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Computer simulations, based on the time-dependent Ginzburg-Landau equation of the magnetization

process of type-II superconductors in a magnetic field are presented. It is shown how the magnetic Aux

penetrates into and goes out of the superconductor through the surface boundary, i.e., the

superconductor-insulator interface. By examining the hysteresis curve of the magnetization, the surface

pinning field is derived. The Aux distribution and its time development in the superconductor are calcu-

lated when the magnetic field is increased or decreased. We also study the surface and edge states of the

type-II superconductor above the upper critical field.

I. INTRODUCTION

A variety of the anomalous electromagnetic phenome-
na of type-II superconductors have received much atten-
tion, particularly since the discovery of high-temperature
superconductors. Several phenomenological theories
were applied to analyze the irreversible phenomena. The
phenomena are related to the dynamical properties of
magnetic vortices. Since the dynamics are sensitively
dependent on the details of the superconducting materials
such as sample surfaces and inhomogeneities, it is compli-
cated and difficult to examine the phenomena based on
the microscopic model.

Recently, three kinds of computer-simulation methods
have been applied to the study of the vortex state based
on the semimicroscopic models: (i) the Monte Carlo
simulation based on the Ginzburg-Landau free-energy
functional with a simulated annealing method, ' (ii) the
molecular-dynamics annealing simulation based on the
Langevin equation for vortices, ' and (iii) the difference
method to solve the time-dependent Ginzburg-Landau
(TDGL) equation. In a previous paper, we have pro-
posed that the third method is particularly useful to in-
vestigate the dynamics of magnetic flux in type-II super-
conductors, since external conditions such as the time-
dependent magnetic field and sample geometry can be in-
troduced into the equation as parameters. We have
presented the simulations of the nucleation process of the
superconducting state with and without an external mag-
netic field starting with the normal state, the pair annihi-
lation of a vortex and an antivortex, and the pinning pro-
cess of a vortex by an impurity.

In this paper, we extend the method of Ref. 4 and
study the magnetization process of type-II superconduc-
tors with the surface boundary, i.e., the superconductor-
insulator interface, in the wide range of the external mag-

netic field. Bean and Livingston have presented the phe-
nomenological model for the surface pinning of vortices
and proposed the characteristic magnetic field for the
magnetic-flux penetration into type-II superconductors.
This field is much higher than the lower critical field H, &.

We study the magnetization process and derive the field
based on the TDGL equation. We also examine the sur-
face superconducting states and find the edge states that
exist even above the surface critical field H, 3.

In Sec. II we briefly review the TDGL equation. A
gauge transformation for eliminating the scalar potential
and the link variable for treating the vector potential are
introduced. In Sec. III the simulation method to solve
the TDGL equation is presented. In Sec. IV the method
is applied to the magnetization process of type-II super-
conductors. Starting with the zero-field cooling (ZFC)
state, we examine the time development of the magneti-
zation and observe how the magnetic flux penetrates into
and goes out of the superconductors through the surface
boundary. In Sec. V the hysteresis curve of the magneti-
zation and surface and edge states are derived. The re-
sults of the simulation are summarized in Sec. VI. In the
text, normalized units introduced in Sec. II are used un-
less noted, whereas the figures are shown in physical
units.

II. TIME-DEPENDENT GINZBURG-I. ANDAU
EQUATION

In this section, we review briefly the TDGL equation
and set up the formalism necessary for examining the
magnetization process in type-II superconductors. The
TDGL equation is a partial differential equation for the
space and time dependence of the complex order pararne-
ter b, (r) and the vector potential A(r). It is conveniently
written in the normalized form as
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where P(r) is a scalar potential, f(r, t) is the random
force, ' and j(r) is the total current density. Here, we
have neglected the displacement current and the
difference between the scalar potential and the electro-
chemical potential, assuming both are small. " The order
parameter b, is divided by its equilibrium value in
the absence of the magnetic field, i.e.,
b, „=[mc /8ire A(T) j,' . Here, D and o are the
normal-state diffusion constant and conductivity, respec-
tively, and are given in the microscopic theory by

r in units of g(0),
t in units of t0,
A in units of H, z(0)g(0),

Ba
Bt

1

12
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where the upper critical field is given by
H, i(T) =H, i(0)(1—T/T, ). In normalized units, the
TDGL equation is rewritten as

