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Time-dependent Ginzburg-Landau theory for a weak-coupling superconductor
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Using a functional approach to the Keldysh formalism we develop a time-dependent Ginzburg-
Landau equation for the long-wavelength and low-frequency dynamics of a weak-coupling superconduc-
tor, which is also valid in situations that deviate signi6cantly from thermal equilibrium. The theory
takes the interactions between quasiparticles and Cooper pairs into account exactly and is explicitly
Galilean-invariant at zero temperature. However, the temporal and spatial dependence of the order pa-
rameter is assumed to be such that the effects of Landau damping can be neglected. We also consider the
screening properties of the superconductor and show that the inclusion of the polarizability of the elec-
tron gas is necessary for a complete description.

I. INTRODUCTION

Even before the advent of the microscopic BCS theory,
the phenomenological Ginzburg-Landau' theory proved
to be a powerful tool in the study of the equilibrium prop-
erties of a superconductor in slowly varying electrornag-
netic fields. Therefore, it came as no surprise that soon
after the formulation of the microscopic theory, Gorkov
was able to relate both approaches by identifying the en-
ergy gap b,(x) with the order parameter of the phase tran-
sition.

However, for the description of nonequilibrium proper-
ties we need an extension of the original Ginzburg-
Landau theory, because the time dependence of the order
parameter becomes of the utmost importance. Examples
are the nucleation and spinodal growth of the supercon-
ducting phase, the dynamics of Josephson junctions, and
various phase-slip phenomena associated with the motion
of vortices. In particular, the decay of the supercurrent
in quasi-one-dimensional superconductors due to both
temperature and quantum fluctuations seems to be poorly
understood at present and may offer the possibility to
verify experimentally the predictions of the time-
dependent Ginzburg-Landau theory to be derived in this
paper.

Theoretically, the above-mentioned phenomena are
usually studied at temperatures near the critical tempera-
ture T„where 6/kz T can be considered as a small quan-
tity and the form of the time-dependent Ginzburg-
Landau theory is well established. Below T, the situ-
ation is less clear. Abrahams and Tsuneto have made an
extensive study of this region and find that a time-
dependent Ginzburg-Landau equation can only be de-
rived at zero temperature, since at nonzero temperatures
the collective (Bogoliubov-Anderson) mode is Landau
damped. Nevertheless, neglecting this process, a time-
dependent Ginzburg-Landau theory can be formulated at
all temperatures, which is generally used to describe the
physics of phase-slip phenomena. 10

This procedure has, however, an important drawback:
since b, /kn T is not small well below T„Abrahams and
Tsuneto arrive at their results by expanding the equations

of motion for h(x, t) around the value of the gap at some
point (x', t'), which requires "zeroth-order" Green's
functions corresponding to this local gap b( 'xt'). Be-
cause these are not known one has to resort to a physical-
ly motivated approximation. Abraharns and Tsuneto as-
sume that the dynamics of the quasiparticles is fast com-
pared to the dynamics of the Cooper pairs and hence that
the quasiparticles are at all times in equilibrium with
respect to b, (x', t'). Unfortunately, this is not the case in
conventional superconductors as pointed out recently by
Ao et al. " They therefore propose a sudden approxirna-
tion, in which the quasiparticles do not react to a change
in the condensate wave function and only provide for a
"static" background.

Although the static picture is certainly an improve-
ment over the adiabatic one, there still are some problems
associated with it. First, Ao et al. include quasiparticle
relaxation due to electron-electron, electron-phonon, and
electron-impurity scattering in their discussion but
neglect the interaction between quasiparticles and con-
densate, which might induce a more rapid temporal be-
havior. Second, their time-dependent Ginzburg-Landau
theory is not Galilean-invariant at zero temperature,
which contradicts BCS theory. From a formal point of
view this is somewhat disturbing, although its effect is
negligible in the limit of small currents for which the stat-
ic picture was developed.

In an attempt to overcome these problems we present
in Sec. IIa functional approach to the Keldysh formal-
ism, ' which is used in Secs. III and IV to derive an
effective long-wavelength and low-frequency action for
the energy gap and thus the desired Ginzburg-Landau
theory. In Sec. III we first consider the neutral case and
in Sec. IV we subsequently show how the electromagnetic
screening properties of the charged superconductor can
be included in the description. Finally in Sec. V we surn-
marize some conclusions of this work.

