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Zero-field muon-spin-relaxation depolarization rate of paramagnets near the Curie temperature

A. Yaouanc and P. Dalmas de Reotier
Centre O'Etudes Nucleaires, DRFMC/SPSMS/LIH, Boite Postale No. 85X, F-38041 Grenoble-CEDEX, France

E. Frey*
Lyman Laboratory ofPhysics, Harvard University, Cambridge, Massachusetts 02138

(Received 3 August 1992)

The paramagnetic critical zero-field muon-spin-relaxation damping rate for cubic ferromagnets with
dipolar interactions is computed by mode-coupling theory. We show that the temperature behavior of
the damping rate is determined by the relative weight of the hyperfine interaction and the dipolar in-

teraction between the muon magnetic moment and the lattice ion magnetic moments. A quantitative in-

terpretation of the experimental data recorded on metallic Ni and Fe is given. Predictions are made for
EuO and EuS.

I. INTRODUCTION

The critical dynamics of isotropic ferromagnets above
the Curie temperature (Tc ) has been studied by various
experimental techniques, sampling different regions in
wave-vector space. ' At first sight the results of these
different studies did not seem consistent. It is only re-
cently that an overall satisfactory explanation of the ex-
perimental data has been reached. "' It has been shown
that the dipolar interaction between the lattice dipole
magnetic moments, which has a negligible effect on the
T& value, has a strong inhuence on the paramagnetic
critical dynamics for small wave-vector modes. This is a
consequence of the dipolar interaction, which is present
in all real ferromagnets, being of long range.

Up to now the experimental work has been mostly per-
formed on isotropic ferromagnets using three types of ex-
perimental techniques: electron-spin-resonance (ESR) and
magnetic relaxation, ' hyperfine interaction (HI)
methods, and neutron scattering. ESR measurements
are restricted to nonmetallic compounds. Two HI tech-
niques have been mostly used: perturbed angular correla-
tion (PAC) and Mossbauer spectroscopy (MS). The re-
sults obtained by these two techniques have nicely shown
that, while the amount of information deduced from
them is more restricted than the one obtained from
neutron-scattering experiments, they probe the region
near the center of the Brillouin zone which is most im-
portant for the dynamics of ferromagnets near Tc.
Present neutron-scattering techniques do not allow one to
measure at sufFiciently small wave vectors to directly
study the effect of the dipolar interaction on the spin dy-
namics right at the critical temperature; its effect has
been seen by neutron scattering only above Tc.

The muon-spin-relaxation (@SR) method which is a HI
technique, ' has been used to probe the spin dynamics of
Ni (Ref. 8) and Fe (Ref. 9) which have a cubic crystal
structure and of Gd (Ref. 10) which crystallizes in an
hexagonal lattice. As pointed out by Yushankhai, " an
understanding of the pSR data requires one to take into

account the classical dipolar interaction between the
muon magnetic moment and the lattice ion magnetic mo-
ments. A recent study of the pSR depolarization rate at
low temperature in a Heisenberg ferromagnet strengthens
this point of view. ' ' In the case of PAC and MS, the
coupling interaction is mainly due to the HI which is, to
a good approximation, isotropic and of short range. The
difFiculties to take into account the peculiarities of the di-
polar interaction, i.e., its strong anisotropy and its long-
range nature, may explain why pSR spectroscopy has not
been used intensively to study the spin dynamics of fer-
romagnets. This is unfortunate because, opposite of oth-
er HI techniques, pSR measurements can be performed
on any compound. A solid-state solution of the studied
compound with atoms containing the nuclear probe does
not have to be prepared.

Recently a theoretical prediction for the pSR damping
rate in the paramagnetic critical regime of the Heisen-
berg ferromagnet EuO has been presented. ' This
analysis does not seem complete because it does not take
into account the long-range nature of the dipolar interac-
tion between the muon magnetic moment and the lattice
magnetic moments. Furthermore, the dipolar interaction
between these latter moments is neglected, which is
known to have a major effect on the spin dynamics close
to Tc and for a long wavelength.

