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Quasiparticle interferometer controlled by quantum-correlated Andreev reflection
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We propose a quasiparticle interferometer and give a theoretical analysis for it. It consists of a
Josephson junction (JJ) and a Y junction composed of normal-electron waveguides. The interferometer
should enable us to confirm experimentally the phase interaction between a quasiparticle and a super-
conducting state at the superconductor —normal-metal (SN) interface. This interaction is caused by An-
dreev reflection. The supercurrent through the JJ modifies, by Andreev reflection, the interference of a
quasiparticle in the waveguide and affects the normal resistance of the waveguide. The dependence of
the resistance on the phase difference of JJ is determined by the characteristics of the Y junction and the
normal reflection at the SN interface.

I. INTRODUCTION

Recent research on various mesoscopic systems has
provided us with many new viewpoints on the phase-
coherence phenomena of electrons. ' This coherence is at-
tributed to the microscopic quantum states of a single
quasiparticle, i.e., an electron or a hole. On the other
hand, research on phase-coherence phenomena in super-
conducting states has a long history and has already been
applied to devices such as SQUID. This coherence is, of
course, a well-known property of the macroscopic quan-
tum state.

One of the most interesting topics beyond mesoscopic
physics is the problem of the relationship between the mi-
croscopic "phase" of a normal electron and the macro-
scopic "phase" of a superconducting state. We should be
able to clarify this problem by considering a normal-
metal —superconductor coupled system. Is the coupled
system a "microscopic" quantum system, a "macroscop-
ic" quantum system, both, or neither?

In this article, we investigate the microscopic
quantum-mechanical aspect of the coupled system. The
most important phenomenon which combines the macro-
scopic phase and the microscopic phase, is Andreev
reAection which occurs at the superconductor —normal-
metal (SN) interface. It is expected that an Andreev-
reflected quasiparticle in the normal region would be
phase-shifted by the macroscopic phase of the supercon-
ductor. Recently, we have proposed a quasiparticle in-
terferometer which enables us to con6rm experimentally
the phase interaction. In this paper we give a more de-
tailed analysis of the interferometer and discuss its vari-
ous characteristics.

The plan of the paper is as follows. In Sec. II, we re-
view the theory of Andreev reAection, focusing on the
phase interaction between a quasiparticle in a normal
metal and a superconducting state. In Sec. III, we sum-
marize our proposal for a quasiparticle interferometer
controlled by Andreev reQection, and briefiy discuss the
qualitative behavior of the interferometer. In Sec. IV, we
give a quantitative analysis of the interferometer for sim-
ple cases, which includes some important effects, for ex-

ample, the normal reQection at the SN interface. Finally,
in Sec. V we discuss on the results of Sec. IV.

II. PHASE INTERACTION
DUE TO ANDREKV REFLECTION

Consider the situation shown in Fig. l. A normal met-
al is in contact with a superconductor at x =0. Neglect-
ing the penetration of the superconducting pair potential
into the normal region, we assume the steplike pair po-
tential

0 for x &0 normal metal,
A(r) =

b,oe' for x &0 superconductor,
(2. l)

l
exp[i(q+x +qz. r~) ], (2.2a)
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FICx. 1. Simple configuration for Andreev reflection. The
Andreev-reflected hole is phase-shifted by the macroscopic
phase of the superconductor.

where 8 is the macroscopic phase of the superconductor.
The wave functions in this system can be obtained in
terms of the two-component representation by solving
the Bogoliubov —de Gennes equation. For simplicity, we
treat the case where there is no intrinsic normal reAection
at the SN interface. The effect of intrinsic normal
reAection will be discussed in Sec. IV. In that case, when
an electron is incident from the left, it is Andreev-
reflected, changes into a hole, and then returns to the left.
This process is expressed by the wave function in the
normal-metal region as f=f;„,+g„&, where
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I()
P„f=a l exp[i (q x+q~. r~)] . (2.2b)