T1—0
C

(2) BA =(1—T)Re b, ' ——A 5 —~ VXVX A,2

Bt

where T, is the critical temperature and t0 is the charac-
teristic time for the order parameter defined by
to:sruti/96k'—iT, . The coherence length g(T) and the
magnetic penetration depth I,( T) are given by

—1/2

g( T)=$(0) 1—T
Tc

where f(r, t) is the dimensionless random force and its
correlation is given by

A, (T) =A, (0) 1—T
T.

(3) H, (0)
(f*(r,t)f(r', t')) = kii T '

g(0)3
12 8~

X5(r—r')5lt —t') . (9)
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where ( ) denotes the ensemble average and H, (0) is
the thermodynamic critical field at T =O.

Let us introduce a gauge transformation of the scalar
and vector potentials,

A~ A —Vy, /~if'I+—1 By
c Bt

accompanied by a phase redefinition of the order parame-
ter

respectively. Thus, the Ginzburg-Landau parameter
~=A.(T)/g(T) is independent of temperature. In Eqs.
(1)—(3), the other notations are the conventional ones.
The random force is uncorrelated in space and time,

H, (0)(f"(r,t)f(r', t')) =12/(0) t 4k oTs

Let us next introduce the link variable between r1 and
12 as

U„""=exp J A„(r)dp
r1

(10)

a.

with p =x,y, where the magnetic field H is in the z direc-
tion. For computer simulations, it is convenient to
discretize the system. The first derivative and the rota-
tion of the vector potential are given by

. 2eA~Aexp —i
Ac

(6)

Then, setting By/Bt =cP, we eliminate the scalar poten-
tial in the TDGL and Maxwell equations. The equations
can be rescaled as follows:

g h

FICx. 1. Configuration of the lattice used in the simulations.
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scripts j,k, . . . denote the lattice points as shown in Fig.
1. The second derivative of Eq. (8) is discretized as

B,=(VX A), —+ — (1—U""U„" U U ")
ax Qy

1 a
l BX

2
U ~6k —2A-+ U'~A;

2 7

a„

respectively, where ax and a are the lattice constants in
the x and y directions. Here, the superscripts and sub-

We then obtain the discretized TDGL equation from
Eqs. (8)—(12) as

aa,.

Bt 12
'+ ', ' ' '+(1—T)(la, ~' —I)a, +f, (&),

a Qy

aUjk
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at m y j 2 y x y x y x yax

(13)

In Ref. 4, we have solved Eq. (8) directly without the link
variable. We have checked the results of the simulations
for Eq. (13) which agreed with the previous ones for Eq.
(8) in the nucleation process of the superconducting state
at low external magnetic fields. In this paper, the link
variable is used since a better numerical convergence is
obtained in high magnetic fields.

III. SIMULATION METHOD

0.5
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o 0.3—
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We consider the magnetization process of type-II su-
perconductors in an external magnetic field in the z direc-
tion and examine the time development of magnetization
in the xy plane. In conventional superconductors, the
Auctuation of vortices in the z direction is much smaller
compared with that in the xy plane. Therefore, the two-
dimensional treatment of the TDCxL equation may physi-
cally be realized when the geometrical demagnetization
factor' is neglected.

