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Spin-wave theory and finite-size scaling for the Heisenberg antiferromagnet
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Spin-wave perturbation theory for the Heisenberg antiferromagnet at zero temperature is used to
compute the Rnite-lattice corrections to the ground-state energy, the staggered magnetization, and
the energy gap. The dispersion relation, the spin-wave velocity, and the bulk ground-state energy
to order O(1/S ) are also computed for the square lattice. The results agree very well with the
predictions of Neuberger and Ziman and the predictions of Fisher.

I. INTRODUCTION

The Heisenberg antiferromagnet on a square lattice has
recently come under intensive study by a variety of meth-
ods, because of its possible relevance to high-T, super-
conductors. Reviews of this work have been given by
Barnes and Manousakis.

The finite-size scaling behavior of the system has been
predicted by Neuberger and Zimans and Fisher, 4 for use
in the analysis of Monte Carlo results. These predictions
are based on general arguments that the large-distance,
low-energy behavior of the system will be dominated by
massless, soft magnon modes, which can be described
by a simple effective action involving just three unknown
parameters, which can be taken as, for instance, the spin-
wave velocity v, the helicity modulus or spin-wave stiff-
ness p„and the staggered magnetization M+. The val-
ues of these parameters are not predicted, but must be
calculated from the microscopic Hamiltonian, or fitted to
experiment.

Spin-wave perturbation theory has been found to give
a comprehensive and surprisingly accurate description of
the Heisenberg antiferromagnet on a square lattice. Our
aim in this paper is to use spin-wave theory to compute

I

the finite-size scaling behavior of the system, make com-
parison with the predictions of Neuberger and Zimans
and Fisher, and determine the three parameters referred
to above. We also present some higher-order spin-wave
results for the bulk properties of the system.

The spin-wave theory for the Heisenberg antiferromag-
net was originally developed by Anderson, s and then ex-
tended to second order by Kubo6 and Oguchi. 7 The the-
ory was extended to higher order first by Harris et aL,s
and recently by Kopietz, Castilla and Chakravarty, i
Igarashi and Watabe, Canali, Girvin, and Wallin,
Gochev, 3 and the present authors. The workss

—&0, &2, &3

relied on the Dyson-Maleev transformation, while Ref. 11
used the Holstein-Primakoff transformation. Harris et
al. and Kopietz studied magnon damping at low tem-
perature. Castilla and Chakravarty o calculated the
staggered magnetization M+ at zero temperature, and
concluded that

M+ = 8 —0.19660 —0.00068S-'+ O(S-') . (].1)
Igarashi and Watabe gave results for the renormal-

ization factor of the spin-wave velocity Z„ the staggered
magnetization M+, the transverse susceptibility y~, and
the spin-stiffness constant p, at zero temperature as

Zc= 1+ 0.158 Cg

(2S)2 '

0.01 1 0.552 0.04
(2S)2 ' 8 28 (28)2

' 8 (1 — zs
—

&z&&, ), via relation p, = 8S Z, y~,
Ps= &

Sz(1 —
z&

—
&z'&&s, ), direct calculation,

(1 2)

where they claimed the inconsistency in p, was due to a
rough estimate of Z, .

Canali, Girvin, and Wallin calculated the renormal-
ization factor of the spin-wave velocity Z„

The present authors used both the Dyson-Maleev
and Holstein-Primakoff formalisms to investigate the
anisotropic Heisenberg antiferromagnet, and obtained
the consistent results for the isotropic model:

0.15795 0.0215(2)
2s (28)2

Gochev~s evaluated the ground-state energy,

Qo/~ = —28~ —0.31588S —0.012 46
—0.002 10S + O(S ) .

(1.3)

(1.4)

y~ ——0.125 —0.034 447S
+o.oo17o1(3)s-'+ o(s-') .

