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Insulator, metal, or superconductor: The criteria
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The appropriate infinite-wavelength q;~0 and zero-frequency co~0 limits of the paramagnetic
current-current correlation function provide criteria for determining whether a system is insulating, me-

tallic, or superconducting. Here we discuss these criteria for lattice models and present Monte Carlo
data for the two-dimensional positive- and negative-U Hubbard models that imply that the ground state
of the half-filled positive-U Hubbard model is an insulator, the doped state is a metal, and the negative-U
Hubbard model is a superconductor.

I. INTRODUCTION

Given a many-body Hamiltonian, how does one deter-
mine whether its ground state is insulating, metallic, or
superconducting? With the development of numerical
simulation techniques, what has been discussed as a basic
question of principle has now become a practical calcula-
tional question. For example, one would like to answer
this question for the two-dimensional Hubbard model.

One approach has been to study the scaling properties
of correlation functions characteristic of the ground-state
order one expects. ' For example, scaling studies of the
staggered spin correlations for the two-dimensional half-
filled Hubbard model on lattices of increasing size have
shown that its ground state has long-range antiferromag-
netic order. ' Thus one has, in this way, indirectly con-
cludec that at half-filling the ground state of the two-
dimensional Hubbard model is insulating. Away from
half-filling, calculations of various types of pair-field
correlation functions have so far found only short-range
d 2 2 and extended s-wave pair-field correlations. '

x —y
However, the forms that have been chosen for the pair-
field operators have described a short-range equal-time
pair constructed using bare fermion operators. It is pos-
sible that one needs dressed operators to get a sizeable
response or, worse yet, that the pair-field operators that
have been examined have the wrong symmetry. Perhaps
the system would be found to have clear superconducting
correlations if the physically correct pair-field operator
had been guessed. Thus, as a practical matter, one would
like to know what to calculate in order to determine if
the ground state of a system is insulating, metallic, or su-
perconducting. Beyond this, theoretical questions associ-
ated with the nature of the metal-insulator and
superconducting-insulator transition require a clear un-
derstanding of the relevant criteria.

In a previous paper, we have suggested that the ap-
propriate q;~0 and co~0 limits of the current response

kernel provide the framework for answering this ques-
tion. Here, in Sec. II we review this approach and intro-
duce a Drude weight D /fare, which is a measure of the
ratio of the density of the mobile charge carriers to their
mass and a superfluid weight D, ltre, which measures
the ratio of the superAuid density to mass. The superAuid
weight, unlike the pair-correlation function, .is a physical
quantity directly measurable in experiments. Therefore,
this method yields a criterion for superconductivity in-
dependent of the nature of the order parameter. Some
mean-field examples are discussed in Sec. III. Following
this, in Sec. IV we discuss the relationship of this ap-
proach to the energy shift of the ground state with
respect to twisted boundary conditions. In Sec. V we
show that when there is a gap, D, =D. Then in Sec. VI,
results from Monte Carlo calculations on the Hubbard
model are discussed. Section VII contains a summary
and our conclusions.

II. THE DRUDE AND SUPERFLUID WEIGHTS

The model Hamiltonians which we will study have a
kinetic energy

K= —t g (c;,c~;+c Jc;, ) .
(ij )s

Here t is a one-electron overlap between near-neighbor
sites on a square lattice, and c;, creates an electron of spin
s on site i. The interaction can have, for example, an on-
site Un; &n; &

or extended Vn;n Hubbard form or involve
an electron-photon coupling gn; x, in which the site ener-

gy depends on a lattice displacement x;. Here we are in-
terested in the current response to a vector potential
A„(l,t). In the presence of a vector poten-
tial, the hopping term c&+ cI, is modified by the phase

ieA (T)
factor e . Here and in the following we will set
A=c =1 and take the lattice spacing equal to 1. Expand-
ing the phase factors in the usual manner through terms
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of order A, one has

K„=K—g ej, (l)A (1)+
1

e k (I)
2

A„(l) (2)

wavelength limit one has

AJ(q) .
q

(13)

Here ej is the x component of the paramagnetic current
density

A (1)=it g (ci+»c» ci,—ci+„,),
—f (q~O)

2

n,

For a superconductor,

(14)

k„(l)= —t g (ci+„,c»+cisci+» ) . (4)

The total current-density j (1) is obtained by
differentiating Eq. (2) with respect to A (1),

and k, (1) is the kinetic-energy density associated with the
x-oriented links

where we have introduced a superAuid weight D, which
measures the ratio of the superAuid density to the mass.
Now, from the linear response relation, Eq. (8), and Eqs.
(13) and (14), we have

D,
~
=( —k„)—A„„(q=0, q ~0, ico =0)

~e

j„(l) = — = ej„(l)+e k (1)A (1) 0= ( —k„) A, (q,—~0, qy =0, i co =0) . (16)

and consists of the usual paramagnetic and diamagnetic
parts.