The sample we examine has the following free bound-
ary condition for the order parameter at the surface
boundary since the perpendicular component of the
current density is zero at the boundary;

——A 6 =0,V
l

n

(14)

where the subscript n denotes the normal direction to the
surface. The value of the magnetic-Aux density 8 is equal
to the external magnetic field H, =(O, O, H) at the surface,

B,—= (VX A), =H, ,

01-
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(b)
where the subscript s denotes the surface. The boundary
conditions (14) and (15) are rewritten in the discretized
ones by using Eq. (11). The magnetic-flux density B and
the external magnetic field H, are measured in units of
H, 2(0) from Eq. (7).

The outline of the procedure of the present simulations

FIG. 2. (a) Time variation of the external magnetic field H in
the initial magnetization process. The field is increased from
H/H, 2(0)=0 to H /H, 2(0) =0.45 with the step
hH/H, 2(0)=0.05. (b) Time development of the magnetic in-
duction (8, ) /H, 2(0), due to the external magnetic field given
by Fig. 2(a).
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cr =+(ht/24)k~TI [H, (0) /8m. ]g(0) ]

=Q(n.Eob.t /6)( T/T, ), (16)

where EQ is the ratio of the thermal energy to the free en-
ergy of a vortex, Ec=k&T, /E(0)g(0) H.ere, e(0) is the

is as follows. %'e use the simple Euler method for the
discretized TDGL equation (13) on square lattices with

lattice points, where the time step is At=0.015 and
the lattice constants in the x and y directions are
a„=a =0.5. We set the grid size at 128X128(%=128),
that is, the space size is 64$(0) X 64/(D) in physical units.
The random force f, (t) at . each site i is independently
selected from a Gaussian distribution with a zero mean.
From Eq. (9) its standard deviation o is given by

free energy of a vortex per unit length at T=O and is
defined by e(0)=4ng(0) [H, (0) /8m]. We take a=2 and
T/T, =0.5. In a superconductor with T, =10 K and
g(0) =100 A, for example, the sample size is —1 iMm X 1

pm, the characteristic time is tQ=10 ' s, and the pa-
rameter EQ which is a measure of the random force is
Eo = 10 . We checked the eFects of the random force
by changing the value of EQ. Even when EQ is taken to
be 10, qualitatively the same results were obtained as
for EQ = 10 except for the time scale; the time develop-
ment of the order parameter becomes faster as the value
of EQ is larger. In our normalized units, the upper and
lower critical magnetic fields at T/T, =0.5 are given by
H, 2( T) =0.5 and H„(T) =0.04, respectively. The initial
state is taken to be a superconducting state with

t I t = 6150 t I t = 6600 t I t = 6150 tIt = 6600

Do
0

t I tQ = 6300 t I tQ
——6750 t I tQ

——6300 tI t =6750

tI tQ =6450 t I to ——7500

SgjppMopo'po~jgj(ogpu

Do&OEO&O 'OqOROgg,o~o ogo o~

INo ZOS'.o-'L. .&c)

tIt =6450 tIt =7500

FKx. 3. (a) Time development of the magnetic-Aux density B,(r) when the magnetic field is increased from M/H, 2(0) =0.20 to
H/H, 2(0) =0.25 at t/to=6000. The contour lines with the interval 0.02 are shown. (b) Time development of the magnitude of the
order-parameter ~h(r)~ when the magnetic field is increased from H/H, 2(0)=0.20 to H/H, 2(0)=0.25 at t/tp =6000. The contour
lines with the interval 0.2 are shown.
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~b.(r)~ =1 and 8,(r)=0 in the absence of the external
magnetic field, i.e., a zero-field cooling (ZFC) state.
Then, by numerically integrating the TDGL equation to-
gether with the Maxwell equations in various conditions,
the magnetization process is simulated in Sec. IV.