These are the incident electron and the Andreev-reflected
hole, respectively. Here, q* is the wave number for the
direction perpendicular to the interface given by

q
+—=(2m /fi )'/ (EF Et—+E)'/ (2.3)

where m and Ez are the electron effective mass and the
Fermi energy in the normal metal, and qj is the trans-
verse wave number, which gives Et =(fi /2m )q~, and E
is the excitation energy measured from the Fermi energy.
It should be noted that when the incident energy is zero,
the wave number of the Andreev-reflected hole is time re-
versed to that of the incident electron, and the hole traces
back over the same path as the incident electron. We call
this property "retroactive. "

When the energy is within the superconducting gap en-
ergy 50, the electron is perfectly Andreev-refiected, and
thus changes into a hole. A simple calculation gives the
Andreev reflection coef6cient a:

a=e '++"
7

where

p =arctanQ ( ho/E ) —l .

(2.4)

(2.5)

Because the probability amplitude of the Andreev-
reflected hole is d' a =1, a single hole returns when a sin-
gle electron is incident. Therefore, under the Andreev
reflection, the net charge 2e is transferred for the in-
cidence of the charge e. This phenomenon is called the
"excess current" and causes the full half reduction in the
normal resistance of the system which contains the SN
interface.

The excess current is one important aspect of Andreev
reflection, and it has already been mentioned often and is
widely observed. The other important aspect is the phase
shift by Andreev reQection. As seen in Eq. (2.4), an
Andreev-reflected hole is phase-shifted by the macroscop-
ic phase of the superconductor 8. When a hole is in-
cident, it is phase shifted in the same way by Andreev
reflection and changes into an electron. This aspect of
Andreev reflection has rarely been referred to and has
never been confirmed experimentally.

We close this section by emphasizing that the phase
shift y+8 by Andreev reflection does not depend upon
q~, that is, it is independent of the incidence angle for the
interface. In the following section, we propose a quasipar-
ticle interferometer which should enable us to examine
experimentally this phase interaction.

Josepheon Junction

C 82
~// /

tention to the modification of the weak localization and
conductance fluctuation by Andreev reflection. These
phenomena occur by means of the quantum interference,
in the same way the behavior of our interferometer de-
scribed below. Their interference is, however, governed
by random scatterers and is uncontrollable. Therefore,
the proposed observations are indirect. Biittiker and
Klapwijk' proposed to observe the transition of the flux
quantum from the superconducting state to the normal
one. This transition occurs through the phase interaction
by Andreev reflection. In this experiment one must apply
a magnetic field to a very small ring, and it should affect
the superconductivity itself. So, it might be dificult to
ascertain that the result of the experiment is due to the
phase interaction.

An interferometer structure must be formed in order to
confirm directly the phase interaction. Figure 2 shows
our proposed interferometer. It consists of a Josephson
junction (JJ) and a Y-type junction composed of normal-
electron waveguides. The first branch of the Y junction
is the entrance for the incident electron or hole. The
second branch is in contact with an electrode of the JJ,
and the third branch is in contact with the other elec-
trode; these contacts constitute the SN interfaces where
Andreev reflections occur. The length I. of these two
branches must be shorter than the phase coherence
length I

&
of the waveguide, so that an electron or hole

conserves its phase memory during the round trip be-
tween the Y-junction point and the SN interface.

Let us focus on the resistance between the first branch
of the Y junction (Q) and an electrode of the JJ (P). The
ordinary resistance Rz across Q Pis determined -by the
reflective characteristics of the Y junction or a constric-
tion on branch Q. It is usually of the order of it /e .