For a vector potential

A (l, t)= Re(A„(q,co)e'~' ' '} (6)

, (q ico )=—f dr e™~(j„(q,r)j, ( —q, O)),
0

(9)

with co =2amT, by the usual analytic continuation in
which co ~co+i6, and

the current response is

(j,(l, t) ) = Re(( j„(q,co) )e'~' '"'),
with

(j„(q,co)) = —e [( —k„)—A„(q,co)]A, (q, co) . (8)

Here ( k ) is the kinetic energy per site divided by the
number of lattice dimensions. A,„(q,co) is obtained from

The fact that the static paramagnetic current-current
correlation function A (q, co =0) approaches different
limits depending upon the order in which q and q go to
zero implies that the paramagnetic current-current corre-
lations in a superconductor are long range. ' ' In three
dimensions they decay as r and in two dimensions as

—2r
The q=O, cu —+0 limit of the conductivity determines

whether the ground state of a system has zero resistance.
Consider the ~—+ ~ limit of the real part of the Drude
conductivity

cri(co)= lim
1 =D5(co) .

m 1+(cor)2

e n~
(17)

o„„(co)=D5(co)+ cr",.„~(co), (18)

The coe%cient D of the delta function is called the Drude
weight, and the simple Drude form is equal to rre n 1m.
In genera1, we expect that at T=O, the real part of the
q=O conductivity will have the form

j (q)=it pe ' '(ci „ci, ci,ci+„).—
I

(10) with

The long-wavelength q —+0 and low-frequency cu~O
limits of the Kubo linear response relations, Eq. (8),
determine whether a system is insulating, metallic, or su-
perconducting. We begin by examining the criteria for
superconductivity. ' London" showed that the Meiss-
ner efFect followed if the current-density response of a su-
perconductor in a static, co=0, long wavelength q„~O,
transverse q. A=O vector potential was given by

j (q~)= — A, (q ) .1 1

4m g

me
(19)

determined by the ratio of the density of the mobile
charge carriers to their mass. In the absence of impuri-
ties, a metal will be characterized by a finite value of D
(i.e., R =0), and an insulator will have a D which van-

ishes as the size of the system goes to inanity. '

Setting A (q=O, co)=E ( qO, )c/oi(co+i5) in Eq. (8),
the conductivity for a uniform, q =0, frequency-
dependent electric field is given by

In this case, the magnetic Geld would be expelled except
for a penetration depth A., with

( —k„)—A„„(q=O,co)

i (co+ i5)
(20)

4m.n, e

mc
(12)

In the co~0 limit, the real part of cr„(co)will contain a
delta function contribution D5(co) with' '

Here n, is the superAuid density and m the electron mass.
In general, for a static co=0 vector potential, in the long-

D = ( —k ) —ReA„„(q=0, co~0) .
~e

(21)
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Since A is analytic in the upper complex plane, we can
also obtain D from the zero-temperature extrapolation of
the Matsubara form, Eq. (9),

1.5

64x64, (n)=1.0, P =20
U=O

= lim [ —( k ) —A,„(q=0, i2~T) ] . (22)

Alternatively we will find that at low temperatures, a use-
ful estimate of D can be obtained by extrapolating
i ru —+0, using the m&0 values

1.0
II

8
3

c 0.5
BCS

D —= [—(k„)—A (q=0, iro ~0)] .
77e

(23)

In Eqs. (15) and (23) we see that the diff'erence between
D, and D is the order in which q and i~ approach
zero. The insulating, metallic, or superconducting char-
acter of the ground state is determined by the values that
D, and D approach as the size of the system scales to the
bulk limit. In this limit, for a system without disorder,
we expect that D and D, go to 0 for an insulator, D is
finite and D, =0 for a metal, and D and D, are both finite
for a superconductor. If there is a gap, whether the sys-
tem is insulating or superconducting, we expect that
D =D„asdiscussed in Sec. IV. At finite temperature or
if there is disorder, D =0 but o„,(co=0) remains finite
for a metallic system.

III. MEAN-FIELD EXAMPLES

0.0

1.0

0.8

8 0.63
C)
Ila' 0.4

0.2'

0. E.0 F

64x64, (n)=1.0. P=20

U=O, BCS
A A

In this section, we consider some simple examples in
order to develop insight into the limiting behavior of the
current-current correlation function. First, for a nonin-
teracting electron system on a two-dimensional square
lattice with ek = —2(cosk + cosk ), we have for the
current-current correlation function

A„(q,co ) =—g=2
p

(2sinp„)'[f(E +, )
—f (E~)]

(24)
i Ci)~ ( Ep+q Ep )

Here 2 sinp is the velocity in the x direction, and f is the
usual Fermi function. Now, if co is set to zero first and
then one takes the limit, q„goesto zero,

g Bf(E )
lim A,„(q~,O) = g sin p„ (25)

Carrying out a partial integration, this equals ( —k ) so
that D, [Eq. (15)] vanishes, and we conclude that there is
no superfiuid density in this noninteracting system. In
Fig. 1(a), this limiting behavior of A (q ~0, cu =0) is
shown and the solid triangle marks ( —k„)for U=O.