IV. MAGNETIZATION PROCESS

tlt = 181500 tl t = 18150
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The magnetic Aux penetrates into a superconductor
through the surface boundary as the external magnetic
field is increased, and goes out of it through the surface

tlt = 31650 tl t =32550

boundary as the field is decreased. In order to investigate
the magnetization process, we start with the initial state,
with ~h(r)~=1 and 8,(r)=0, and increase the external
magnetic field with the step AH=0. 05, as shown in Fig.
2(a). Each value of the external magnetic field is fixed for
the time interval 1500. In Fig. 2(b) we show the time de-
velopment of the magnetic induction (8, ), which is cal-
culated as (8, ) =—( I/V) f8,(r)dr. The magnetic induc-
tion becomes constant in each magnetic field after the
1500 time interval. Thus this time period 1500 ( —10
s in real units) is enough to stabilize the physical state in
the system.

In Fig. 3 we show how the magnetic Aux penetrates
into the superconductor as the magnetic field is increased
from H=0.20 to H=0.2S at the time t=6000. The con-
tour lines of the magnetic-Aux density with the interval
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FIG. 4. (a) Time development of the magnetic-fiux density
B,(r) when the magnetic Geld is decreased from
H/H, 2(0)=0.30 to H/H„(0) =0.25 at t/to =18000. The con-
tour lines with the interval 0.02 are shown. (b) Time develop-
ment of the magnitude of the order parameter ~h(r)

~
when the

magnetic field is decreased from H /H, 2(0)=0.30 to
H/H, 2(0)=0.25 at t/to=18000. The contour lines with the in-
terval 0.2 are shown.

FIG. 5. Time development of the magnetic-Aux density B,(r)
when the magnetic Geld is decreased from H/H, &{0)= —0. 15 to
H/H, 2(0)= —0.20 at t/to=31 500. Thick and thin lines show
the contours of the positive and negative magnetic-Aux densi-
ties, respectively, with the interval 0.02.
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0.02 and of the order parameter with the interval 0.2 are
plotted in Figs. 3(a) and 3(b), respectively. At t=6000,
the system is in the Meissner state, where the order pa-
rameter is ~b, (r)~ =1 in the system and the magnetic-Aux
density is B,(r)=0 except in the range of order A, (T) near
the surface boundary. When time goes on from t=6000,
the magnetic Aux penetrates into the system from the sur-
face boundary. However, it is not yet quantized at
t=6150. At t=6300, the curvature of the magnetic Aux
becomes large at the edges. Then the magnetic Aux is
transformed into vortices. This transformation extends
gradually into the system. At t=6600 in Fig. 3(b),
several large rings are seen. At t=6750, these rings are
divided into vortices. Thus the large rings which appear
temporarily are vortices with large quantum numbers.
As the magnetic field was increased with the step
AH=0. 01, vortices with large quantum numbers did not
appear and vortices penetrated into the system one by
one. This fact suggests that the magnetization process
depends on the external condition.

We next examine the hysteresis curve of magnetization
as the external magnetic field is reversed from H=0.45 to
H = —0.45 with the step AH = —0.05 and then in-
creased again to H=0.45 with the step AH=0. 05 with
each time interval 1500. Figure 4 shows how vortices go
out of the superconductor at H=0.25, as the field is de-
creased from H=0.30 to H=0.25 at t =18000. In Figs.
4(a) and 4(b), the contour lines of the magnetic-Ilux densi-
ty with the interval 0.02 and of the order parameter with
the interval 0.2 are plotted, respectively. At t =18000,
the mixed state is disturbed and vortices go out of the
system through the surface boundary one by one. This
situation is seen in the figures at t =18 150 and 18300.
Since the magnetic-Aux density is low near the surface
boundary, vortices move along the density gradient.

In Fig. 5, the time development of the magnetic Aux is
plotted as H is decreased from H = —0. 15 to H = —0.20
with the step AH = —0.05 at t =31 500, where thin and
thick contour lines indicate negative and positive values
of the magnetic-Aux density, respectively. The interval of
the contour lines is 0.02. At t =31 500, there are six vor-
tices in the system and the magnetic Aux with the nega-
tive sign penetrates into the region of order A, (T) from
the surface boundary. At t =31650 a positive vortex is
absorbed into the negative Aux region. As soon as it
disappears, antivortices (vortices with negative Ilux) are
nucleated at the same position. We observe that vortices
at the center are annihilated together with penetrating
antivortices at t =33000. We also find that antivortices
penetrate into the system wherever vortices go out.
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FICr. 6. Hysteresis curves of the magnetic induction (B, )
(upper part) and the magnetization M (lower part) vs the exter-
nal magnetic field.