Eo/N = —2S —0.315895S —0.012 474

+0.000 216(6)/8 + O(S ),
M+ = S —0.1966019+0.000866(25)S + O(S ),

(1.5)
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Obviously, there are substantial discrepancies between
the difFerent third-order spin-wave results. We believe
this is probably due to the fact that works used
the following relation (in our notationi4):

sinheg = [(1 —p„) '~ —1]'i /~2, (1.6)

which holds only if pI, & 0. But because there is a 6
function bi+ad s+4 in the vertices V, , the momentum k
cannot always be inside the first Brillouin zone, and py
can be less than 0: in this case, the above relation must
be replaced by

sinheg = —[(1 —p~) —1] ~ /V2 . (1.7)

In the present work, we calculate the finite-lattice
corrections to the ground-state energy, the staggered
magnetization and the mass gap for the cases of the
one-dimensional linear chain and the two-dimensional
square lattice. The results for the square lattice are in
good agreement with the finite-size scaling predictions
and Monte Carlo simulation. For the square lattice,
we also present some further calculations for the third-
order spin-wave velocity via both the Dyson-Maleev
and Holstein-PrimakoK formalisms, and the fourth-order
ground-state energy via the Dyson-Maleev formalism.
For the Holstein-Primakoff formalism, there are some di-
vergent terms in the third-order spin-wave velocity, but
they cancel each other, and the final results are the same
as in the Dyson-Maleev formalism. We will not repeat
the derivation of the general spin-wave theory, but the
notations here have the same meanings as in our previ-
ous paper. i4

The arrangement of the paper is as follows. In Sec. II
we calculate the finite-lattice corrections. In Secs. III
and IV, we calculate the third-order spin-wave velocity
and the fourth-order ground-state energy, respectively.
In Sec. V we make a comparison with the prediction of
Neuberger and Ziman, and Fisher, and summarize our
conclusions.

corrections for the isotropic case (x = 1). The finite-size
scaling corrections can give us a great deal of information
about the model, using either finite-size scaling theory or
the theory of conformal invariance at criticality in (1+1)
dimensions.

A. Ground-state energy and staggered
magnetization

The properties of the isotropic Heisenberg antiferro-
magnet such as the ground-state energy Eo and the stag-
gered magnetization M+ are functions of C„(1)which is
defined by

(2 1)

pi, = cos(k a), (2.2)

momentum k: 0 & k~a (7r bulk system

k (i)=
aLt

Li = L/2,

i = 1, 2, . . . , Lt finite-lattice system

(2) two-dimensional square lattice:

where the sum over k denotes a sum over the first Bril-
louin zone of sublattice t. For a bulk system, the momen-
tum k is continuous over the first Brillouin zone, but for a
finite-lattice system, the momentum k is discrete. For the
one-dimensional linear chain and two-dimensional square
lattice, the structure factor pk, the first Brillouin zone for
a bulk system, and the discrete momentum k for a finite-
lattice system are the following:

(1) one-dimensional linear chain:

II. FINITE-LATTICE CORRECTIONS
pA,, = cos(v 2k a/2) c os( v2 k„a /2), (2 3)

In our previous paper, we discussed the bulk prop-
erties of the model. Here, we discuss the finite-lattice momentum k: 0 ( v 2k a/2, ~2k&a/2 ( 7r bulk system

27ri . 2mi

Li = L/v2,

z = 1)2).. . , Lt finite-lattice system

where L and a are the lattice size and the lattice spacing
for the whole system, respectively, and I~ is the lattice
size for sublattice l. For convenience, we set the lattice
spacing a = 1 from now on.

The leading finite-size correction to C, for the one-
dimensional linear chain can be calculated exactly
by using the Euler-Maclaurin formula. For a two-
dimensional square lattice, the finite-lattice corrections
to C, can be evaluated by a least-squares fit of C„(1,L)
to the form C„(1,oo) +a/L"+ + ti/L"+s + c/L" +4 +
The results are the following:

(1) one-dimensional linear chain:

2 27r
Ci(1) = ——1—

7r 3I 2

2 t'2vr lC-i(1) = --»
/ /+ . .

(2.4)

(2) two-dimensional square lattice:

Ci (1) = —0.157 947 420 95 —2.033 28/L
+Ox L +O(L ),

C i (1) = 0.393 203 929 7 —1.755 736 07/L + O(L ),
C s (1) = 0.206 014 26L —0.448 848 6 + 0(L ) .
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Note that the L correction to Ci is zero. From
Eqs. (2.4) and (2.5) we derive the following results.