FICE l (a) & ( qy p &f77
=O) &s qy y and (b) A~~ (q:Op ~re )

for U =0 and mean-field results for U =4 (SOW) and
U= —4 (BCS) on a 64X64 lattice. Here (n ) =1 and P=20,
which correspond to a reduced temperature near zero for the
BCS and SDW mean-field solutions. In (a) and (b) the solid tri-
angles mark ( —k„)for U=O, while the solid squares mark
( —k„)for both the SDW and BCS states. The open symbols in
(b) denote the Matsubara frequencies 2~m T in units of the hop-
ping t.

Certainly this is what one would expect in such a nonin-
teracting fermion system. On the other hand, in the ab-
sence of impurities, the U=O system should have zero
resistance. Indeed, for finite cu, we see from Eq. (24)
that A „(q=0, co %0) vanishes, leading to a Drude
weight D/rre equal to ( —k„).Thus we conclude that
the noninteracting Hubbard model is a metal.

Next consider the 8CS mean-field solution of the
negative-U Hubbard model. In this case,

A (q, co )=—g sin p p (p,p+q)
p

E +Ep+q '~m
[1 f (F- ) f(E +,)]——

+l (p,p+q)
Ep p +q l &I

+
Ep Ep +q /ct)m

[f«p+q) —f (E, )l (26)
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with

c. c+ +6
p'(p p+q) =-,'

EpEp+q
(27)

~c. ++4
I ~(p,p +q) =

—,
' 1+

EpEp+q

the usual BCS coherence factors. Here E =Qe +b, ,
e = 2t(co—sp„+cosp ) —p, and b, is determined from
the BCS gap equation. When co =0, the q ~0 limit of
A (q, O) is

A„(q—+0,0)= ——g sin p„8 . , af
(28)

(29)

and A (q =0, co ~0) is equal to —(k ) when T goes
to zero, as shown in Fig. 1(b). Thus in the mean-field
ground state of the half-filled repulsive Hubbard model
both D, and D vanish, consistent with an insulating
ground state. Results showing A„(q,co~ =0) vs q„and
A„„(q„=O,co ) vs co for this mean-field spin-density
wave state at low temperature are shown in Figs. 1(a) and
1(b).

IV. TWISTED BOUNDARY CONDITION

In this section we discuss the relation between the
second derivative of the ground-state energy with respect
to the flux d E/dP, the Drude weight D, and the
superfluid weight D, . Kohn' was the first to derive an
identity between 8 E/BP and D, and it has since been
used in calculating the Drude weight for various one-
dimensional models. ' ' It has also been explored for

which vanishes as T/T, ~O, as shown in Fig. 1(a). The
approach to zero varies as (qgo), where g'o is the coher-
ence length fivF/rib, . The solid square in Fig. 1(a) marks
( —k ) for the BCS ground state. In the limit when q is
first set to zero, A,„(0,co ) also vanishes, as shown in
Fig. 1(b). Thus the superconducting mean-field ground
state is characterized by D, /ere =D/me = —(k„).'
The BCS mean-field solution, Eq. (26), incorrectly gives
A„„(q~0, q~=0, ice =0)=0, violating gauge invari-
ance. However, it is well known that vertex corrections
remove this difhculty, and by including them one obtains
A „(q~0, q~=0, ice =0)=( —k„),restoring gauge
in variance.

Another example is the half-filled repulsive-U Hubbard
model. In mean-field theory, the low-temperature state
has a sPin-density wave gaP hsDw. With this change, A
is given by Eq. (26) with the sign of b changed in the
numerators of the coherence factors [Eq. (27)], and b, re-
Placed by the sPin-density wave gaP ESDw. In this case
A (q~ —+0, co =0)= —(k, ), so the superfluid density
vanishes. Alternatively, when q =0 and co goes to zero,

2
4 . 2 ~SDw

A, (q =0, co ~0)=—+sin'p, , [I—2f(E~)],x E3

small two-dimensional clusters. ' However, we would like
to point out here that extreme care must be taken in
defining these quantities. The Drude weight is obtained
from the curvature of a single many-body energy level
which is the ground state at /=0. That is, one must fol-
low this level adiabatically. However, we will argue
below that the magnitude of the flux P, at which another
many-body energy level drops below or crosses the /=0
level varies as

hc 1

ld —i

where l is the linear sample size and d is the dimension.
Thus in the thermodynamic I —+ ~ limit, P, vanishes for
d ) 1. In this case, one must take the second derivative
of E(P) with respect to P first, being certain to calculate
the curvature of the adiabatically evolved ground state
with twisted boundary conditions, and then let l ~ ~ in
order to obtain the Drude weight. If, instead, one deter-
mines the ground-state energy E(P) for l~ oo and then
calculates its second derivative, one obtains the curvature
of the envelope of the E„(P)curves of individual many-
body states ~n ). We will show that this quantity is relat-
ed to the superfluid weight D, .