An electron wave incident from Q is divided between
the second and third branches. Each partial electron
wave propagates along a waveguide branch, reaches the
SN interface, and is then Andreev-reflected. The An-
dreev reflection phase shifts the partial hole wave by the
macroscopic phase of the electrode, 8& or 02. Andreev-
reflected partial hole waves return along the original par-
tial electron's paths and meet again at the Y-junction
point. The phase advances during the round trip cancel

III. THE QUASIPARTICLE INTERFEROMETER
CONTROLLED BY ANDREEV REFLECTION

Normal-
Electron
Wavegulde 2L &L0

The above phase shift by Andreev reflection cannot be
observed in a single SN geometry because only the
reflection probability that has lost the phase information
can be observed. Some ideas for the observation of this
phase shift have been proposed. ' Al'tshuler, Khmel-
nitskii, and Spivak, and Al'tshuler and Spivak paid at-

FIG. 2. The proposed quasiparticle interferometer. We focus
on the resistance across Q P, which varies as a fu-nction of the
supercurrent fiowing in the Josephson junction.



7988 HAYATO NAKANO AND HIDEAKI TAKAYANAGI

out because of the retroactive property of Andreev-
reflected holes. Thus, the phase difference when two par-
tial hole waves meet is exactly determined by the phase
shifts they undergo when they are Andreev-reAected, that
is, 0, —02. By interference, a proportion
—,'[1+cos(8,—82)] of the holes is received by the first
branch, and this amount contributes as the excess
current, resulting in a decrease in the resistance across
Q P. Th-erefore, the phase difference of the JJ changes
the resistance across Q P, an-d the conductance G&p is es-
timated by

1
G&p= [1+cos(8,—Oz)] .

R~
(3.1)

Thus, the setup works as an interferometer. This is, how-
ever, just a qualitative estimate and the quantative
analysis is given in the next section.

The phase difference 01—
6I2 between two electrodes of

a JJ varies with the supercurrent I, Aowing through the
JJ. The relationship is given by

)(
bp..:Sp

ao 80 .

I('
,:y

C+

I, =Ipsin(8, —82), (3.2)

where Io is the critical current of the JJ." Therefore, the
phase difference can be controlled from —n. /2 to vr!2 by
changing the bias supercurrent from Io to Io ~ Conse-
quently, the differential resistance across Q Pvaries fr-om
—,'Rz to Rz by Eq. (3.1) as a function of the bias super-
current of the JJ. Observation of this phenomenon exper-
imentally would confirm the phase interaction between a
quasiparticle and a superconducting state.

FIG. 3. (a) The model of analysis. 12 waves in the normal-
electron waveguide branches are coupled by the scattering ma-
trix S. (b) Andreev reflection and the normal reflection are ob-
tained from the boundary condition at the SN interface.

IV. QUANTITATIVE ANALYSIS
OF THE INTERFEROMETER

A. Models of analysis where

0
exp[iq x ](x Ebranch j=0, 1,2)a. (4.1d)

In the previous section we gave a basic explanation of
our interferometer. Now, we give a more detailed
analysis. For simplicity, we limit our analysis to cases
where the normal-electron waveguide is operated in a sin-
gle mode. The wave function in each branch j of the
waveguide is then expressed as the superposition of four
linearly independent solutions of the Bogoliubov —de
Gennes equation: incoming electron and hole waves, and
outgoing electron and hole waves. This situation is illus-
trated in Fig. 3:

q
+ = (2m /g ) ~2(E +E )

~ ~2 (4.2)

bp =Sppap+ g Sp b
a=1,2

(4.3a)

The subscripts e and h refer to the electron wave and the
hole wave, respectively. In Fig. 3(a), electron waves are
expressed by solid lines, and hole waves by dashed lines.