The purpose of this report is to present a theoretical
study of those effects on the zero-field pSR damping rate.
Especially, we investigate the consequences of the sym-
metry and long-range nature of the dipolar interaction
between the muon magnetic moment and the lattice ion
magnetic moments for a paramagnet near Tc on the
zero-field pSR damping rate. We suppose that the mag-
net can be described by an isotropic Heisenberg Hamil-
tonian. In addition, the dipolar interaction between the
ions magnetic moments is included. For simplicity, we
will suppose that the magnetic ions sit on a Bravais lat-
tice.

The organization of this paper is as follows. In Sec. II,
w'e express the zero-field pSR depolarization rate of a
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paramagnet in terms of spin correlation functions. In
Sec. III, we discuss the behavior in the wave-vector rep-
resentation of the coupling between the muon magnetic
moment and the lattice ion magnetic moments for wave
vectors near the center of the Brillouin zone. In Sec. IV,
we review the properties of the spin correlation functions
in the paramagnetic critical regime of a cubic Heisenberg
ferromagnet with the ion-ion dipolar interaction taken
into account. In this section we summarize the quantita-
tive predictions made by the mode-coupling theory. In
Sec. V, we use the information previously gathered to
compute the zero-field pSR damping rate of some isotro-
pic magnets. A comparison between theory and experi-
ment is performed when possible. The last section is de-
voted to a summary of our findings and to the conclusion.
Mathematical details of the derivation of two formulas
are given in two appendices.

II. ZERO-FIELD p,SR DEPOLARIZATION RATE
AND SPIN CORRELATION FUNCTIONS

In this section we show that the zero-field pSR depo-
larization function for a paramagnet depends on spin
correlation functions of the localized spins and on a ten-
sor which takes into account the coupling between the
muon spin and the localized spins of the magnet. Thus,
we explicitly assume that the depolarization induced by
the dynamics of the electron spin at the muon site is
negligible. This hypothesis may not always be valid.

We take the z axis parallel to the incoming muon beam
polarization. We use an orthonormal reference frame. A
zero-field measurement consists of measuring the depo-
larization function P, (t). ' It can be shown that'

P, (t) =—,
' Tr[p o,o,(t)], (2.1)

where p is the density operator of the magnet and o.,
the projection of the Pauli operator of the muon spin on
the z axis. Tr[A] stands for the trace of A over the
muon and magnet quantum states.

Usually cr, (t) can only be computed approximately.
As the critical magnetic fluctuations are sufticiently rap-
id, the depolarization they induce can be treated in the
motional narrowing limit. Thus, as in nuclear magnetic
resonance (NMR), it is justified to compute cr, (t) by a
second-order iteration. This computation gives' '

2

f dr[4&, (r)+@ (r)] . (2.6)

Therefore, the depolarization function is an exponential
function with the damping rate A, If we identify A,, with
1/T„where T, is the muon-spin-lattice-relaxation time,
the above pSR expression is equivalent to the NMR for-
mula given by Moriya. '

We now introduce the time-Fourier transform of a
function f(r):

QO

f(co)= f dr exp( ivor)f (r)—.
277

(2.7)

Then A,, can be written in terms of time-Fourier trans-
forrns at co=0

A,, =~y„[@„(co=0)+@ (co=0)] . (2.8)

From now on, we will deal with correlation and spec-
tral weight functions in the frequency domain taken at
co =0. For simplicity we will write A = A (co=0).

We now consider the magnetic interactions in the mag-
net. The muon spin couples to the localized spins
through the classical dipolar interaction and the conduc-
tion electron spins via the Fermi contact interaction.
This latter interaction leads to an effective coupling be-
tween the muon spin and the localized spins. As men-
tioned at the beginning of this section, we suppose that
the dynamic efFect (Korringa-type relaxation) of the elec-
tron spin on the muon spin is negligible. These two types
of interactions produce a magnetic field at the muon site.
The e component of its Auctuating part is given by

» = g g G,~5J, ti.4& U
(2.9)