Let us consider a sample of size l Xl, with a periodic
boundary condition applied to the y direction and a twist-
ed boundary condition applied to the x direction, i.e., the
wave function satisfies %(x+l„)=e'~%(x).This is gauge
equivalent to the problem where the wave functions obey
periodic boundary conditions in both directions so that
the sample forms a torus and there is a Bohm-Aharonov
flux applied inside the torus. The vector potential associ-
ated with the flux is given by A„=P/l„.As the magni-
tude of the flux is varied, the energies of the many-body
eigenstates are changed, so that level crossings occur.
Figure 2 shows the variation of the lowest-lying many-
body energy eigenvalues E„(P)vs P for both a nonin-
teracting 4- and 8-site one-dimensional lattice and 4X4
and 8 X 8 two-dimensional lattices, all at one-quarter
filling. Here the flux P, measured in units of hc/e, passes
through the one-dimensional ring or two-dimensional
cylinder. We denote by tI), the critical flux at which the
first-level crossing occurs. For the one-dimensional case,
the size of P, appears to be essentially the same for the 4-
and 8-site lattices. However, for the two-dimensional
case, P, has clearly decreased in going from the 4 X 4 to
an 8 X 8 lattice. In Fig. 3, we have plotted ln(P, ) vs ln(l)
for a number of two-dimensional l X l lattices with l up to
3000. The solid line corresponds to P, -1

The order of magnitude of P, can be estimated as fol-
lows. The change in the energy of a many-body eigen-
state due to the presence of the flux is of the order of
b,E=l A„=l" P, where d is the dimension of the
space, while the typical level spacing 6E of the many-
body eigenstates varies as I// . This simple argument
shows that the first-level crossing occurs at P, = I /I'
(Ref. 19). Thus, jn one dimension, P, approaches a finite
value in the infinite volume limit, and there is no ambi-
guity in calculating its curvature at /=0. In this case
one can follow the ground-state energy level adiabatically
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FIG. 2. Comparison of crossings of low-lying many-body energy levels E„(p)vs (( for one- and two-dimensional noninteracting
spinless, quarter-filled systems: {a) one-dimensional 4-site lattice, {b) one-dimensional 8-site lattice, {c) two-dimensional 4 X 4 lattice,
(d) two-dimensional 8 X 8 lattice. Here the fiux (I) is measured in units of hc /e.

8 ~ ~

~ ~

10—
I

FICx. 3. Plot of In(P, ) vs ln(l) for a two-dimensional 1 X 1 lat-
tice which is one-quarter filled with spinless noninteracting elec-
trons. Here P, is the fiux at which the first many-body energy-
level crossing occurs. Various values of I up to 3000 were exam-
ined. The solid line corresponds to P, -1

as the flux is varied, obtaining the charge stiffness or
Drude weight. However, in higher dimension, P, van-
ishes in the infinite volume limit, and in this limit the
ground-state energy versus fiux curve E(P) is given by
the envelope of the E„(P)curves of individual many-body
states ~n ). Thus in d & 1, there is a difference between
calculating r) E/BP for a finite system and then taking
the limit i~Do and calculating the 1~ Do limit of E(P)
first and then determining the curvature. Kohn's formu-
la relating t) E/BP to the Drude weight D is based on
the assumption that one may follow individual many-
body energy levels adiabatically as one varies the Aux,
and calculate 8 E/BP perturbatively. However, for
d & 1 this would require that one calculate 8 E/BP for
finite-sized lattices and then take the infinite volume lim-
it. However, it is not clear that this procedure necessari-
ly converges.

In the other limit, one first takes the thermodynamic
limit of E (P) while keeping the vector potential finite and
then calculates 8 E/BI)) . In this case, the typical level

spacing 5E is far less than the change in energy hE
caused by the vector potential 2 . Therefore the contri-
butions from the levels are averaged and the envelope
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function E (P } is obtained. This can be accomplished by
considering our sample (with size 1 X 1 ) as a "unit cell"
embedded in a larger "crystal" of size L XL . The al-
lowed values of the momenta are p„=2~N /L and
p»=2vrN»/L», and the level spacing is of the order of
1 /L Ly The vector potential is applied uniformly over
the sample, i.e., it is given by 2 (x,y)=P, /1 if (x,y) is
inside the sample and zero elsewhere. In the regime
where L ))I, one sees that the energy shift hE caused by

is indeed larger than the level spacing, therefore, to
obtain the desired result one must take the L ~ 00 limit
before one takes the 1 —+ oo limit.