These 12 waves are coupled through the 3 X 3 scatter-
ing matrix S at the Y-junction point. '

(4.1)

(4.1a)

(x &branch j=0, 1,2) (4.1b)

X 0!d
s=e, h

d=f, b

a
exp[iq x ](x &branch j=0, 1,2)

lb,
exp[ iq+x ]—

S p= p r (a,P=0, 1,2)T
T v p

a =Sjpap+ g S b (j=1,2),
a=1,2

bp=Sppap+ Q Sp b
a=1,2

aJ=S pap g S b (j=1,2)
a=1,2

(4.3b)

(4.3c)

(4.3d)

(4.4)

Yh,f
0
b- exp[ —iq x ]

(x &branch j=0, 1,2) (4.1c)

where T is the transmission coefficient across branches 0
and 1, or 0 and 2, and ~ is that across 1 and 2, and p is
the reflection coefficient of branches 1 and 2. On the oth-
er hand, in the superconducting electrodes, the wave
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functions with the incident energy within the supercon-
ducting gap are evanescent Bogoliubov quasiparticles and
are given by

(4.5)
s =e, h

where

where Q=lkl/lql.
At the other type of interface, normal reAection occurs

because of the existence of the Schottky barrier at the in-
terface. In this case we think that parameters such as
wave numbers and effective mass are the same in the nor-
mal and superconducting regions.

Suppose there is a 5-function-like barrier with height
H, Fr.om the boundary condition, Eq. (4.9a) and

y', =c;+ X exp[(ik —kd )(x L,—)]

(x Esuperconducting electrode i = 1,2),
F;

yI, =d, I exp[( ik ——kd )(x L, )]—.

8 2m

(4.5a)
we get

iq L, —iq I,
X,(1 iZ—; )e 'a; iZ;—X; e 'b;

(4.11)

(x Esuperconducting electrode i = 1,2), (4.5b)

and L; is the length of the branch i ( = 1,2),

iq L, —iq L,. ——(1 iZ;—)e 'a;+iZ; e 'b, =0, .

iZ, e 'a, +(1+iZ, )e 'b,

(4.12a)

k —(2m /Q2)1/2E1/2
Fs
'

g2 E2
(2m /$2)1/2

4EF,

(4.6)

(4.7)

X;= ( E i )/ b o
—E)/b; —= e

Y~
= b, ; /( E +i 11/ Ao E)=e— (4.8a)

(4.8b)

and

(4.9b)

i8,.
q1 is the same as in Eq. (2.5), and b, ; =b,oe

' are the Pair
potentials of the electrodes i. Here, m, and EF, are the
effective mass and the Fermi energy in the superconduc-
tor. y,' is the electronlike Bogoliubov quasiparticle and

y& is the holelike Bogoliubov quasiparticle.
The boundary conditions, which couple the quasiparti-

cle and Bogoliubov quasiparticle, must be satisfied at the
SN interfaces between a waveguide branch and a super-
conducting electrode. Here we consider two types of SN
interfaces by taking into account the normal reAection at
the interface as well as the Andreev reAection.

First consider an interface where normal reAection
occurs because of the wave-number discrepancy between
the normal region and the superconducting region, that
is, qWk. For this interface, the boundary condition is

(4.9a)

iq L,. —iq L,. —iZ; Y, e— '5,. —Y;(1+iZ; )e 'b; =0, (4.12b)

where Z; =H; m /k111 .
Solving Eqs. (4.3) and (4.10), or Eqs. (4.3) and (4.12)

simultaneously for Q. , b. , Qj bj under the condition Qp=1,
bp=0, we obtain the Andreev-reAection coe%cient 0'p

and the normal reAection coefBcient bp. The conduc-
tance across Q Pis then g-iven by

2Ze
Ggp= (I+iXoao hobo) (4.13a)

4e
QpQp (4.13b)

QpQp+bpbp= 1 (4.14)

B. Zero-bias voltage ( V&p =0) cases

It is very easy to obtain numerically the Andreev-
reAection coeScient. However, we find the roots analyti-
cally in order to discuss the behavior of the interferome-
ter. The analytical calculation is straightforward but
troublesome. We show the results only for some simple
but important cases.