1. One-dimensional lattice

The ground-state energy, including finite-size correc-
tion, is found to be

Ep, /2 l 1 (2= -S'+S~ ——1[ —-
l

——1
I)

( 2 5 t' l 1, i
2S ——+1i+Oj —

i
.3I.' q 7r ) (S) (2.6)

m(k) =
I

2S ——+1+0(l/S)
~
k,2

(2 7)

and the spin-wave velocity up to second order is

Note that the energy m(k) of a single-boson state with
momentum k ~ 0 is

magnetic field on a finite lattice is zero (see later). Equa-
tion (2.12) describes the "bulk value" obtained either at
a finite but very small field, or else, perhaps, by a mea-
surement of the mean square magnetization.

A comparison of these results with the predictions of
Neuberger and Ziman will be given in Sec. V.

B. Energy gap and zero modes

We now need to take careful consideration of the "zero
modes" of the system, which have no special effect on
the calculation of bulk properties or the finite-lattice cor-
rections to the ground-state energy and bulk staggered
magnetization, but which do play a crucial role in the
finite-lattice behavior of the energy gap.

Using the Dyson-Maleev representation, one finds after
a Fourier transformation that the terms in the Hamilto-
nian which involve only zero-momentum (k = 0) modes
are

~=
~

2S ——+1+O(1/S) I
.l( 2

7r ) (2.8)
Hi, —p = zS(apap + bpbp + apbp + apbp)t t

——(apaoaobo + aobpbpbo + 2aoaobpbo) .ttt t t

c=2 ) (2.10)

precisely through second order in spin-wave expansion.
This disagrees with the known exact resultis c = 1.

This failure of the spin-wave theory comes as no great
surprise. It has long been known that spin-wave theory
fails qualitatively to describe the one-dimensional Heisen-
berg antiferromagnet: the spin-wave expansion predicts a
finite staggered magnetization, whereas the exact valuei~
is zero; and for integer spin the expansion predicts a zero
mass gap, whereas Haldane's conjecture, is is supported
by numerical analyses, predicts a finite mass gap.

Two-dimensional squam lattice

The ground-state energy, including finite-size correc-
tion, is found to be

N
= —29 —0.315894 841 99' —0.012 473 693 89

4.066 56S+0.321 151+O(S i)
L3 + ~ (2.11)

while the staggered magnetization is

M+ = S —0.196602+ 0.000866(25)S + O(S )

+0.877 868 0 + 0 x S i + O(s z) +
This last result must be interpreted with some care.
Strictly speaking, the staggered magnetization at zero

Now according to the theory of conformal invariance, the
leading finite-size correction at the isotropic limit is

Ep Eo (oo) 7l.vc
N N 6L~ '

where c is the conformal anomaly, which characterizes the
universality class of the critical point, and the allowed set
of critical exponents. Comparing Eqs. (2.6) and (2.8),
we see that the conformal anomaly is obtained as

z,+=) s,+,

zP =) s+,

Jz ) Sz
l

Jz=) S' .

(2.14)

If we carry out the same process, representing the spin
operators in term of boson operators, Fourier transform-
ing, and then dropping all terms which involve nonzero
momentum, we find for the rotation-invariant combina-
tions

Ns (Ns
2 k=o =

2 ( 2
+

(2.15)

(Jl + J&)k=p Ns + NS(aoap + bobp + apbo + aobo)t

—(aoaoaobp + aobobobo + 2aoaobobo) .t ttt t t
(2.16)

Comparing (2.13) with (2.14)—(2.16), we see that
z

IIk=p = zs+ (Jl + J2)g=p

= —zs+ —[2(Ji + J&) —(Ji —Jz) jg—p . (2.17)N
Thus, if one restricts oneself entirely to the zero-mode

sector, the situation is just that discussed by Neuberger
and Ziman, 3 or more generally by Fisher and Privman:
the spins on each sublattice are aligned with each other,

(2.13)

Now consider the operators corresponding to the total
spin on the even (t) and odd (m) sublattices:
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so that the total sublattice spins J2i and J22 are fixed at
their maximum possible values, while the spins on differ-
ent sublattices are antialigned, such that in the ground
state the total spin (Ji + J2)2 is zero. The Hamiltonian
is rotationally symmetric, of course, and the zero-mode
spectrum provides a Wigner representation of this sym-
metry. In particular, the ground-state eigenvector on the
finite lattice is also rotationally symmetric, so that the
order parameter in any particular direction is zero. The
relative energy eigenvalues in the zero-mode sector are

N'h » z/S, (2.23)

in agreement with the arguments of Fisher and
Privman.