In the presence of the vector potential, the diamagnetic
contribution to the energy shift is given by

B2E (1)
=e (k )11Ba„' (30)

Here I„I is the area of the sample. The paramagnetic
contribution to the energy shift is

B2E(2)
, = g If(q. }l'If(q, }l' »m L.L

x' y

second limit gives the relevant information about wheth-
er a system has a finite superfluid density. Therefore, for
a bulk two- or three-dimensional system,

1 BE D
lim lim

I I ll Bg2 (38)

bf =
—,'n, P (39)

If D, is finite, we see that infinite volume limit in (36) and
(37) depend on the aspect ratio of the system, refiecting
the long-ranged current-current correlation of a
superfluid. ' ' The result (38) is also in agreement with
Byers and Yang, who argued that a superconductor can
be identified by the macroscopic barrier in free energy be-
tween different Aux minima. Thus for d ) 1, we conclude
that the curvature of the infinite volume limit of the
ground-state energy, given by Eq. (38), is a measure of the
superAuid density D, .

As discussed above, one can study the super Quid
weight by measuring the energy density, Eq. (38). At
finite temperature one has a term in the free-energy densi-
ty:

X f dr e™T(j„(q,r)j ( q, O)) . —
0

The form factor

(31)
This implies that if one were to carry out a Monte Carlo
calculation of the thermal internal energy density with a
phase twist P boundary condition,

I

f(q. }=
iq

(32)
be=bf —T (bf),B

so that near T,

(40)

reflects the fact that A (x,y) vanishes outside the sample,
and j„(q)is the Fourier transform of the current density:

T Bn

2 aT' (41)

j„(q)= f dx f dy e " " j„(x,y) .
x y

(33)

As discussed above, the thermodynamic limit corre-
sponds to taking the L,L ~ oo before taking the
I, l ~(x) limit. Thus we set

A „(q)= lim lim L L
io) ~0 L,Lm x' y

X f dr e (j„(q,r)j„(—q, O)) .
0

Then noting the fact that

lim —
If (q )I =2~5(q„),1

l

(34)

(35)

and similarly for f (q ), we conclude that there are two
limits of interest when l„,l~ ~ ~,

and

1 BE''
lim lim = lim lim A (q, q ) (36)

I I I BQ q Qq Qx X x y

B2E
(2)

lim lim = lim lim A„„(q„,q») .
I I Bg q Qqx

(37)

As we have seen from our earlier discussions, gauge in-
variance requires that the first limit approach —e (k„),
exactly canceling the diamagnetic contribution, while the

In the bulk limit in two dimensions, n, ( T) has a
Kosterlitz-Thouless ' jump at T, leading to a strong sig-
nal in b, e vs T IEq. (41}]that can be very useful in numer-
ical simulations.

V. A THEOREM RELATING D AND D,

We see from the discussions of the previous sections
that D and D, measure different physical responses, and
they are obtained by taking different limits of the
current-current correlation function. These two quanti-
ties are not equal in general, as seen from the trivial ex-
ample of the free-electron gas discussed in Sec. III. How-
ever, in the examples of the SDW state and the BCS
state, they are identical, vanishing in the former case, and
equal to minus the kinetic energy in the x direction in the
latter case. It therefore seems to be an empirical fact that
they are equal whenever there is a gap in the spectrum.
In the following, we shall prove that this empirical obser-
vation can be made into a rigorous theorem.

The gauge-invariant current-current correlation func-
tion can be written in the following general form:

A,, (q, z)=f (q', z)5,, —g(q', z) (42)
q

where the scalar functions f (q, z) and g (q, z) a«ob-
tained by analytically continuing the Matsubara frequen-
cies ice into the complex z plane. In general, these func-
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tions are analytic everywhere except for a possible branch
cut or isolated poles on the real axis. Gauge invariance
requires that

lim g(q, z)= lim f(q,z),
z~O z~O

(43)

lim Imf (q, ro —ill) =0
g~O

(44)

for ~ro~ (b, . From the Kramers-Kronig relation, we
have

2

(45)

From Eq. (44) it follows that this integral does not con-
tain any singularities if

~
ro

~

(b . Combined with the fact
that lim ob. :—b,o&0, we conclude that the q~O and
the ro~O limits off (q, ro) are interchangeable,

lim lim f (q, ro)= lim lim f (q, ro)
q~0 co~0 co~0 q~0

so that A,. is purely transverse in the static limit. We
define the existence of a gap in terms of the analytic prop-
erties of f (q, z), so that for each q, there is a "gap" b, ~,
such that the branch cut singularity of f vanishes for

co~ (A~ (see Fig. 4), and this gap persists in the q —+0
limit, i.e. , lim ob, =b,o&0. This property holds for an
SDW insulator or an s-wave BCS superconductor, where
Ao is twice the quasiparticle gap 26o. In a superconduc-
tor without long-range interactions, there is a gapless
Goldstone mode in the longitudinal channel g(q, z);
however, this does not affect the analytical properties of
f (q, z). From the fact that

Imf (q, ro —i i)) =(1/2i)[f (q, ro+iri)

f (q, ro —i—2) )],
it follows that

VI. MONTE CARLO RESULTS

As discussed in the Introduction, our original interest
in these questions arose from the desire to develop a cal-
culational Monte Carlo procedure for determining
whether a given interacting electron system was insulat-
ing, metallic, or superconducting. We have previously
reported some of the results which were obtained from
simulations carried out on both positive- and negative-U
Hubbard models. Here we discuss further numerical re-
sults for A„„(q,iso ) and ( —k ) obtained for these sys-
tems.