For symmetric configurations with L, =L2 =I,
H1=H2=H, considering a zero-bias ( Vga =0, that is,
E =0) case. The conductance G is given by

using the Landauer formula. ' Here, we used the proba-
bility conservation law

In the approximation Ap((E~„ this compels the waves
in branch i to obey the relations as follows:

X;(Q+1)e 'a, +X,(Q —1)e 'b;

I
~g ( Q)12[ I +cos( 01—f)2) ]

G(8, —82, Q) =
IDg1(Q)+Dg2(Q)cos(81 —82) I

(4.15)

—(Q+1)e 'Z; —(Q —1)e 'b; =0,

+L —i +L.
(Q —1)e 'a, +(Q+ 1)e 'b;

(4.10a) for normal reAection by the wave-number discrepancy,
and

I &,(Z) I2[1+cos(e, —82) ]
G(8, —82, Z ) =

h IDz1(Z)+Dz2cos(8, —82) I

—Y;(Q —1)e 'O'; —Y;(Q+1)e 'b; =0,
(4 10b) for normal reflection by the Schottky barrier. Here

(4.16)
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and

A&(Q)=4QT [(Q —1)e 'i +(Q —1)(p—r) e+ 'i +2(Q +1)(p—r)],
D~, (g) = —(g' —1)'&1—

2~ T~"-""—(g' —1)'(p —r)'(p+ r) I
2—T'+ &1 2—

~
T~'(p+ r) ]

e+""

+2(Q —1)(T 2p—+I—2~T~ )e

+2(Q —1)(p—r)(3T p —2p +I—2~T~'+T r 2p—a+I —2~T(2)e+'i

+2 f p( T' —p&1 —2I TI')(3Q'+ 2Q'+ 3)—( T' —&I —2I TI' }(Q'+I )'],
Dg2(Q) = —8Q r( T v+1——2~ T~ ),
Az(Z)=2T [ —iZ(1+iZ)e ' +iZ(1 —iZ)(p r—) e+ '~ +(1+2Z )(p —r)],
Dzi(Z)=2Z (1+iZ) +I—2~T~ e i' +2Z (1 iZ—) (p —r) (p+r)I 2T +—+1—2~T~ (p+r)]e+ 'q~

2i—Z(1+iZ)(1+2Z )(T 2p+—1 —2~T~ )e

+2iZ(1 iZ—)(1+2Z )(p r)(3T—p 2p +—I —2~T~ +T r 2p~+—I —2~T~ )e+ '~

+2p(T —p+1 —2(T) )(6Z +6Z +1)—r(T &+I 2ITI')(4Z +4Z +1},

D» —r(T'———rV'I —2i Ti') .

When ~Dzi(Z)~)) ~Dz2~ or D&, (Q)~))~D&2(Q)~ is satisfied, the dependence of the conductance G on the phase
diff'erence is similar to 1+cos(Oi —82), as was claimed in the previous section. This occurs for a resistive Y junction. In
fact, for ~T~ &&1, ~r~ &&1, Eqs. (4.15) and (4.16) reduce to

and

4[Ti Q [1+cos(8,—Oz)]
G(8, —O~, Q)=

h [Q +1+(Q —l)cos2qL+O(r )cos(8, —Oz)]

28 ~
T

~
[1+cos(8, —82) ]

G(8, —O~, Z)=
[(1+2Z )+2Z sin2qL+2Z cos2qL+O(r )cos(8, —82)]

(4.17)

(4.18)

These 1+cos(Oi —82) dependency breakdown only for
the cases when

where

or

(1+2Z )+2Z sin2qL+2Z cos2qL =0 (4.19)
Az(E) =4T (r p)sin(5qL —y—),
Dz, (E)= —2p( T p+ I —

2~ T~ )—

Q + 1+(Q —1)cos2qL =0 . (4.20)

These exactly correspond to the condition that a bound
state is formed in a branch of the Y junction.