A little consideration shows that the neglected terms
involving nonzero-momentum modes will modify these
results, producing corrections of higher order in spin-
wave perturbation theory, which we have not explicitly
calculated. The basic scenario will remain the same, how-
ever. We have also checked that the same results hold in
the Holstein-PrimakoK representation, to leading order.

AEi,—() = zj(j+1)/N, j = 0, 1, 2, . . . (2.18)

so that the energy gap to the first excited state is

m~ = 2z/N .

The staggered magnetic field operator is

(2.1O)

V=h) S; —) S„'
l m

= h(~i —J2) . (2.20)

If h = 0, the Hamiltonian is rotationally symmetric, and
the spontaneous magnetization vanishes, as noted above.
If h is large enough, then V will dominate over Hg p,
and the ground state will be the eigenstate with Jy
J22 ——NS/2, Jf —Jg = NS, so t—hat the staggered
magnetization will take its bulk value

1 BEp
N o]h

(2.21)

to leading order. The condition on the field strength
required for this to happen is

III. DISPERSION RELATION AND SPIN-WAVE
VELOCITY

In our previous paper, we calculated the spin-wave
energy of a single-boson state with momentum k = 0
for the anisotropic Heisenberg antiferromagnet. Here we
calculate the spin-wave energy m(k) of a single-boson
state with nonzero momentum k, and then estimate the
spin-wave velocity Z, and the stiffness constant p, . For
the anisotropic Heisenberg antiferromagnet (x g 1), the
spin-wave velocity is zero, so in this section we only con-
sider the isotropic model (x = 1), using both the Dyson-
Maleev and Holstein-PrimakoE formalisms.

A. Dyson-Maleev formalism

As before, i4 the spin-wave energy of a single-boson
state with momentum k up to order O(1/S) can be de-
rived as

(k) = "'(k)+ '"(k)+ & ')(k)+O(1/S ),

s.e.,

NhS » z/N, (2.22)

where

m~') (k) = .S(1 —~2~2)'~2,
z

m&p)(k) = -- (1 —*2~2)'~2C", + (1 —*')(C, —C, )~2(1 —~2~2)-'~2,
2

m~ )(k) = Am'~ )(k) + 6m& (k) + Am~ )(k) + Em& )(k) + Am~ )(k),

(3 2)

and Am~~ )(k) is the contribution from Fig. 2(a) in the previous paper, i4 etc. :

~2)2(O O )2 2(1 2 2)-3/2

Vs (1,2, 3, k)V5 (3, k, 1, 2)

V2 )(1,2, 3, k)Us (3, k, 1, 2)
(3.3)

Am~
'

(k) = — (—) ) (1—2: )(C z
—C&)1g (1—T p„, ) '[V2 (k', k, k, k')+V~ (k, k', k, k')],

k'

Bm~ '~(k) = — (—) ) (1—x )(C,—C, )pa (1—T pi, ) '[V~ (k', k, k, k')+V~ (k', k, k', k)],

with
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Arn„' (k)+Am, '
(k) = (1 —x ) (C g

—Cg)p„(1 —x pP) (3.4)

In the isotropic limit (x = 1),

Arn~ 'I(k) = Arn„'l(k)+a~&-"(k) = 0 (3 5)

Arne~ l(k) + b, rn~ I(k) = — (1 —pl, ) ~ rnb~(k) ~

where

2 ~~+i,3+k

[Z,'=&(I —V') '/']' —[(1 —V')'/']'

~[vs (1,2) 3, k)vs (3) k, 1, 2}+V2 (1,2, 3, k)vs (3, k, 1, 2)] P, y(1 — ) /

(1 —
~A', )'/'

+[V2 (1,2, 3, k)Vs (3, k, l, 2) —Vs (1,2, 3, k)Vs (3, k, l, 2)] ~
. (3.7)