II. NONEQUILIBRIUM THEORY

A way in which we can conveniently study nonequili-
brium processes and take the interaction between quasi-

47 7979 1993 The American Physical Society



7980 H. T. C. STOOF 47

particles and condensate into account is by means of a
functional formulation of the Keldysh theory. Such a
formulation was recently developed to discuss the nu-
cleation of Bose-Einstein condensation in a dilute atomic
gas' and gives the opportunity to follow the time evolu-
tion of the system of interest, whenever an initial density
matrix p(to) is specified. In the following we take a p(to)
corresponding to an essentially arbitrary distribution
N(E) of quasiparticles with energy E and gap 60, the
latter being obtained self-consistently from the appropri-
ate BCS gap equation for the quasiparticle distribution
N(E). Subsequently, we determine the equations of
motion for b(x, t) at times t ))to+0(hlkti T, ) when the
transients have died out and the Ginzburg-Landau equa-
tion acquires a particular useful form.

Following closely the treatment of the Bose gas, we
start the discussion of the Keldysh formalism by writing
the generation functional of all Green's functions for a

I

system of fermions with spin states ~a ) as a functional in-
tegral

Z[J J*l=fd[it']d[0]exp gS[e* it]

X exp i g f dt fdx[f*(x, t)J (x, t)
C

+J"(x, t)f (x, t)]

(1)
over the Grassmann variables g (x, t) and itj*(x, t) defined
on the Keldysh contour C, which consists of a chronolog-
ical branch from to to infinity and an antichronological
branch from infinity to to. ' Here, the sources J (x, t)
and J*(x,t) are anticommuting c-number fields and the
action S [tie*,P] is given by

S[g*,g]= g f dt f dxg*(x, t) iR + +p g (x, t)
a e'v'

c Bt 2m

——g f dt f dx fdx'g*(x, t)f*.(x', t)V(x —x')P .(x', t)f (x, t)
A CX

for particles with an effective mass m and a spin-
independent interaction V(x —x'). Notice that the chem-
ical potential p is time dependent in principle, but for a
weak-coupling superconductor is well approximated by a
constant. Moreover, in the case of singlet pairing the
efFectively attractive interaction V(x —x') can be re-
placed by the Gorkov potential —g5(x —x') and the
second term on the right-hand side of Eq. (2) becomes

g f dt f dxg&(x, t)gi(x, t)gi(x, t)P&(x, t),c
denoting the spin-up and spin-down states by ~

T ) and

~
J, ), respectively.

To find the effective action and thus the desired
Ginzburg-Landau theory for the order parameter
(b, (x, t) ) = —g t, gt(x, t)P&(x, t) ) of the phase transition
we perform a Hubbard-Stratonovich transformation by
multiplying the generating functional Z [J,J ] by

1=JVf—d [h*]d [b ]exp ——f dt f dx~b(x, t)
1

g C

+gpss(x, t}P&(x,t)~ (3)

g((x, t)
g(x, t)=, , J(x, t)—:

gt(x, t)

Jt(x, t)
—J& (x, t)

and their hermitian conjugates. In this manner we find
that'

and evaluating the Gaussian integral over the fermionic
fields. The latter is most easily accomplished in Nambu
space, which implies the introduction of the vector quan-
tities:

Z[J,J*]=IVf d [b,*]d [h]exp —S[h*,b, ] exp i f dt —f dx f dt' fdx'J (x, t)G(x, t; x', t')J(x', t')
c C

with the effective action

S[b,', 6]= ifiTr[ lnG ']———f dt f dx~A(x, t}~
g C

expressed in terms of the exact one-particle Green's function

iG(x, t; x', t'):—(T[g(x, t)g (x', t')])
(T[g((x, t)fi(x', t')]) (T[gi(x, t)gt(x', t')])
(T[gt( t)Pxt(x', t')]) (T[gt(x, t)ft(x', t')])

where the average is calculated using the initial density matrix p( to ) and T represents the time-ordering operator on the
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Keldysh contour. Introducing also a 5 function on the contour by means of J cdt'5(t, t')=1, this Green's function
obeys the equation of motion,

.~B AV
Bt 2m

b, "(x,t)

A(x, t)

6 (x, t; x', t') =fi5(x —x')5(t, t'),
—

( i—A + +p)
Bt 2m

defining also its inverse G . The latter plays an impor-
tant role in the following section where we evaluate the
effective action of Eq. (6) and derive a time-dependent
Ginzburg-Landau equation for the order-parameter
(b, (x, t) ) by means of a gradient expansion.