5B (1 ) =exp( i& r/A')5B exp( i—& r/fi), (2.5)

where & is the Hamiltonian that describes the magnetic
properties of the magnet. The expression of P, (t) can
usually be simplified because the characteristic time of
the fluctuations is ~=10 ' s whereas the experimental
time window is 10 ~ t ~ 10 s. Therefore, we can
neglect r in the (t —r) factor and extend the integral to
infinity. Taking the fact that 4& (r ) =4 ( —r ), we
have, to a good approximation, f, (t) =A,, t with

P, (t) =exp[ —g, (t)],
with

(2.2)
The index i runs over the lattice sites. The tensor 6, has

t

the following components:

P, (t)=y2 f dr(t r)[N„(r)+C„—(r)] . (2.3)
G ~=a ~+a n~,r,. r,. r. (2.10)

y„ is the muon gyromagnetic ratio; y„=851.6
Mrads 'T '. Here with

C..(r) =-,' [(».(r)5B.)+ (5B.5B.(r) ) ] (2.4)
3r, r, &

5 3
l E

is the symmetrized correlation function of the a com-
ponent (aH {x,y, z]) of the fluctuating part of the local
magnetic field at the muon site. ( A ) stands for the
thermal average of A. The time evolution of the Auctua-
tions is governed by the Heisenberg equation

1

ar drtt /rf
(2.1 1)

For simplicity, we suppose that the magnetic ions sit on a
Bravais lattice (there is therefore only one type of mag-
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netic ions) and that the Fermi contact interaction leads to
an isotropic coupling between the muon spin and the
nearest-neighbor localized spins to the muon site. There-
fore, H, is either equal to H if i refers to one of the

t

nearest-neighbor atoms or zero otherwise. u is the
volume of the primitive cell of the Bravais lattice; gL the
Lande factor of spin J, , which is at the distance vector r;
from the muon. p~ is the Bohr magneton, po the per-
meability of free space, r; the e component of r;,
a,P=x,y, z, and ~r~ =(x +y +z )' . With this formula
for 6B, it is now possible to give an expression of N in
terms of symmetrized correlation functions of the spins,
A~~. We obtain

In zero magnetic field, time-reversal symmetry tells us
that A =A . Using the previous equations, we are
now in a position to express 4 with the q variable. We
find

yyG i'G r A'&
p2 q —q q

q Pr
where we have defined

G~~= g G, ~ exp(iq. r, ) .

(2.17)

(2.18)

A~qr= —,'[(5Jqii(co=0)5J q ~) +(5J q y 5Jq p(co=0))] .

(2.16)

with

g g G ~G r A~~

~J Pr
(2.12) V is the volume of the sample. Introducing Eq. (2.17) in

Eq. (2.8), we derive

A~r =
—,
' [(5J, ii(co=0)5J ) + (5J 5J; ii(co=0) ) ] . y y (G"~G r +G~~G~Z )A~

2
(2.19)

(2.13)

In general, a calculation of a spin correlation function
is performed in the (q, co) space, i.e., in the first Brillouin
zone and in the frequency domain. Therefore, we need to
introduce the spatial-Fourier transform of the correlation
functions. We notice that the muon localizes in an inter-
stitial site. Hence, as this site does not belong to the lat-
tice, some care has to be exercised. In Fig. 1, we define
the two types of sites and vectors involved. The origin of
the reference frame is taken at the lattice 0 site. Two
types of vectors are present in the problem: the lattice
vectors as, for example, i, and the vectors linking the
muon site to the lattice sites, r, , for instance. With these
definitions we set

where we have defined 2)=(pol4m) y„(gLps) . This
equation shows that the measured pSR damping rate de-
pends on the coupling between the muon spin and the
spins of the magnet through the tensor G and on spin
correlation functions of the magnet itself, A ~. As it is
well known, such a formula is found for the other HI
techniques. The difference between pSR and these other
techniques resides in the fact that, in the present case, G
has peculiar properties at small-q value. This latter
point is important for a ferromagnet near T&.