The quantum Monte Carlo method we are using is a
version of the grand-canonical exact-updating deter-
minantal method developed by Blankenbecler, Scalapino,
and Sugar. It incorporates matrix factorization
methods, ' which are a generalization of the stabiliza-
tion method developed by Sugiyarna and Koonin and
used by Sorella et al. The time-slice spacing h~ has
been set to 0.125 throughout, which gives systematic er-
rors of a few percent. Typically, 5000 sweeps through the
lattice were used. The Monte Carlo has been checked in
a variety of ways, including detailed comparisons of vari-
ous quantities with results from exact diagonalization of
a 2X2 lattice. For U) 0 at half-filling (n ) =1, there is
no determinantal sign problem, and it is straightfor-
ward to go to low temperatures. Here on a 10X 10 lattice
we will show results for @=10. However, for U)0,
away from half-filling, the temperatures that could be
reached were limited by the sign problem, to P of order 6
for an 8X8 lattice. Here, and in the following, we will
measure energy in units of t. For a two-dimensional lat-
tice, the bandwidth is 8t, so that P= 10 implies that kT is
1/80 of the bandwidth, while P=6 implies that kT is
1/48 of the bandwidth.

Although the evolution through configuration space is
stabilized with matrix factorization techniques, the mea-
surement of the Green's function used to determine the
current-current correlation function was based on the ex-
panded matrix method of Hirsch, which is a generaliza-
tion of the method of White, Sugar and Scalettar. Al-

2 ~ Im O, c.
(46) 1.5

so that D =D, if there is a gap in the spectrum.
U=4, (n)=1.0, P=10

z plane

Of f{q , z)

&10
3

0.0
2

qy Ny /2vr

& Gx6

o 8x8
iOxiO

FICx. 4. Analytic structure of I'(q, z). For each q there is a
gap A~, and the branch cut singularity stops at +A~ as shown.

FIG. 5. Monte Carlo results for A „(q~ 0& q» co =0) vs q~
for U=4, (n ) =1, and @=10 on various sized lattices. The
solid symbols denote ( —k ).
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Flax. 6. A,„lq„q~=O,co =0) vs q„for U=4, (n) =1, and
P= 10 on an 8 X 8 lattice. The solid symbol is ( —k„). 1.0

(b) 8x8, U=-4, (n)=0.88
though slower than the matrix factorization methods for
the Monte Carlo evolution, this method gives results for
all ~ and ~' in one calculation, rather than giving results
for all z for fixed ~', as the factorization method does.
The redundant information (since the exact result for the
Green's function depends only on r —r') is used to help
reduce the statistical errors, and we have found that this
makes the expanded matrix method more efficient for cal-
culating time-dependent observables.

In Fig. 5, Monte Carlo results for
A,„(q,=O, q~, cu =0) vs q are shown for the half-filled

( n ) = 1 Hubbard model with U =4 at an inverse temper-
ature P= 10. At this low temperature, relative to
J=4t'/U = 1, the antiferromagnetic correlation length is
greater than the linear dimension of the largest lattice
shown. As the lattice size increases from 6X6 to 10X 10,
we see that A„(q„=O,q~~0, co =0) tends towards
( —k„),shown as the solid symbol. Thus, as expected,
there is no superAuid density in the half-filled Hubbard
model with U =4. Gauge invariance, which requires that
A(q —+0, q~=O, ru =0)=( —k, ), is clearly seen in

1.0
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II

8
0.6

~ 0.4
U

0.2

0.0

~i

2

qxNx/2x

o p=2
o P=8

=10

Fig. 6.
Next we examine in Fig. 7 the q=0, co ~0 limit for

the same set of lattices as shown in Fig. 5. In this case
there is also a clear indication that as the size of the lat-
tice increases, A „(q=O,co ~0) converges towards

0.05

FIG. 8. Monte Carlo results for the attractive Hubbard mod-
el, (a) A „(qx=0, q~, co~ =0) vs q~, and (b)

A„„(q„,q~=0, co =0) vs q„ for U= —4, (n ) =0.875, and
P=2, 6, and 10. The solid symbols denote ( —k„).

0.8 U=-4, (n)=0.75, P=10

3 0.6EI

CO

II
U
~ Q.4

0.00

0.2

0.0

o 8X8
o 10x10

2 3
/2vr T

—0.05

~ a=x
o a=y

FIG. 7. A „(q=0, co ) vs co for U=4, (n ) =1, and P=10
on 6X6{E),8X8(CI), and 10X10(O) lattices. The solid sym-

bols denote the values of ( —k ).