III. TIME-DEPENDENT GINZBURG-LANDAU THEORY

We now turn to the actual calculation of the action
S [b,*,6] and the time-dependent Ginzburg-Landau
equation, which follows from the principle of least action,
i.e., 5S[b,', 5]/M'( xt)=0. As mentioned above we
take for p(to) the density matrix of an ideal gas of quasi-
particles with an energy distribution N(E) and the
dispersion relation E(k)=[a(k) +lAol ]', where
e(k)=(irt /2m)k —p and the energy gap bo is found
from the usual BCS gap equation

dk [1—2N(k)] 1

(2n-) 2E(k) g

iris'(x, t; x', t')= —b, '*(x,t)

—b, '(x, t)
5(x—x')5(t, t') .

(10)

Substituting this in Eq. (6) gives

We also take the limit to~ —ao, since here we are not in-
terested in the fast [of 0 (A'/kz T, ) ] transients, which are
especially important for a discussion of the nucleation of
the superconducting phase.

We proceed as follows. First, we expand the exact ac-
tion S [b, ', b, ] around its minimum S [60,b.o] by writing
b( xt)=b, 0+6, '( xt) and using b, '(x, t)/lb. ol as a small
parameter. Furthermore, we only consider fluctuations
b'(x, t) of long wavelength and small frequency. Explicit
calculation at zero temperature shows that this expansior
converges quite rapidly and we only have to include
quadratic Auctuations to obtain an accurate description
of the action in this region. Second, we deduce from this
the form of an approximate action S„,„[b,*,b ] by requir-
ing that mass is a conserved quantity and that the expan-
sion of this action around S„,„[bo,bo]=S [ho, ho] repro-
duces the previous result.

Performing the first step we introduce the "zeroth-
order" normal and anomalous Green's functions associat-
ed with the initial density matrix p(to) by means of the
Dyson equation G '=Go ' —X and the self-energy ma-
trix

6,(x, t; x't')=6,'(x, t; x't')O(t, t')

+6,' (x, t; x't')O(t', t), (12)

using the Heaviside function on the contour 8(t, t'). ' '
Substituting this decomposition into Eq. (11)and defining
the retarded and advanced Green's functions as

60+—'(x, t; x't'):—+0(+(t —t'))

X[GO (x, t; x't') —Go (x, t; x't')],

(13)

we arrive at a real time formalism that explicitly rejects
the principle of causality, because essentially only retard-
ed quantities are present. In addition, it is now possible
to apply a Fourier transformation on both space and time
and to find the effective action for the long-wavelength
and low-frequency Auctuations by means of a Taylor ex-
pansion of the various coe%cients.

As an example we take the coeKcient of the diagonal
lb, '(k, ko)l term. The discussion of the nondiagonal
terms proportional to b, '*(k,ko)6'*( —k, —ko) and
b, '(k, ko)b, '( —k', —ko) is similar and is not repeated in
the following. Physically, three processes are involved in
the calculation of the quadratic fluctuations. In terms of
the usual coherence factors u (p) and v(p) obeying
lu(p)l~=-, '[I+I(p)/E(p)], lv(p)12=-,'[1—~(p)/E(p)],
and 2u (p)v (p) = —bo/E(p), we find for the contribution
due to the production of two quasiparticles:

S [b ', b ] = iirt T—r[ lnGO ' ]+iA g —Tr[(GoX)"]n=i"
——f dt Jdxlbo+b, '(x, t)l

g C

The terms linear in 6'*(x, t) and b, '(x, t) cancel, because
Eq. (9) is equivalent to ho= —g(T[gt(x, t)gt(x, t)]),
where the field operators evolve in time according to the
interaction picture based on Go '. Hence, we have

00

S[b,', b, ]=S[h oh ]o +i iiig —Tr[(GOX)"]
n ——2"