M—:(1/4')( (B, ) H). In the in—itial magnetization pro-
cess, the superconductor is in the Meissner state. As the
magnetic field is applied, the magnetic Aux penetrates
into the region of order A, (T) near the surface boundary.
As the magnetic field is further increased, the magnetiza-
tion curve shows a peak at H =0.20. This field is much
larger than the lower critical field H, &

=0.04. The system
is in the mixed state for H )H . Once the system is mag-
netized, the state is complicated even for ~H

~

~ H; when
the magnetic field is decreased from H and reversed, the
magnetic flux in the region of order A, ( T) near the surface
boundary is opposite to that of vortices in the system. As
the field is further decreased to H (—H, the magnetic
Aux near the surface boundary is transformed into vor-
tices. Then they penetrate into the system.

Bean and Livingston have proposed the magnetic field
H„at which vortices begin to enter into the sample
through its surface boundary. In the following discussion
we use physical (dimensional) units. To evaluate H„ two
forces acting on a vortex near the surface are examined,
one being an image force which is attractive to the sur-
face. The energy E, per unit length of a vortex is given
by

V. HYSTERESIS CURVE

The hysteresis curve of magnetization is calculated as
follows. The external magnetic field is increased from
H =0 to H =0.45 with the step AH=0. 05, and decreased
from H=0.45 to H = —0.45 with the step hH = —0.05.
Then, it is again increased to H=0.45 with the step
b.H=0.05. In Fig. 6, the magnetic induction (B, ) and
the magnetization M vs the external magnetic field are
plotted, where the magnetization M is given by

where @0 is the Aux quantum (=Pic/2e) and Eo is a
modified Bessel function of the second kind. Here, c. is
the energy per unit length of a vortex far from the surface
and is approximately equal to

r

No
ln~ .
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(19)

Thus, we obtain the total energy E (x) as

2
c'o

ln~—
2

—x/'X

4~A, A. 4m

(20)

The other is the force caused by the external magnetic
field H'. The field penetrates into the superconductor as
H'e . If this field is of the same sign as the vortex, a
repulsive force from the surface, is produced. The energy
E, is given by

1.0

1.0

1.0

1.0

10
8

&I 10
1.0

1,0

1.0 =

H /' Hc2(O&=O. Ss

0.70

O. l 5

0.10

The energy E(x) has a maximum near the surface. Let
us define H, as the magnetic field at which E (x) becomes
maximum at x =g( T). Differentiating Eq. (20) with
respect to x and substituting g( T) for x, we obtain

T )g 2 1 T1— e'rc, —— 1—
T~ K 2K T~

H,
H, ~(0)

(21)

where X, is a modified Bessel function of the first kind.
We evaluate H, for ~=2 and T!T,=0.5, and obtain
H, /H, 2(0)=0.12. The value of H, is close to H . Thus,
we identify H obtained in the simulations to be the sur-
face pinning field.

We also find the second peak at H=0.3 in the initial
magnetization curve in Fig. 6. However, the second peak
disappears when the external magnetic field is increased
with the step AH=0. 01. This suggests that since the
redistribution of the flux is slow, the apparent hysteresis
curve depends on the variation of the magnetic field.

The cross sections of the spatial pattern of the order
parameter, the magnetic induction, and the y component
of the current density j =(I~ V X V X A) in various
external magnetic fields are shown in Figs. 7, 8 and 9, re-
spectively.