It is practical, for the evaluation of the sum over q in
Eq. (2.19), to consider q as a continuous variable and
therefore to replace the sum by an integral. Then Eq.
(2.19) becomes

5J; =—g exp(iq i)5J~
q

(2.14) d3I g [G"~(q)G"r( —q)(2~)' py
The q sum extends over N vectors of the first Brillouin
zone. Taking into account the facts that A~~ depends
only on (i—j) and the i —j=r, —r (see Fig. 1), we obtain
using Eq. (2.14)

+G~P(q) Gxr( q) ]APr(q)

d3I, I [G(q)A(q)G( —q)] "
A~~= g exp[iq. (r; —r~. )]A~~,

q

with

(2.15)
+ [G(q)A(q)G( —q)]~~] . (2.20)

FICs. 1. Definition of vectors relative to the crystallographic
(+) and muon (0) sites.

The integrals extend over the first Brillouin zone. The
second line of Eq. (2.20) expresses A,, in terms of the diag-
onal elements of the product of tensors. To arrive to this
compact formula we have used the following symmetry
property: G ~(q)=G~ (q). From now on, we will con-
sider the G(q) and A(q) tensors as continuous functions
of q.

At first sight Eqs. (2.19) and (2.20) may look wrong be-
cause A,, is inversely proportional to the sample volume
V. But we shall see at Eq. (4.8) that a correlation func-
tion is proportional to X. Therefore, A,, is proportional
to X/V= 1/v. In the next section we present a detailed
study of the tensor G(q) for selected cases.
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III. MUON-LATTICE INTERACTION
AT SMALL-q VECTOR

The tensor G(q) is the sum of the dipolar and
hyperfine tensors. We first consider the dipolar tensor

D(q).
The computation of the dipolar tensor in the q repre-

sentation, which is defined by Eqs. (2.10), (2.11), and
(2.18), is given in Appendix A. The q summation is made
following Ewald's method. ' ' D ~(q) is the sum of four
terms:

'1T g (E +q )(Kp+qii)(p0
(q+K)

KWO 4p2
D ~(q) = —4m. +4' 1 —exp 2

9'a9'P 9'a9'P —
q

4O'

2 3

+ —g [2p r, r; ~3/2(p r, ) 5&p—, &2(p r; )] exp(iq r;) .
'rr

exp( —iK r0)

(3.1)

D ~(q)= 4~——C (q) (3.2)

where C ~(q) is a symmetric tensor whose elements are
continuous functions of q.

In a ferromagnet near Tc, nuclear methods such as
pSR spectroscopy probe the behavior of correlation func-
tions near the center of the Brillouin zone. Hence, as it
will be clear from the work presented in the next section,
there is a special interest to look at D ~(q) for small-q
values. In this paper we restrict our study to the lowest
order in q. This should be sufticient because we are only
interested in the behavior of the @SR damping rate near
Tc e

The lowest-order approximation in q of D ~(q) is given
by

D ~(q~O)= —4m —C ~(q=O)
g

(3.3)

The y (x) functions are defined by Eq. (A6) of Appendix
A. Expression (3.1) gives the same result for all values of
the Ewald parameter p, but for numerical applications a
value of p is chosen which ensures that both series con-
verge rapidly. The first term of D ~(q) is only piecewise
continuous at q=0. Its average value in the neighbor-
hood of q=O is —(4m/3)5 ~. Using Eq. (3.1) it is possi-
ble to compute D ~(q) for any value of q. It is con-
venient to write

I

(100) axes. We have

D (q=O) =D~~(q=O)= —D "(q=0)/2 . (3.5)

Thus, C ~(q=O) is diagonal and not simply scalar as for
a fcc crystal. Using Eqs. (3.4), (3.3), and (3.2) we derive

C '(q=O)=C (q=O)—=C, ,

C"(q=O)=1 —2C,:—C2 .
(3.6)

We have supposed that the tetragonal axis at the muon
site is parallel to the (001) direction which is taken as
the z axis. As the tetragonal axis can be parallel to either
one of the three (100) axes, there are three types of
C(q=O) tensors for a given type of interstitial site. The
diagonal elements are equal to (C„C„C2),(C„C2,C, ),
or (C2, C„C, ). A numerical computation gives C,
=0.4541 and C& = —0.0927 for a tetrahedral and an oc-
tahedral interstitial site, respectively.

