in density of states (caused by virtual scattering from
solute ions) as if the total bandwidth were 27w, instead
of 2E;. The remedy, as we will show, is to appreciate
that the BCS cutoff must be incorporated in the Green’s
functions instead of at the end of the calculation.

It is clear from Egs. (25) and (26) that the important
parameter is the scattering time 7 of conduction electrons
by the (nonmagnetic) impurities. Table I lists residual
resistivity data for 16 solute elements in Pb (Ref. 6). The
median resistivity per atomic percent of solute is ~1
puQcm. Since the electron density in Pb s
nyg=1.32X 1022 cm 3, and a=n0e27'/m, one obtains

T~3X107 1 sec . 27)
Now the Debye temperature of Pb is ~90 K, so
wp7~0.3 (28)

for 1% of a typical solute. Accordingly, the AG theory
requires an almost complete suppression of T, in the 1 to
2% concentration range. However, experimental data
for AT, caused by 2% of Ag or Au (Ref. 7) and by even
larger concentrations of Cd, Hg, In, and T1 (Ref. 8) show
that T, is reduced (from T,,=7.2 K) by only ~0.1 K.
Anderson’s theorem is well verified (which has been ap-
preciated for three decades).

TABLE 1. Residual resistivity, in u{) cm/at. %, for various
impurities in Pb. Data are from Ref. 6.

Ag 34 Bi 0.92
Te 3.36 In 0.73
Au 3.22 Tl 0.62
Mg 2.3 Ga 0.55
cd 1.85 Rh 0.55
Hg 1.36 Pt 0.5

As 1.15 Sn 0.25
Sb 1.18 Pd 0.2
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III. LIMITATION OF ANDERSON’S THEOREM

Anderson applied BCS theory to a dirty superconduc-
tor! by introducing exact scattered states ¥, for conduc-
tion electrons in a metal having nonmagnetic impurities.
The relation between the scattered states and the Bloch
waves is described by a unitary transformation:

Vuo= 3 brolkln) . (29)
k

(It is assumed that the Hamiltonian does not depend on
spin ¢.) The main task is to derive the phonon-mediated
interaction H,, in the new (scattered-state) representa-
tion. In the momentum representation,’

Hee :% 2 ka'qc:—q,ocl:’+q,tr’ck’a"ck,a . (30)
kk'qoo’

It is a frequent practice to replace this interaction by a

reduced version, which discards all terms which do not

play a role in the scattering between (k1,—kl) pairs.
Thus,

Hi= 3 VigCk—q€ L k+q€ —kCk » (31)
q

where the states ¢, have only spin up and ¢_, down.
H .4 is merely a notational simplification that recognizes
in advance which eigenstates will be paired and so con-
tribute to the BCS condensate. For example, if one were
treating a condensate carrying a supercurrent, one would
replace (31) by a similar expression with —k replaced by
—k+«k. The two reduced Hamiltonians would have no
terms in common, but both are contained in H,, [Eq.
(30)].

There are two ways to derive H,, in the scattered-state
representation. One method is to carry out the canonical
transformation of Frohlich® in the scattered-state basis
and the other is to transform H,, [Eq. (30)], using the
transformation, Eq. (29). With the latter method, one
must replace one-electron energies €, that appear in the
denominators of V., by their corresponding values €,
for the scattered states.! We have found that both
methods lead to the same H,,.

The reduced version of this new H,, anticipates that
¥, (having spin up) will be paired with its time-reversed
counterpart ¥, (having spin down). The new reduced
Hamiltonian is

H:'ed = 2 Vnn’c:'cr—r'cr—,cn s (32)
where
Vnn’= 2 ka’q(k—Q|n'><k'+Q|ﬁ’)(k’li_l)'{(k]n )' .
kk'q
(33)

The traditional simplification (iii) mentioned in Sec. I
neglects any variations of V., except that if either €, or
€, falls outside the 2#iw; band centered about the Fermi
level, V,, is set equal to zero. Accordingly when both €,
and €, fall within the BCS cutoff,
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Vaw=—V 2[< —klln )(kln >*]
Kk'q

X[{k—qln"Y{—k'—q|n")*]. (34)

(We have replaced matrix elements involving 7 and 7’ by
their time-reversed equivalents.) Equation (34) cannot be
evaluated further as long as the scattered states {1, } are
general and unspecified. ¥, will not be a constant, and
there can be no proof of Anderson’s conclusion.

If the sum over k’ in Eq. (34) were omitted and instead,
k’ were set equal to —k, then

Vm.'=—V[2|<k|n)lz][2I<k—q|n')|2 . (3%
q

k

(The isolation of the two factors is possible because the
sum over q is independent of k.) The unitary character of
the transformation [Eq. (29)] implies that both sums in
(35) are unity. Then it would follow that

Vo=—V, (36)

and proof of Anderson’s theorem would be complete.

However, Eq. (35) is not correct. The only way to ob-
tain it is to transform the reduced Hamiltonian for a pure
superconductor [Eq. (31)] and then to truncate the result
once again for (n,7) pairing. Such a procedure is not al-
lowed. Truncation of the full Hamiltonian is permitted
only once, for the eigenstate pairs that are (finally) in-
volved in the BCS condensate. Since Eq. (35) is
equivalent to Eq. (3) of Ref. 1, together with assumption
(iii), above, it is apparent that proof of Anderson’s
theorem in Ref. 1 was incomplete.