——f dt J dxlb'(x, t)l' .
g C

Before we can evaluate the time integrations in this ex-
pression we must realize that both 6'(x, t) and
Go(x, t; x', t') are functions on the Keldysh contour C.
Therefore, the latter can be decomposed into the analyti-
cal functions Go and Go by
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1 dk' 1 k, k
1 —N —+k' —N ——k'

2 (2n. )3 A'ko E—(k/2+k') —E(k'/2 —k') 2 2

whereas the contribution due to the creation of two quasiholes becomes

k
u —+k'

2

2

2
k

u ——k'
2

2
1 dk' 1

2 (2m. ) A'ko +E(k/2+k')+E(k/2 —k')
k, k

1 —N —+k' —N ——k'
2 2

k
v —+k

2
k

v ——k'
2

Finally, the possibility of Landau damping associated with the breakup of a Cooper pair into a quasiparticle and a
quasihole leads to

dk' 1 k, kN —+k' —N ——k'
(2n. ) fiko —E(k/2+k')+E(k/2 —k') 2 2

u —+k'k
2

2
k

u ——k'
2

2

2tl

2'
(14)

where the Beta function B ( —,', n) fixes the normalization
such that in the zero-temperature limit I„~1,we find for
the potential terms in the effective Lagrangian density,

N 0 r(g~) (g') +2lg
l

lg' +(g )2(g'*) ]4 l~ 2 0 0 0

denoting the density of states for one spin projection at
the Fermi surface by N(0). Hence, the most simple form
of the Lagrangian density X~«(b, *,b ) that reproduces
this result if expanded around 60 and also agrees with the
Ginzburg-Landau theory near the critical temperature, is

It is now important to realize that the first two terms
have a well-defined Taylor expansion around
(k, ko}=(0,0}, because the dispersion relation of the
quasiparticles and quasiholes has a gap. Unfortunately,
this is not true for the last term, which in principle
prevents the formulation of the time-dependent
Ginzburg-Landau equation as a simple partial differential
equation at nonzero temperatures in agreement with the
conclusions of Abrahams and Tsuneto. However, for
low frequencies, Landau damping can be neglected and
the last term is very accurately approximated by its static
value, which is analytic in k and has a well-behaved
long-wavelength expansion at all temperatures. In this
manner the evaluation of the effective action for the
quadratic fluctuations becomes straightforward although
somewhat tedious for the gradient terms.

Making use of particle-hole symmetry and introducing
the functions I„(l

b,ol ) by means of

I

Clearly, this result cannot be represented by a Lagrang-
ian density x„. ,(h*,b, ) proportional to lab/atl as is
usually assumed. We need additional terms of the form
ibad/atl and (b'ab/at) +(AaK*/at) that are also of
second order in the time derivatives but of fourth order
in the order parameter b,(x, t) Tog.ether with the re-
quirement that we should reproduce the correct theory
near the critical temperature we obtain

(b,*b) I +I 1
4

aa
'

N(o)
24

(16)

Finally, we have to determine the gradient part
Xs„d(b *,b. ). In terms of the Yosida function
Y(idol)= I" de( dN/dE), its fi—rst derivative

z( la, I
) =——la, l2

did, , l2

lkl dN 1

2 -~ dE~ E

and for the diagonal part,

(17)

and the Fermi velocity vF we find for the off-diagonal
part of the effective Lagrangian,

A' vN 0)(
)

F
24

(Q )2 a2gie a2gi (Q+ )2
x +5'

ax' ax' lb. l'

z .,(s', s)= (15)
6 2

For the time-derivative terms we find the off-diagonal
part

N(O} X' (~0)' a'a * a'a (~o)'
I~ Q I Q +6'

24 '
lg l' lg l' at' at'

and the diagonal part

In a similar way as for the time-derivative terms we
deduce from this result that

2
1 Ps A' ah

N(0)
4 1

Iz Qf g

3 lg l' at2
Bx

(18)
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having also terms which are second order in the deriva-
tives but fourth order in the order parameter. The
superfluid mass density is given by

p, (l~l)=2mn (1—Y) 1—
2lb, I

i ha/at i%a/at +ep and i—AV ~ i—fiV+e A in
S[P',f] and adding the action for the free electromag-
netic 6eld, which reduces in the Coulomb gauge to

~0 BAS, [y, A]= f dt fdx —yV—'y A-.
C 2 at2

z 1— (19) +c2 A-V2 A (23)

I &,(k) I

=
I a, l 1 —— k'+ o (k')z fi UF

4 3lb, I'
(20)

which can also be derived directly from the BCS gap
equation. In particular, at zero temperature this implies
that below the critical current, lb,o(k)l is independent of
momentum, which is a consequence of Galilean invari-
ance.