We notice that if the dipolar coupling between the
muon magnetic moment and the lattice magnetic mo-
ments is restricted to the muon nearest-neighbor ions, the
piecewise continuous behavior at q=0 is not found.

Since D ~(q~O) depends on the point symmetry at
the muon site and therefore can be anisotropic, we infer
that k, can have an anisotropic behavior even if the spin
dynamics is isotropic.

Instead of performing the lattice sum for D ~(q) we
could have made a continuum approximation with the re-
sult

g C (q=O)=1 . (3 4)

Because the trace of D(q=O) is equal to zero, ' the fol-
lowing relation holds:

D ~(q~O)= —4m.
e' e'p

gaP
2 3

(3.7)

Because the C(q=O) and D(q=O) tensors are related by
Eq. (3.3), we can use symmetry properties of the latter
tensor to derive information on the former tensor.
D(q=O) has been studied in detail for a muon in a
tetrahedral or an octahedral interstitial site of a face-
centered- or a body-centered-cubic crystal, ' fcc and bcc,
respectively. In this paper we only consider these cases.

In the case of a fcc crystal we derive C ~(q=O)
=(—,

' )5 ~ for a muon either in a tetrahedral or octahedral
site.

The situation is not so simple for a bcc crystal. We
suppose here that the z axis lies along one of the three

H ~(q=0)=r„85 ~, (3.8)

where r„ is the number of nearest-neighbor magnetic ions
to the muon localization site. Equation (3.8) is derived

This approximation is not valid because it predicts that
the C(q=O) tensor is always scalar. The breakdown of
this approximation near q=o is not surprising because
the dipole sum is strongly dependent on the origin taken
for the sum.

Because the HI is of short range and isotropic, the q
representation of the related tensor is easily obtained. In
lowest order in q we have
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under the hypothesis that the muon site is a center of
symmetry.

IV. SPIN CORRELATION FUNCTIONS
AT SMALL-q VECTOR FOR AN ISOTROPIC DIPOLAR

CUBIC FKRROMAGNET ABOVE Tc

Equation (2.20) shows that the pSR damping rate de-
pends on sgmmetrized spin correlation functions of the
magnet, A ~(q). In this section we consider these func-
tions.

Before discussing the properties of Apr(q) we need to
introduce the Hamiltonian gf of the magnet which, in
this work, we suppose to be an isotropic dipolar cubic
ferrornagnet. Below we discuss some of its properties.
More details can be found elsewhere. ' ' & writes

sc bcc fcc

al
b

5/a
U/a'

6
4m

1

1

1

8

3~&3
v'2

&3/2
1

12
4~&Z

2
&2/2

l

rameter 80=r, 8, +r282, where r, and r2 are, respective-
ly, the number of nearest and next-nearest neighbors,
does not enter the spin equations of motion. The q repre-
sentation of the dipolar interaction between the lattice
magnetic moments in the limit of long wavelengths is
represented by the tensor

TABLE I. Crystal structure dependent parameters of Bravais
cubic lattices. c counts the number of next-nearest neighbors to
a given lattice site. a

&
is defined at Eq. (4.3) and b at Eq. (4.14a).

5 is the distance between nearest-neighbor ions and U the
volume of the Bravais lattice primitive cell. a is the cube edge.

24~;J. (r; —r) '
(r; —r)

(4. l)
D P(g)=

a&

e' ep
a,. —a2q q&

where 8;. is the exchange parameter between spins J; and
J, i.e., the interaction energy between these two spins is
28; . g' indicates that the term i =j has to be omitted
from the sum. Because in this paper we consider the
magnet only above Tc, we have (5J; ) =0, i.e., J; =5J;.
We now perform a space-Fourier transform. For a cubic
lattice, the Hamiltonian then becomes approximately

—[a3+a4q —a, q ]5 ~ ', (4.3)

where tI is a dimensionless wave vector and ak,
k=1,2, . . . , 5, are constants depending on the lattice
structure. ' ' The ratio of the dipolar to exchange in-
teraction is characterized by the dirnensionless parameter