For the square lattice, the integration of mt„(k) can
be evaluated for finite lattices up to lattice size L~
120, then extrapolated to the infinite lattice by the form
m~, (k, oo) + ~&+ ~&+ ~&. Figure 1 shows the dispersion
relation along the line k~ = ks. The third-order results
here disagree with those of Igarashi and Watabe. ~~

In the limit k —+ 0, using MATHEMATICA, my, (k) can
be found to have two integration parts:

2 3

mg, (k) = — ) bg+z s+1, [2mb, /k+rnb, ], k —+ 0,- (-~) - (o)

(3.8)

where the expressions for rn&, and m&, are too compli-
- (-~) - (o)

cated to be given here. The integral of the divergent part
is found to be zero Repla. cing all (1 —p,. ) / (i = 1, 2, 3)
by (1 tsar, ) / in t—he second integration part, and using
the series expansion technique in our previous paper, 4

we can obtain a series in t for the integral of mb, (0) for
the infinite lattice. This series can be supplied on re-
quest. Extrapolating the series to the limit t ~ 1, we
get

the linear spin-wave approximation, namely, vo = 2v 2S.
The stiffness constant p, can be estimated by using the
hydrodynamic relation

2 ( 0.23525
u. = ~'Xi = S'

I
1—

2S
0.0517(2)

(2S)'
(3.12)

1.5

m(k)

where y& is the uniform perpendicular susceptibility. ~4

Here the result for the spin-wave velocity is different
from that of Igarashi and Watabe~~ but agrees with that
of Canali, Girvin, and Wallin, ~z and the stiffness constant

2.5

mq, (0) = —0.010 76(1) . (3 9)

Therefore, the energy gap of the isotropic Heisenberg
antiferromagnet at the small k limit is

(, 0.157947421
2S

+ S + O(1/S ) l(v 2k/2), (3.10)

and the renormalization factor of the spin-wave velocity

0.5

v 0.157947 421 0.021 52(2)
2S (2S)2

where vo is the "bare" spin-wave velocity ~

(3.11)

PIG. 1. The spin-wave energy m(k) as a function of mo-
mentum ak /v 2 along a line k = k„. The three curves shown
are the first-, second-, and third-order spin-wave predictions,
corresponding to short-dashed, long-dashed, and solid lines,
respectively.



7966 ZHENG WEIHONG AND C. J. HAMER 47

p, is consistent with the direct calculation of Igarashi and
Watabe.

B. Holstein-Primakoff formalism

The energy gap m(k) can be calculated using the same
method as in the Dyson-Maleev formalism, and the result
1S

(k) = &'&(k) + &'&(k) + &-'&(k) + O(1/S'),

(3.13)
I

~~-'&(k) = ~m,-' (k) + ~m&-'l(k) + ~m, -"(k)

where

+~m&-'&(k) + ~m„'-"(k) + ~~&-'l(k),
(3.14)

where m&i&(k) and m(0&(k) are the same as in the Dyson-
Maleev formalism, and m& i&(k) is

W

&~o "(k) =
S 2(C-i —Ci)(C-i+1)+&'Va l C-i(C-i+2) ——,(C-i —Ci)'

l
(1 —&'&~) '~'

32S (3.15)

while the results for Em~~ l(k) and Am&~ l(k) + Am~ l(k) are the same as in the Dyson-Maleev formalism for all

bipartite lattices. The terms krriI, (k), b.m, (k), and mg, (k) have the same expression as in the Dyson-Maleev

formalism except that the vertices V, are the Holstein-Primakoff vertices.
In the isotropic limit x = 1,

Emtq (k) = i ]2(c g
—Gs)(c &+ 1)+0 g(c &+2) —B(o x

—cx) ](1 —pi)

+]3(&—~
—&~)' —&-1%-1+2)](~ —PL)' ') (3.16)

For the square lattice, the integration my, (k) can also be evaluated for a finite-lattice up to lattice I t = 120, while
here the finite lattice correction is & + ~& + . The calculation gives the same dispersion relation as Fig. 1.