This concludes the derivation of the time-dependent
Ginzburg-Landau theory for a neutral BCS-type super-
fluid. In summary, the complete nonequilibrium long-
wavelength (A'u~k «

I
b,ol ) and low-frequency

(fiko (fiuFk) action of the order parameter is

S„,„[b,*,b, ]=f dt fdx[X„,(b, ', b )+J „(b.', b )

+X „(h*,b, )]

(21)

which reduces to the expected expression ps =mn (1—Y)
if Ib, I=lb,

I

'

Furthermore, putting Idol =
I
b,

l we exactly have the re-
sult obtained by Werthamer. ' However, in the spirit of
the above calculation we should not identify lb, ol with
lb, l, because this implies local equilibrium of the quasi-
particles with the condensate and we are back to the
treatment of Abrahams and Tsuneto. Notice that in the
situation of a superflow, the momentum dependence of
the gap found from Eq. (18) is

+Xp,)(P, A)

+&,„,(b, ', h, P, A)] . (24)

The interaction Lagrangian density is found from the
minimal coupling prescription and is equal to

X;„„(b,*,b„P, A) = —5pg+ J.A, (25)

where the charge-density fluctuation 5p and current den-
sity J are given by

5p= p+e—n = —eN(0) I, +I2 1—

Applying the same Hubbard-Stratonovich transforma-
tion as before and subsequently integrating over the fer-
mionic fields P (x, t), we find that the order parameter
b, (x, t) is gauge-invariantly coupled to the electro-
magnetic 6eld by means of the covariant derivatives
iA'a/at+2ep and iR—V+2e A, as is expected of a field
with charge —2e, and in addition that the photon propa-
gator is dressed due to the polarizability of the electron
gas. Hence, the effective action for the charged case ac-
quires the form

S,h[b, *,b, p, A]= fdt fdx[J „,„(b*,b. )+X, (p, A)

X„,„(8)= fi I, a8
at

2

21—Y 88" 3II ax

2

where the various contributions are given in Eqs. (15),
(16), (18), and (19). Substituting 6(x, t)=boexp[i8(x, t)]
the Lagrangian density for the phase fluctuations be-
comes

and

eps
2m'Ib, l'

.aa aa'
2 Bx Bx

+2el~l'A

(27)

(22)

showing explicitly that the Goldstone mode has the ve-
locity v~+(1 —Y)/3I&. Hence, at zero temperature, the
velocity is equal to v~/&3 and in agreement with the cal-
culations of Bogoliubov' and Anderson. ' In the next
section we discuss how these results are modi6ed in the
case of a superconductor where the effect of screening is
of great importance for the dynamics of the system.

IV. SCREENING PROPERTIES

We introduce electromagnetism in the functional ap-
proach by performing the minimal coupling substitution

respectively. Because of gauge invariance, the electric
charge is locally conserved and the stationary condition
5S,h/59(x, t)=0 can be written as the continuity equa-
tion

a5p(x, t) +V J( ) ()
5t (28)

where the density fluctuations are constrained by the
Euler-Lagrange equation 5S,h/5lb(x, t)I =0, leading to
5p(x, t)=0 in lowest order. However, small deviations
from charge neutrality arise in higher orders, which can
easily be incorporated if necessary for a particular appli-
cation of the Ginzburg-Landau equation proposed in this
paper.
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Finally, to obtain the equations for the electromagnetic
potentials also, we have to consider S,~[P, A]. It should
be noted that this contribution was usually neglected in
previous attempts to derive a time-dependent Ginzburg-
Landau equation, although it turns out to be essential for
a correct description of the screening properties of a su-
perconductor. Introducing the four-vector 3 =(P/c, A)
we have