+e' 'sq & (r p)V'I —2~—T~

+ -"'~'-~ [(P— )~1—
2~ T~2

C. Finite voltage ( V&z+0) case

So far we have considered only the cases when V&+ =0,
that is, the incident energy of a quasiparticle is
infinitesimal. We are also curious about how the behav-
ior of the interferometer changes with the incident ener-
gy. When the incident energy E=eV&z is finite, the re-
sult of the analytical calculation is very complex. Here,
we show the result for the normal reQection-free case
only. The conductance is given by

~ Az(E}~ [1+cos(8,—82}]
G(8, O~, E)=-

IDz i(E)+Dz2cos(8, —
Oq }I

(4.21)

+2T (p —r)],
Dz, =2~(T2 rV'I —

i
Ti2}—

and 5q =q+ —
q

In this case, the analogous condition to Eqs. (4.19) and
(4.20) for the formation of a bound state is

1+cos2(5qL —g) =0 . (4.22)

The existence of the phase factor e —'~'~qL +' jn
denominator of Eq. (4.21) makes the dependence on the
phase difference more subtle than in the zero-bias case.
%'e provide an example of this curious behavior in the
next section.
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V. RESULTS AND DISCUSSION

A. Effect of the normal re8ection at the SN interface

We now show the results of the calculations in the pre-
vious section. In all the calculations we used the parame-
ters

—exp[i2m. l3], p=+I —2~Ti =I/V'3,
3

(5.1)

0.
0.

and qL =9.5.
The conductances across Q Pfor-various normal

reliection intensities calculated from Eq. (4.15) are shown
in Fig. 4. In this case, normal reQection occurs because
of the discrepancy between the wave numbers across the
SN interface. As expected, the absolute value of the con-
ductance decreases when the normal reAection at the SN
interface becomes stronger, that is, for larger Q. The
dependence on phase difference is important for the inter-
ferometer behavior rather than the absolute value of the
conductance. The conductances take maximal values at
0, —02=0. We call this type of dependence "upward
convex" (UC) and the opposite type of dependence which
takes the minimal value there is called "downward con-
vex" (DC).

A large relative change of conductance as the function
of the phase difference is favorable to the interferometer.
When there is no normal reAection at the SN interface
(Q =1), the dependence on phase difference is weaker
than I+cos(0, —Hz) expected from Sec. III. How does
the normal reAection affect this dependence? In order to
investigate this, conductance normalized by its value at
0, —02=0 is shown in Fig. S. The dependence on phase
difference is clearer for large Q. First thoughts suggest
that this is strange because only the Andreev-reAected
component is affected by the macroscopic phase and the
normal rejected component is not, considering the prin-
ciple described in Sec. III. This is one of the faults of the

FIG. 5. The dependence of the normalized conductance
across Q Pon the -phase difference vs the intensity of the normal
reAection at the SN interface. This is for normal rejections due
to the wave-number discrepancy between the normal waveguide
and the superconducting electrode: Q = Ikl /Iql ( I'gp

primitive discussion in that section. When the resistive
properties of the Y junction are taken into account, as is
in Sec. IV, the Andreev-refIected and normal reAected
components combine through the normal reAection at the
Y-junction point. Therefore, both of them take part in
the dependence of the interference on macroscopic phase
difference.

Figure 6 shows the same properties as Fig. 5 for the
case when normal reflection occurs by the Schottky bar-
rier, calculated from Eq. (4.16). For large Z, the behavior
is similar to that in Fig. 5 with the relationship Z ~Q.

0.6

O
th

~~

CD

I

0.4

0.3

0.2

0.1

1.2

0.
0.

C9 0

-0.5 0 0.5

8
~

—0 2 (7t radian)

FICx. 4. The absolute value of the conductance across QP-
and its dependence on the phase difference under various nor-
mal reflection intensities. Q is a parameter which expresses the
wave-number discrepancy between the normal waveguide and
the superconducting electrode: Q = ~k~ /~q~ ( V&~ =0).