FIG. 9. The static current-current correlation function

y~ (1„,0) vs I (solid points) and y~„(0,1~ ) vs I~ (open points) for
U = —4 with ( n ) =0.75 and P= 10.



47 INSULATOR, METAL, OR SUPERCONDUCTOR: THE CRITERIA 8003

0.75

k

8 0.50
3

8x8, U=-4, P=10
0.4

0.3

CO

II

0.25

0.00

o (n)=1.0
o (n)=O. V5

2

qyNv j2vr

(n) =0.58
~ (n)=0.28

ZC

0.1

0.0
0.0 0.2 0.4

(n)
0.6 0.8 1.0

FIG. 10. A«(q~=o, q» ~~=0) vs q~ for an 8X8 lattice
with U= —4, p=10, and different fillings. As usual, the solid
symbols denote ( —k„).

ln, &m)=& —k„)—&„„(q,=rr/4, ~.=0) vs the
filling (n ) for U= —4 and p=10 obtained from an 8X8 lattice.

( —k„),implying a vamshing Drude weight. Thus we
find that the half-filled Hubbard model with U=4 has
D=D, =O and is insulating. On the smaller lattices, it
appears that A„„(q=O,co ~0) converges to a value
greater than ( —k„),implying a negative "paramagnet-

ic" Drude weight on these finite clusters. Previous work
on one-dimensional Hubbard rings' ' showed that for
half-filled rings with 4n sites, D was negative, while for
rings with 4n+2 sites, D was positive. In both these
cases, the magnitude of D vanished exponentially with
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FICs. 12. A„„(q=0,co ) vs co for U= —4, P=10on an 8X81attice for the same band fillings (n ) as Fig. 10.
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the number of sites in the ring.
Turning next to the negative-U Hubbard model, we

have calculated A on an 8X8 lattice with U= —4 at
different temperatures and fillings. Results showing

A„„(q»,co =0) vs q» for various temperatures at a filling
of (n ) =0.875 are plotted in Fig. 8(a). As before, half
the kinetic energy per site ( —k„)is shown as the solid
symbols. At high temperatures, P=2, A„(q»~0,

=0) extrapolates towards ( —k„)and the superfluid

density vanishes. As the system is cooled, P=6 and

P=10, the A,„(q,co =0) response decreases below

( —k ), implying a nonvanishing value of D, and hence

a finite superAuid density. The longitudinal response

A„(q„~O,q»=O, co =0) for the same parameters is

shown versus q„in Fig. 8(b). It approaches ( —k, ) as re-

quired by gauge invariance.
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as (c) on 6)& 6 and 10)& ip lattices respectively. In this parameter range at p=6 we conclude D, vamshes.
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As noted in Sec. II, the fact that A„„(q„,q», co =0) ap-
proaches different limiting values depending upon the or-
der in which q„and q are taken to zero implies the ex-
istence of long-range, power-law, current-current correla-
tions. This is characteristic of the super-conducting state
and arises from the macroscopic occupation of the
center-of-mass wave functions of the pairs. In the super-
conducting state, the spatial dependence of the static
current-density correlation fUnction

0.75

0.50
8
3

C0
II
U"

~ 0.25

8x8, U=4, P=6

o (n)=0.87
o (n)=0.72
~ (n)=O64

n, 'TT=( —k ) —A„„q=—,co =0 (48)

The value of (n, /m) obtained in this manner first in-
creases as (n ) is doped away from half-filling and then
decreases. On general grounds, one expects that for
(n )%1, the two-dimensional negative-U Hubbard model
will exhibit a finite temperature Kosterlitz-Thouless '

transition to a state with a nonvanishing superAuid densi-
ty. At half-filling, (n ) =1, this transition temperature
goes to zero, and the ground state has both long-range
charge-density-wave and pair-field correlations. '

1.5

(I„,l )=—g e
q

X J d r(j „(q,rj)„(—q, 0) ) (47)
0

is expected to vary as (l —I )/(2rr)(l +1 )
~ . In Fig. 9,

results for y, (l„,I ) vs l„and 1 are shown for U= —4,
( n ) =0.75, and P= 10. Here y„„(l„,O) vs /„is plotted as
the solid points and y „(O,l ) vs I as the open points.
Note that out along the I axis, the j„-jcorrelation is
positive, while out along the I axis the j„-j„correlation
is negative, as would be expected for a dipolar backflow
pattern. This dipole backflow is characteristic of the su-
perconducting state.

Results showing A (q, co =0) vs q at various
fillings calculated for an 8X8 lattice with U= —4 and
P= 10 are shown in Fig. 10. In Fig. 11 we have used the
value of A„,(q», co =0) at the smallest q» =~/4 momen-
tum available on an 8 X 8 lattice to provide as estimate of
(n, /m) vs the filling (n ):

0.00

/2rr T

FIG. 15. A (q=0, co ) vs co for an 8X8 lattice with
U=4, P=6, and the same band fillings as Fig. 13.