—,+ q'a'vd

(2'�)' p,

+ PgD P(q5—) J (q)J&( —q), (4.2)

g =(qD5)

Here the dipolar wave vector qD is defined by

I 0 a 1(gLPB )
(qDa ) =

4~

(4.4a)

(4.4b)

where a is the lattice parameter (the cube edge) and 5 the
distance between a lattice site and one of its c nearest
neighbors. We have retained terms only up to second or-
der in q and have supposed that the exchange interaction
extends up to the second nearest neighbors. For bcc and
fcc lattices we have 8=8,+82 where 8, and 82 are, re-
spectively, the values of the exchange parameter between
nearest neighbors and next-nearest neighbors. For a sim-
ple cubic (sc) crystal the relation is cP=8, +4cf2. The pa-

I

The a
&

and 5 parameters depend on the lattice structure;
see Table I.

For our study of the critical dynamics we have to re-
tain in & only the terms relevant in the sense of the
renormalization-group theory. This means that we only
keep the first term in the expression of D P(g) The third.
and fourth terms are relevant but negligible in compar-
ison to the terms of the same symmetry of the Heisenberg
interaction. Therefore, the effective Hamiltonian to
study the (paramagnetic) critical dynamics is given by

vd= J g ( —80+atq a )5 ~+ —cog J (q)J ( —q)

3= J g ( —d0+cPq a )Pr~(q)+ —80+8q a + cog P„~(q) J (q)J&( —q)—,
77 ~p

(4.5)

where PT~(q) and PLP(q) are the transverse and longitu-
dinal projection operators, respectively, i.e., PT (q)
=5 P PL~(q), where Pt—~(q)=q q~lq . For further
reference we notice that these operators obey the ortho-

I

gonality relation

g PP (q)P~~~ (q) =0 .
P

(4.6)
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Writing & in terms of projector operators shows that it is
the sum of two separate terms which describe the trans-
verse (to q) and longitudinal spin dynamics, respectively.

The symmetry property of & in q space allows one to
write for the spin correlation function

A~~(q ) =A (q )P~~ (q)+ A (q)P~~ (q) (4.7)

where A (q) and A (q) are the transverse and longitudi-
nal correlation functions, respectively.

Instead of the correlation functions one can equivalent-
ly consider the static wave-vector-dependent susceptibili-
ties y~~(q) and the spectral weight functions F~~(q, co).
Notice that neutron-scattering experiments allow one to
study these latter functions. Due to the Auctuation-
dissipation theorem

A ' (q)= k~Ty (q)F ' (q),
V0(gLVa )' (4.&)

all these functions are related to each other. (k~ is the
Boltzmann constant. ) The spectral weight function (or
Kubo relaxation function), F ' (q, co), is reasonably well
approximated by a Lorentzian as long as one is just in-
terested in the width of the spectral weight function and
not its form. Thus, we can write

F ' (q)=F (q, co=0)=2/I ' (q), (4.9)

where I ' (q) are, respectively, the transverse and longi-
tudinal linewidths of the quasielastic peaks (Lorentzian
functions of co).

Only the transverse spin fluctuation parameter I (q)
can be studied by scattering of unpolarized neutrons. A
separation of the longitudinal from the transverse suscep-
tibilities can be achieved by the use of polarized neu-
trons. Note that suitable experimental conditions are
needed. For example, neutron measurements can only be
performed for sufliciently large q values, i.e., q ~0.01
A '. Introducing Eqs. (4.8) and (4.9) in Eq. (4.7) we
derive

A~r(q) = 2X y (q) ppr( )
PO(gLPB )

a

pPZ(q)
I (q)

(4.10)

X"'(q)=&q 'i"'(x,y), (4.11)

To make quantitative predictions we need to have infor-
mation on the behavior of the y ' (q) and I ' (q) func-
tions. We now first review the predictions of the critical
scaling theory and then brieAy describe the quantitative
results recently obtained from mode-coupling (MC)
theory. '