In the limit k ~ 0,

Ern() (k) =
l [2(C i —Ci)(C i+1)+C i(C i+2) —3(C i —Ci) ]32S E 2

+[3(C—i Ci) C—i(C—i + 2)]v 2k/2

2
[0.195 68/k —0.001 857k], k —+ 0 .

2S
(s.17)

Note that Em, o (k) is divergent in the limit k —+ 0, and mb, (k) is found, via MATHEMATICA, to have three integration
parts in the small k limit:

2
mb (k) = (—) ) 6x+g, a+a 4nsI, /k +2Kb, /k+m&, , k 0.

a=1
(3.18)

Let

2 3

7)it — ) Bi+/ 3+pm&, , (i = —2, —1,0)(&) 2 - - (&)

i=1

(3.19)

of &mo (0) and AmI, (0) + Arn~ l(0) cancel each
other, and the final result for rn(0) is finite, agreeing
with that obtained via the Dyson-Maleev formalism.

IV. FOURTH-ORDER SPIN-WAVE
RESULTS

m,', "= o.o49(2),

rnI„= —0.012(2) .
(3.20)

Therefore, in the limit k ~ 0, the divergent parts

the integration mb, is found to be zero, and the inte-

gration for rn&, and mz, can be carried out in the same(-2) (0)

way as before:

In this section, we present the fourth-order spin-wave
expansion for the ground-state energy within the Dyson-
Maleev formalism. We only consider the case without an
external magnetic field. , that is, h1 ——h2 ——0.

According to the Harniltonian H in Eq. (2.7) of our
previous paper, there are seven perturbation diagrams
shown in Fig. 2 contributing to the order O(S ) for
ground-state energy Eo, the first two diagrams also con-
tribute to the order O(S i) of Eo, and the O(S ) part
has been considered in our previous paper. The contri-
butions from each diagram are
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(a) (b) FIG. 2. The perturbation diagrams that
contribute to the ground-state energy Eo/¹
The crosses represent the interaction vertices
as indicated; the lines represent boson exci-
tations in the intermediate states. To save
space, we have not differentiated between the
n and P bosons and possible time ordering of
the vertices in the diagrams.

) - [Vo"']'
2(—zSm ——; qA, C~+(1—~2)w&qI '(C-i —Ci) )

= ~E(—~) + ~E(—2) + O(S—3)

z2N (2 l V,"'(1,2, s, 4)V,'"(s, 4, 1, 2)
5

~ 1+2i3+4iN) „. ' E,(zSn+2 nCi+(1 —~2)W,'q, '(C—& C&) )

=—aE(-'& + aE(-'& + O(S-3),

AE( l = —
i

—
i ) [V4 (1,2, 2, 1) + V4 (2, 1, 1, 2)]vs (1)vo (2)/(qgq2),16zS2 iN)
2

E4 ———
2 ~

—
~ ) [Vs (1,2, 1, 2) + Vs (1,2, 2, 1)]vo (1)vo (2)/(qgq2),z'i )

V,"'(1,2, S, 4)V,"'(4, 6, 5, 1)V,"&(S, 5, 2, 6)
(n + q2 + q3 + q4)(q2 + q3 + qs + qs)

N ( 2 & ) V, (1)[V, (2,1,S,4)V("(S,4,1,2)+V( '(S,4,1,2)V,"'(1,2,S,4)]
4S2 iN) '

qq(qq+ q2+ qs+ q4)

( 2i zN (2 ii ) Vs (1,2, S, 4)vi (S, 4, 5, 6)vs (5, 6, 1, 2)
iN)

&

' ' (qx+ q2+ qs+ q4)(q~ + q2+ qs+ qe)
4

( i zN (2 I= —
4S, I N I ~t+2,3+4~4+3,s+~4S iN)

(4.1)

where

q (1 —Z2p2) 1/2

EE~ = —
4 (1—z) (C g

—Cg) (C 3 C—])
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gz( —2)—

@(—&)
b

(-2)
b

(1—z )2(C i —Ci) (Ci(C i —C s)

+(1—x )[C i(C s —C i)+( s — s)( i — i)]),
zN ( 2 i ) Vs (1,2, 3, 4)Vs (3,4, 1,2)
8S kN) ' + qi+qz+qs+ q4

zN ( 2 ) . Vs (1,2,3,4)Vs (3,4,1,2)(p,. [q;Ci+(I x)—p&q, '(C i —Ci)])