These expectations are consistent with the behavior
shown in Figs. 10 and 11. The dependence of
A„,(q=O, co ) on co for U= —4 and P=10 is shown in

Fig. 12. This clearly shows that D/me is finite, so the
system has zero resistance.

Finally, we consider the repulsive-U Hubbard model
when it is doped away from half-filling. In this case, as is
well known, the fermion determinant is not positive
definite, and its average sign vanishes exponentially with
increasing P. This limits the maximum value of P that
can be reached. Here we will examine results for
A, (q, iso ) obtained from simulations of an 8X8 lattice
with U=4 and P=6. Figure 13 shows A „(q»,co =0) vs

q for various band fillings (n ). The determinantal sign
problem is particularly severe for (n ) =0.87, as seen by
the error bars in Fig. 13(a). We also show in Fig. 14 re-
sults for A„(q»,co~=0) vs q», with (n)=0 5at P=.10.
With the exception of Fig. 13(c) for (n ) =0.64, we con-
clude that in this parameter range D, appears to vanish
for the non-half-filled two-dimensional Hubbard model.
A possible explanation of the ( n ) =0.64 results shown in
Fig. 13(c) is that it is a finite-size e6'ect. In Figs. 13(d) and
13(e) we show A„„(q»,co =0) for 6X6 and 10X10 lat-
tices at this filling and indeed find that this is the case.
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FICx. 14. A«(q~ =0, q~, co~ =0) vs q~ on an 8X8 lattice
with U=4, P= 10, and (n ) =0.5.

FIG. 16. A (q=0, co ) vs co for an 8X8 lattice with
U=4, P=10, and (n) =0.5. The solid symbol shows ( —k„).
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In Fig. 15, the variation of A (q=0, co~) with co is
plotted for the same set of fillings and temperature P=6
as used in Fig. 13. Results for {n ) =0.5 and P=10 are
shown in Fig. 16. It would appear from these results that
the positive-U Hubbard model doped away from half-
fi11ing has a finite Drude weight. Thus data from the tem-
perature regime accessible to the simulation suggest that
the non-half-filled two-dimensional Hubbard model is a
metal but not a superconductor.

VII. CONCLUSION

In this paper we have shown that the limiting behavior
of the current-current correlation function provides cri-
teria for determining whether a system is insulating, me-
tallic, or superconducting. Based upon these criteria, we
have presented numerical evidence that the ground state
of the half-filled repulsive-U Hubbard model is an insula-
tor, the negative-U Hubbard model is a superconductor,
and within the parameter regime accessible to our simu-
lations, the non-half-filled Hubbard model appears to be
metallic but not superconducting.

Here we conclude with some general comments. We
believe that the limiting q~0 and m~0 behaviors of the
current-current correlation function [Eqs. (15) and (22)]
provide useful conceptual and numerical criteria for
determining whether a system is insulating, metallic, or
superconducting. However, in one dimension, there is
just the Drude weight [Eq. (22)] since one cannot put on a
transverse vector potential. As noted, for a one-
dimensional system, ((), is some fraction of bc le and does
not decrease as the length I of the system increases.
Thus, for various one-dimensional systems, t) Eo/BP ~&=0
also provides a useful way of calculating the Drude
weight or charge stiffness. In particular, D is finite for
the one-dimensional, half-filled positive-U Hubbard mod-
el. However, the dominant power-law decay of correla-
tions occurs in the 2pz spin-density wave channe1, and
this system is clearly metallic rather than a paired super-
conducting state. In this case, one can examine the func-
tional behavior of Eo(P). As discussed by Yang and

Byers, when there is pairing, Eo(P) will be periodic with

a period hc/2e. In practice it is important to examine
the scaling properties of Eo($). For a nonsuperconduct-

ing ground state, one expects Eo(P=~) E—c(/=0)
=N, /I with N, the number of electrons, whereas for a
superconducting ground state Eo ( P = rr) Ec—( P = 0)
=1/$ . Alternatively, one can examine the behavior of
the Drude weight when impurities are introduced.

Finally, a comment regarding the nonzero value of D
which we found for the 8 X 8 non-half-filled positive-U
Hubbard model at the end of the last section is in order.
This nonzero value for D was obtained for a finite 8 X 8
lattice at a temperature below the threshold for
quasiparticle-hole excitation on such a discrete system. If
the temperature is held fixed at @=6 and the lattice size
increased, A „(q=0,co ~0) will approach ( —k„)and
D will vanish when the low-lying quasiparticle-hole exci-
tations have energies less than kT. Thus as the lattice
size increases, we expect that the temperature threshold
below which D is finite scales to zero so that for a normal
metal with an infinite lattice, D vanishes un1ess T=0.
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