S „[P,A]= fdt f dx f dt' f dx' A—"(x,t), 1

X g„' '(x, t; x', t')

X A'(x', t'),
(29)

with li„'+' the retarded polarization tensor of the free-
electron gas. Again, due to gauge invariance, li„'+' is a
transverse tensor and can be written in momentum space
as

2

+'+'(k, k )
ko gTF—+0

kUF

(34)

with A,TF the Thomas-Fermi screening length
(2eoe~/3ne )'~ S.ubstituting this into Eq. (31) finally
gives

S,~[P, A]= f dt f dx—P(x, t) P(x, t) .
Ep 1

TF
(35)

The Euler-Lagrange equations for the electromagnetic
field are then

However, for the purposes of this paper and in agree-
ment with the neglect of Landau damping in the discus-
sion of the neutral superAuid, we are more interested in
the region Akp &A'kU+ where it is appropriate to use the
static limit of go'0+ '. In this limit we obtain

k„k ~(k),
k

(30)

V—2 1

~TF
2 ~( )

5p(x, t)
Ep

(36a}

using k =(ko/c, k) and the Lorentz metric g„with sig-
nature ( —1,1,1,1}. Thus, the evaluation of S,t[P, A] is
particularly convenient in the Coulomb gauge. In this
gauge and neglecting the small contribution from Landau
diamagnetism, we find that

S „[P,A]= f dt fdx f dt' fdx', t)}(x t)
2c

X ~~+'(x, t; x', t')

X P(x', t'),
(31)

kVF ~0
ko

ne kc
m k02

(32)

which formally leads to

and —go'o+'/c the density-density response function y
In the long-wavelength limit we have the well-known

result

1
V — A(x, t)= poJ T(x, t), —

c2 t2
(36b}

V. CONCLUSIONS

where JT(x, t) denotes the transverse part of the current
density. Together with Eqs. (26) and (27), we see that the
screening of the electric field is due to both the normal as
well as the superconducting part of the system, whereas
the screening of the magnetic field (the Meissner effect) is
only due to the superconducting part. Therefore, the
typical length scale associated with the former is A,TF,
while the length scale associated with the latter is equal
to the London penetration depth A,L =(m /papule )'~

for a spatially slowly varying order parameter. Clearly,
this intuitively reasonable result is only obtained if the
polarizability of the electron gas is taken into account
and Sz,&[/, A] is included in the complete action.
Without this contribution, the electric potential is only
coupled to the superAuid density fluctuations and only
the superconducting part of the system can lead to
screening of the electric field.

In summary, we have shown that it is possible to derive
a time-dependent Ginzburg-Landau equation for the or-
der parameter of a superconductor in a highly nonequili-
brium situation and in the limit that A'ko & A'UFk « ~bo~.
We have also shown how the screening properties of the
superconductor can be accounted for. In particular, the
different screening lengths for the longitudinal and trans-
verse parts of the electromagnetic field are included in a
natural way.

The most important restriction on the applicability of
the above theory is caused by the neglect of Landau
damping. However, it seems likely that the effects of
Landau damping cannot be simply incorporated in the

S,& [P, A] = —f dt f dx —((}(x,t) P(x, t) .
1 ne 8 /Bx

pol 2 m Q2/Qt 2

(33)

Considering again the Bogoliubov-Anderson mode we
find that in the limit of infinite wavelength, a solution to
the equations of motion is 5p=O, J= A=O, P(t}
=Poexp( ice t i~/2—), —8(t) =2ego/Ace~exp( ico~t), —
and co& =(ne m/e)o'~ the plasma frequency. Thus, the
dispersion of the collective mode is pushed up to the plas-
ma frequency as is expected of a density fiuctuation in a
system with long-range Coulomb interactions. ' '
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framework of a Ginzburg-Landau theory and requires a
more advanced approach, which takes the quasiparticles
into account explicitly. ' Nevertheless, it is of interest to
investigate the predictions of the theory presented in this
paper, because for a certain application the neglect of
Landau damping might turn out to be justified and can in
any case be checked in a self-consistent fashion. It will,
in particular, be interesting to see if in this way a better
agreement with experimental data on the resistance of
quasi-one-dimensional superconductors can be obtained.
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