(4.2)

At the isotropic limit x = 1, we can easily prove that

+E{-2) i ~z{—i)
b 2S

gz( —i) gz( —z) gz( —2) gz( z) /E( —&) ()

Therefore, the ground-state energy per site Eo/N is

Ep/N =—zS 1(,S —Ci + ~ C,'+, (C i —Ci)'
~

, (1-x')'(C i —C,)'(C .—C,)+azb "/N

+(KE( )+DE +EE( )+DE +bz( )+DE +hz( ))/N+O(S ) . (4.4)

Hitherto, the results have been applicable to all bi-
partite lattices. We now restrict ourselves to the two-
dimensional square lattice, where EE{ ) and b.z&(

are four-dimensional integrals over the first Brillouin
zone: the integrations can be carried out analytically,
and the results are

~z(-') + az{-"

I

louin zone into a finite number of meshes, It x Lt, and
extrapolate the sum to I t

—+ oo. For small x, this tech-
nique confirms the results of the above series expansion.
For x close to 1, the results for AE& are shown in Fig.(—2)

3 as an example. Extrapolating to x = 1 and I i
—+ oo,

we can get

(1 —z )s(C i —Ci) (C s —C i) 0.000105 —~

I t I
[

I I I I

j
I I I [

[
I I I I

]
I

Ezb and b,z, are both six-dimensional integrals

over the first Brillouin zone, while AE and Ezg{
are eight-dimensional integrals. They (ave been calcu-
lated using two different methods. The first one is a
series expansion in 2:; the results can be supplied on re-
quest. Thus, for the spin-z model, the series for Eo/N
in z from the fourth-order spin-wave theory is

@fourth 1 85&2 —0.002 974 955 Ox
N 2 512

+0.00065351749x + 0.0002705726x
+0.000 01069lx + O(x ), (4.6)

0.0001

9.5x 10

A
X

A X

x

x=0.999999
x=0.999996*: x=0.99999
x=0.99996
x=0.9999

clearly, this series is closer to the exact series than that
for third-order spin-wave theory.

The most interesting thing here is the ground-state en-
ergy at the isotropic limit (x = 1). The series obtained
seems to be too short to give a reliable extrapolation
to x = 1, but we can also use another technique: the
finite-lattice technique discussed in the first section. We
evaluate numerically Eq. (4.1) by dividing the first Bril-

Li= 20 18 16 14 12
9X10—5 I & I & ] & & & & i i « i I i i » ]

0 5X 10 0.0001 0.00015 0.0002
I/L

FIG. 3. The estimates of S bEf( )/N as a function of
the lattice size I and anisotropy parameter x.
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( i) 0.0004285(4)
b 2

( 2) 0.0001054(4)
f z

3.61(4) x 10
g / Sz 7

(4.7)
( 2) 6.768(6) x 10 s

(2S)
(4 8)

Therefore, we conclude that for the square lattice

where the results for AEb( )/N are consistent with our
previous results, i4 but substantially more accurate. The
results for AEz can be found by using relation (4.3):

ED/N = —2S —0.315894842S —0.0124736939+0.0002142(2)/S+ 1.246(9) x 10 /S + O(S ). (4 9)

If we use Pade approximantsz~ to analyze the above se-
ries, we get

+ + 0.8778680+ Ox S i + O(S z)
+

—0.6693(2), S = 2,—2.32801(4), S = l.

V. SUMMARY AND CONCLUSIONS

(4.10)
(5.5)

Transverse susceptibilityi4,

1

8)(i = ——0.034447S + 0.001701(3)S + O(S ) .

(5.6)
As further results of spin-wave perturbation theory for

the Heisenberg antiferromagnet, we have calculated the
finite-lattice corrections to the ground-state energy and
the staggered magnetization, and also the finite-lattice
energy gap, for both the one-dimensional linear chain and
two-dimensional square lattice. We have also calculated
the spin-wave velocity, and the ground-state energy to
order O(1/Sz) for the square lattice.