We now inquire whether Anderson’s theorem can be
proved under restricted approximations. The scattered
states {1,} will be treated by perturbation theory in
powers of the solute potential,

Ulr)= 3 ubr—R;) . (37)

{R;} are the solute sites. The scattered states can be
evaluated to order u? (Ref. 10),

Yoy =+ — e

x €k €k+k |7

e P & 1)

(The u? and u 3 terms are not displayed.) The matrix ele-
ments of Eq. (29) are thus specified. The fu/l Hamiltoni-
an H,, may then be transformed into this basis and the
reduced Hamiltonian [Egs. (32) and (34)] evaluated to or-
der u* The exercise is extremely tedious. We have
found that there is considerable compensation for the
terms of Eq. (34) which were omitted in Eq. (35). The
sum of all u? and u? terms leads to a correction in Eq.
(36) of order (#iwy, /Eg)?. Since this factor is ~107* (and
may be neglected), the theorem is correct to order u > and
to the linear power in solute concentration c. However,
we were unable to recognize a similar compensation for
all terms of order u* and proportional to c2.

The foregoing limitation resolves what otherwise might
have seemed paradoxical. Reference 1 places little re-
striction on the complexity of the scattered states. So the
imputed result [Eq. (36)] would appear to hold even if the
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states n and n’ were localized in different regions of the
sample. The phonon-mediated interaction that connects
(n,7) to (n’,7’) would then have to be zero (since there
would then be no spatial overlap of ¢, with ¢,.), thereby
contradicting Eq. (36). The cancellation we noted above
when using Eq. (38) to the third order is not similarly
contradicted since localization does not occur in u?3 or-
der. There have been many studies of the effect of locali-
zation on T, (Ref. 11) but the emphasis has been either
on the role of Coulomb interactions or on strong-
coupling effects. The limitation we have noted here is re-
lated merely to the properties of the unitary transforma-
tion [Eq. (29)] and to observing that Eq. (36) is not
demonstrable except to order 4 and to the first power in
c. Finally we emphasize that the linear T, decrease (with
c) of the AG theory [Eq. (26)] is proportional to u2 and
so is contradicted by the provable residuum of
Anderson’s theorem.

IV. PROJECTED GREEN’S-FUNCTION METHOD

In this section we modify the Green’s-function method
in order to recover a valid theory for an impure super-
conductor. It will be necessary to utilize at the outset
Green’s functions which incorporate the BCS cutoff. The
usual Green’s functions are most easily expressed in
terms of the exact eigenstates {1, } for the normal (non-
superconducting) state:

Y, (s)Py(r)

io—E€,

G, (s,1)= 3

n

’ (39)

where ® is one of the Matsubara values [Eq. (9)]. We
define the projected Green’s functions to be

GP(s,r)= 2@% , (40)
where

0,=1, ifl¢,| <top , 41)

®, =0, otherwise .

The importance of the cutoff factors {®,} has been em-
phasized,'? but it is traditional to suppress them formally.
We are unaware of their use to define GZ(s,r) [Eq. (40)].

The T, equation employed by AG, Eq. (11) of Ref. 2,
involves the Green’s functions for the normal state and
the pair potential A*(r). We will argue below that the
functions (40) should be used in place of (39). According-
ly,

A*D)=VT, 3 [ A*(s)GL(s,0G? ,(s,r)d% . (42)

(We have suppressed spin indices because only nonmag-
netic solutes are under consideration.) AG suggest that
A*(r) can be replaced by its average value, fA*(r)d3r, )
the argument of the w summation in Eq. (42) becomes

f f S 0,0 Y, (s)Pr(r)y,, (s)h, (1)

3, 43
(io—e, (—iw—E€,,) drd’s . “3
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Recalling that the {4, } here are only the space parts of
the one-electron eigenstates, the sum over n can be re-
placed by the sum of the time-reversed states, ¥, =v;.
Accordingly, the integral in d3 is §,,,, and the subse-
quent integral in d% is just unity (for each remaining
term). Thus Eq. (42) becomes

n

A*=VT A*——"— 44)
228ha
From Egs. (9) and (12), this expression reduces to
1=V'S 2 tanh |2 45)
V25t o | (

which is exactly the BCS T, equation, e.g., Eq. (14). So
Anderson’s theorem, T, =T, is reproduced.

A formal justification of Eq. (42), with the projected
Green’s functions, is not available. However, this equa-
tion can be interpreted physically in the fashion of other
self-consistent strategies. The pair potential A*(s)
“launches” (from the regions near s) time-reversed eigen-
state pairs which collaborate to generate a pair potential
A*(r) in the region near r. The pair propagators should
be truncated so that only eigenstates within #iw; of the
Fermi energy participate. The BCS cutoff factors {®, }
must delineate the eigenstate energies {€,} and not the
momentum state energies { €.} of the basis functions used
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to synthesize them. Equation (7) above, taken from the
AG theory, employed at the end a cutoff function on {€,}
and thereby imposed a limitation on the momentum com-
ponents {¢,}, confining them to an energy interval 27w,
in the basis space. The scattered states, however, even
those with energies |€,| <7%w, require a synthesis using
all momentum states within the (2E wide) energy band.

Our conclusion is that a correct theory of an inhomo-
geneous superconductor must incorporate the BCS cutoff
at the outset and in the eigenstate representation. Impos-
ing a BCS-like cutoff only at the end of a calculation can
lead to invalid results, as shown in Sec. II. Another prob-
lem involves use of a Dyson equation or a Dyson expan-
sion, to find Green’s functions which include the effect of
inhomogeneous perturbations. We have verified that a
projected Green’s function cannot be obtained by means
of a Dyson equation. It is evident that some theories of
inhomogeneous superconductivity may need to be reex-
amined. The problem of magnetic impurities is a particu-
larly important example. The results of such an investi-
gation will be published separately.
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