FIG. 6. The dependence of the normalized conductance
across Q Pon the phase differen-ce vs the intensity of the normal
reQection at the SN interface. This is for normal rejections due
to the existence of the Schottky barrier between the normal
waveguide and the superconducting electrode: Z=Hm/kA'
( Vgp =0).
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The dependence on phase difference in the vicinity of
Z =0.5 is curious. Although UC dependence is expected
from the discussion in Sec. III, we find DC dependence in
this region. This is a typical example that satisfies the
condition of Eq. (4.19) and shows that the behavior of the
interferometer is different depending on the origin of nor-
mal reflection. As noted above, the formation of a state
nearly bounded in a waveguide branch by the reAections
at the Y-junction point and the SN interface causes this
DC dependence. Therefore, the analysis in Sec. III,
which neglected the normal reflection at the Y-junction
point did not give this type of dependence. Since each
branch of the interferometer is an open system, there is
no exact bound state. For convenience, we call the state
which approximately satisfies the condition of the
bound-state formation, a bound state.

B. Dependence on energy for the interferometer

Next, we look at the non-zero-bias voltage cases such
that V&p&0, that is, the incident energy E of a quasipar-
ticle is finite. The result of the calculation for the normal
reflection-free case from Eq. (4.21) is shown in Fig. 7(a).

Here we used additional parameters such as the Fermi
energy in the waveguide EF= 10 meV, the effective mass
of the electron m =0.05mo, where m 0 is the free-electron
mass, and the superconducting gap energy Do=1.5 meV.
The dependence on E near E= 1.0 meV is rather compli-
cated. With an increase in energy, the dependence on the
phase difference shows DC behavior and suddenly
changes into a UC type, and then returns to DC. This is
quite different from the zero-bias voltage cases where the
formation of a bound state in a waveguide branch always
causes dependency on phase difference with a DC shape.
From Eq. (4.22), we know that, for the present parame-
ters, there exists only one bound state in a waveguide
branch in this energy region (from 0 to b,o). Also the
bound state is positioned in the vicinity of E=1.0 meV.
The strong UC dependency in Fig. 7(b) is attributed to
the cancellation between DF&(E) and Dzzcos(0& —02) in
Eq. (4.21) near 0, —Hz=0. This never occurs in Eq. (4.17)
for normal reflection by the wave-number discrepancy or
in Eq. (4.18) for reflection by the Schottky barrier in the
zero-bias voltage case. This behavior suggests the possi-
bility of better operation of the interferometer by tuning
the incident energy, that is, the bias voltage.

C. Asymmetric configuration and multimode eÃects

.5

O 1.5
CO

1

O.s

CD 0
-0.5 0

8 y
—8 2 (z radian)

0.5

FICs. 7. (a) The dependence of the normalized conductance
across Q Pon the phase diff'eren-ce vs the incident energy E with
a superconducting gap energy 60= 1.5 meV. This is for the case
where there is no normal re6ection at the SN interface. (b) The
cross section at E= 1.0 meV.

The above discussion is based on the analysis for the
single-mode waveguide in Sec. IV. Here we comment on
the effects which occur with multimode transmission
along the waveguide.

When observing the Aharonov-Bohm effect, ' in metal
rings, the aspect ratio of the rings is very important. Al-
though a waveguide wider than the Fermi wavelength
has many transmission modes which experience different
phase advances, the modes do not modify the interference
effect if the aspect ratio is large enough. ' The superposi-
tion of the modes, however, modifies the behavior of the
interference to be more complex. In fact, the experiment
by Webb et al. ' needed the Fourier transform to identi-
fy the origin of the interference. In our interferometer
the phase shift by Andreev reflection and the phase ad-
vance along the propagation is independent of the in-
cidence angle of the quasiparticle owing to the retroactive
property of the Andreev-reflected particle. In other
words, all modes in the waveguide are phase-shifted by
the same amount, as noted in Sec. III. Therefore, the
average of the modes does not modify the interference
effect if the normal reflection at the SN interface can be
neglected. Therefore, it would be possible to observe the
interference effect more directly than Aharonov-Bohm
experiments.