In H ~0.2, the system is in the Meissner state. The or-
der parameter in Fig. 7 is

~
b,

~

= 1 in the system except for
the surface region. The magnetic flux penetrates into the
region of order A, ( T) from the surface boundary in Fig. 8,
and the supercurrent rotates near the edge of the system
as shown in Fig. 9.

In H ~0.25, vortices penetrate into the system as
shown in Fig. 8. As the external magnetic field is in-
creased, the spatial pattern of the magnetic-flux density
tends to become uniform. The value of the order parame-
ter is zero at the positions where the current density j~
changes sign, as shown in Fig. 9. In the system with high
vortex density, vortices do not move independently but
move as a bundle. In high magnetic fields, the value of
the order parameter is larger near the edge than in the
center (see Fig. 7). In Fig. 9 the maximum value of j is
given by j,„/jo =0.18 at H= 0.35 with
jo=cH, (0)/2+2mA(0). This value is close to the GL
critical current density' which is defined by

1.0
0.5
0.0

0

0.05

I I I I I

16 32 48
x /$(0)

64

FICx. 7. The cross sections of the magnitude of the order pa-
rameter ~b,(x)

~
at various choices of the external magnetic field,

where the surface boundaries are at x/g(0) =0 and 64. The or-
der parameter is norinalized by the equilibrium value in the ab-
sence of the magnetic field 6„.

2cH, (0) T1—
3&3K,(0) T,

H, 3(T)=1.695 1—T
e

(22)

0.5
H / Hg2(0)=0.45

0.4—

0.3

0.2

0.1

0.0
0 32

x /$(0)
FIG. 8. The cross sections of the magnetic-Aux density 8,(x)

at various choices of the external magnetic field, where the sur-
face boundaries are at x /g(0) =0 and 64.

i.e.,j,„/j, =1.3.
Finally, we examine the surface superconducting state

in H )H, 2. Saint-James and de Gennes have obtained
the surface critical field H, 3 as
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FIG. 9. The cross sections of the y component of the current
density j~(x) at various choices of the external magnetic field,
where the surface boundaries are at x/g'10)=0 and 64. The
maximum value is obtained to be j /jo =0.18 at
H/H„(0) =0.35 with jo =cH, (0)/2&2m. A,(0).

The value of H, 3 for our parameter values is given by
H, 3=0.85. As shown in Figs. 7 and 10, there exists the
superconducting surface sheath of thickness —g( T) at
H= 0.70 ( )H, 2). In addition, we find that even in
H=0.90 ()H, 3) the order parameter is finite at the
edges. Such edge states disappear at H=1.00 (=ZH, 2).
This it is possible that the superconducting edge states
give various anomalous phenomena in high magnetic
fields.

VI. SUMMARY

We have solved the TDGL equation of type-II super-
conductors numerically in magnetic fields. As the mag-
netic fields is increased from H =0 to H =H, the mag-
netic Aux near the surface boundary is transformed into
vortices and penetrates into the system. This field H, at
which the mixed state appears, is the surface pinning field
and much larger than the lower critical field H, &. Once
the system is magnetized in the field H & H, the super-
conducting state is complicated for iHi ~H~. We have
examined the magnetization process as a function of the
magnetic field and its time variation, and shown that the
hysteresis curve of magnetization is sensitively dependent
on the magnetization process.

FIG. 10. The spatial patterns of the order parameter ~b, (r)i
at H/H, 2(0)=0.70, and 0.90, where the maximum value of
~h(r)~ is normalized to l.

%'e have also found that in addition to the surface su-
perconducting state mentioned above, in the upper criti-
cal field H, 2, edge states exist. The edge states remain
even above the surface critical field H, 3. Therefore it is
possible that the states cause anomalous phenomena in
the experiments in high magnetic fields.

%'e have presented computer simulations of the dy-
namics of the superconducting states in magnetic fields.
This method can be applied to the other superconducting
problems such as the dynamics of vortex lattice and Aux

Aow in the superconductor with impurities. Such prob-
lems will be studied and presented in a separate publica-
tion.
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