For the one-dimensional linear chain, spin-wave theory
gives the conformal anomaly as

Dispersion relation in the small k limit

f 0.157947 421

0.021 52 (2)
(2S)

Finite-lattice energy gap,

mdiv = [8+O(S ')]/I

(5.7)

(5.8)

c=2 (5 1)

0.000 124 6(9)+ z +OS
with finite-lattice correction

(5.2)

ED 4.06656S+0.321151+O(S-')
OO I3

(5.3)

Bulk staggered magnetization,

M~+ = S —0.196 601 9+ 0.000866(25)S + O(S ),
(5.4)

with "Qnite-lattice correction"

precisely, through second order in the expansion, whereas
the true value 6 is c = 1. This is no great surprise, since
it is already well known that spin-wave theory fails to
describe the one-dimensional chain, incorrectly predict-
ing a nonzero staggered magnetization, and a mass gap
which vanishes for all spins.

For the square lattice of size N = L~, our results may
be summarized as follows

Bulk ground-state energy per site,

e = lim = —2S —0.315 894 842S~N

Spin-wave velocity renormalization factor,

Z, = E(k)/(2v 2Sk)
0.157947 421=1+ S + 0.021 52(2)

(2S)z

Spin-stiffness constant p„
0.235 25 0.0517(2)

2S (2S)2

(5.9)

(5.10)

The spin-wave velocity Z, was calculated through both
the Dyson-Maleev and Holstein-Primakoff transforma-
tions, and the fourth-order ground-state energy via the
Dyson-Maleev formalism. As before, i4 in the Holstein-
Primakoff formalism there are some divergent terms, but
the divergences eventually cancel one another. Our re-
sult for the spin-wave velocity is different from that of
Igarashi and Watabe, ~ but agrees with that of Canali,
Girvin, and Wallin, ~z and the spin-stifFness constant is
consistent with the direct calculation of Igarashi and
Watabe. ~ Obviously, the corrections of high orders are
pretty small, and the spin-wave theory continues to give
consistent results, and improved convergence towards the
exact values. These results should be compared with
other estimates: for the spin-& model, Runge finds
that ED/N = —0.66934(3) and Z, = 1.10(3) using a
Green's function Monte Carlo method, while Singhzs pre-
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diets that Z, = 1.18(2) and p, = 0.73(4) using a series
expansion.

The finite-lattice predictions from the effective theory
of Neuberger and Zimans, and Fisher amount to six
relations, which are

Ee 2Pv—oo =
3 ) (5.11)

M+ = 2eg~g, (5.12)

M+ M+ (5.13)
2zgL

AE(j = 1) =10/L

AE(j = 2) = 29/I2

for total spin —1,

for total spin —2,

(5.19)

while from the data of Runge we obtain

This agreement is very satisfying, and helps to give us
confidence that the spin-wave results are correct.

The finite-lattice energy gap has been measured by
Carlson24 using a Green's function Monte Carlo method,
with the result

mpf

gg = 2K2/V
2

E(k) = vk,
1

Xl L'

(5.14)
(5.15)

(5.16)

b,E = 5.2j(j+ 1)/L, '

AE = 5.4j(J + 1)/L, '
for I =6,

for I =8.
(5.20)

involving two calculable structure constants
—0.6208, P = —0.7186, and three unknown microscopic
parameters ri, r2, and v. Comparing (5.11)—(5.16) with
(5.3)—(5.8), we find these predictions are exactly satis-
fied, order by order in spin-wave perturbation theory
as far as we have calculated, with n = —0.6207464,
P = —0.71887, the velocity v given by

E(k) ( 0.157947 421

(2S)z
+'"'""'+O(S-) i, (5»)

and

4j(j+ 1)
L (5.21)

If we use the relation (5.16) together with (5.6), the
higher-order result is predicted to be

AE = [4+ 1.102304/S

+0.2493(l)/S +O(S s)j

= 7.202j(j + 1)/I, ', (5.22)

Similar results can be found in the paper by Gross et
al. s The leading order spin-wave result (2.18) is

iI2~t' i)4 0.116900
~g ——S

0.004 10(2)

i(2 f A)4 0.041 330 5r2=S S
0.002 615(8)

(5.18)

although this has not been confirmed by direct calcula-
tion. The result is at least in the same ballpark as the
"experiment. "
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