Even in the presence of normal reflections, if the inter-
ferometer has a symmetric configuration, no problem
occurs. In an asymmetric configuration, however, the in-
terferometer suffers from destructive influences by two
nonretroactive phenomena. The first is the normal
reflection which forms a different standing-wave-like
state in each waveguide. This moves the phase-difference
value where the conductance takes its extreme value.
Since the shift is different for every mode, too many
transmission modes act destructively in the interferome-
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ter. Therefore, it is desirable to make the waveguide of a
material with a long Fermi wavelength. The second des-
tructive influence is due to the finite incident energy
E=eV&p. From Eq. (2.3) the imperfection of the retroac-
tive property of an Andreev-reflected hole is given by

1/2
E

(E E )1/2
2m

(5.2)

D. Feasible materials for the interferometer

If 5q5L is comparable to m. , the imperfection of the re-
troactive property is not negligible, where 5L is the asym-
metry of the two waveguide branches. This limits the
bias voltage V&~ in order to achieve the proper operation
of the interferometer. An example value is estimated in
the next subsection.

E. Self-generated magnetic Aux

Our last point in this section is that the magnetic field
generated by the supercurrent flowing through the JJ is
negligible for quasiparticle interference. The magnetic
flux piercing the area enclosed by the JJ and the Y
branches causes a shift in the phase of normal electrons
or holes in the waveguide, as occurs in the Aharonov-
Bohm effect. This effect might hinder the observation of
the phase shift by Andreev reflection. The magnetic flux
is estimated to be of the order of ijol, gL, where p&& is the
permeability of a vacuum, and g is a geometrical factor of
the order of unity. When the length of branch L is a few
pm, and the supercurrent is a few pA, the flux is about
10 hie. Therefore, the phase shift caused by the mag-
netic flux is negligible.

VI. CONCLUSION

We proposed a quasiparticle interferometer which en-
ables us to experimentally confirm the interaction be-
tween the microscopic phase of a quasiparticle and the
macroscopic phase of a superconducting state due to An-
dreev reflection at the SN interface. The interferometer
consists of a Y-type junction composed of normal-
electron waveguides and a Josephson junction, and the
modification of the interference by the bias supercurrent
of the Josephson junction affects the resistance of the
normal-electron waveguide. We also gave a quantitative
analysis of the interferometer, which considered the
characteristics of the Y junction and the normal
reflection at the SN interface. Although the normal
reflection is not necessarily destructive to the operation
of the interferometer, it often makes the behavior compli-
cated. Moreover, the bias voltage applied to the
waveguide affects the behavior of the interferometer.
This suggests the possibility of better operation of the in-
terferometer by tuning the bias voltage.
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Consider the materials and dimensions necessary for
this interferometer. The electron waveguide must be
made of a material with high mobility and long phase
coherence length L&. A degenerate semiconductor is
suitable from the viewpoint of fabrication and its long
Fermi wavelength. Taking into account the limits of fa-
brication techniques, the length of the waveguide branch
L is reasonable at a few pm. Since a low temperature is
already required in order to get a long L& waveguide, a
Josephson junction composed of high-T, superconduc-
tors is not necessary.

For example, the combination of n-doped InAs and Nb
is a hopeful candidate. The InAs-Nb interface is
Schottky barrier free and it gives a large Andreev-
reflection probability, ' that is, small intrinsic normal
reflection. Since it is diScult to fabricate a perfect
single-mode waveguide, it is better to avoid normal
reflection if possible, as was discussed above. Moreover,
n-doped InAs has a rather long L&. At a few K, L& is
over a few pm for samples with carrier density n —10'
cm '"

As mentioned above, the asymmetry between the two
waveguide branches limits the applied voltage across QP-
for the proper operation of the interferometer. When 5L
is of submicron order, 5q needs to be less than 10 m
For the case of InAs with n =10' cm and Nb with
b,o=1.5 meV, from Eq. (5.2), V&p should be limited to
below one-tenth of the superconducting gap voltage of
Nb.
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