In the critical temperature regime the static suscepti-
bilities and linewidths must obey scaling laws. One of the
scaling lengths is the correlation length g as usual. The
dipolar interaction introduces the second length scale
qD '. Hence, we have two scaling variables: x = I/qg and

y =qD/q. As a consequence one gets an extension of the
static scaling law
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where y ' (x,y) are susceptibility scaling functions. Y is
a nonuniversal constant which is not given by the scaling
theory. From MC theory one derives

and

X ( )=

(4.15)

Po gt.Pa
2CPQ

(4.12a) x"(q)=
2+ 2 +g 2

The method we have followed to derive this latter formu-
la for Y is analogous to the one used in Appendix A of
Ref. 27. Then Y can be expressed in terms of the dipolar
wave vector using Eq. (4.4b):

The correlation length g follows a power law:

T Tc
Tc

(4.16)

4~qD26'Y=
a&

(4.12b)

In Table II we have listed the Y value of the four magnets
we consider in this paper.

We can write scaling relations for the linewidths using
the dynamical scaling law. We obtain

irtI (q) =Qq'f'"' (x,y), (4.13)

with z= —,'. The nonuniversal frequency scale of Eq.
(4.13) can be derived from MC theory. If the Lorentzian
approximation mentioned at Eq. (4.9) is used, one obtains

QL„= "i/ 2cFktt T—c/47' a
P

(4.14a)

where b is a dimensionless parameter which depends on
the crystal structure (see Table I) and P—=5. 1326. This
latter parameter is chosen in such a way that the scaling
functions are normalized to 1 at criticality and at qD =0,
i.e. , f' ' (x =O,y =0)= l. A proof of Eq. (4.14) is given
in Appendix B. Q„„can be written in terms of the dipo-
lar wave vector:

P gI.Ps
AL =

3~2 Qpo/4m' + king Tc7T'" (4.14b)

In Table II we list the Q„„values computed from Eq.
(4.14b) with gL =2. A comparison between the experi-
mental value Q,„and QL„shows that the energy scale of
the Auctuations is qualitatively determined by the present
MC theory. The largest difference is observed for Ni
(=30%). The crossover of the critical dynamical ex-
ponent is contained in the scaling linewidth functions

(x,y). When q is sufficiently small the linewidths
ffI ' (q, g) are proportional to q ', where z,s. is an

e6'ective critical exponent. If the spin dynamics is driven
by the Heisenberg interaction, i.e., when q »qD, z,ff

for the longitudinal as well as the transverse linewidths.
In contrast, in the dipolar regime, i.e., q «qD, z,ff is ei-
ther equal to 0 or 2 depending on whether one refers to
the longitudinal or transverse linewidth.

For a quantitative prediction of the damping rate we
need to completely specify the susceptibility and the
linewidth functions and not only their general behavior as
given by the scaling theory.

We will use the Ornstein-Zernike forms for the suscep-
tibilities

aF (q, t)
Bt

= —f drM (q, t r)F (q, r), — (4.17)

where M (q, t) is a memory function. Due to the symme-
try of the Hamiltonian, Eq. (4.5), it is necessary to
decompose the spin operator J(q) into one longitudinal
and two transverse components with respect to the wave
vector q. Then the memory functions is expressed in
terms of scalar products (Kubo scalar product) of the
time derivative of these components. The general struc-
ture of the Heisenberg equation for the longitudinal spin
operator is

BJ"(q)
at

[(q.(2k —q)+ q )J '(q —k)J '(k)],D

(4.18)

and for the transverse spin operators correspondingly.
The terms proportional to the dipolar wave vector qD re-
sult from the dipolar interaction in the Hamiltonian. In
the limit q~o they remain finite, whereas all the other
terms vanish. This reAects the fact that the dipolar in-
teraction leads to a relaxation dynamics with a noncon-
served order parameter in the limit of long wavelength.

where $0 is the critical amplitude. Notice that the
Ornstein-Zernike forms are consistent with the MC ap-
proximation. We neglect Fisher s critical exponent g.
This is legitimate for a three-dimensional Heisenberg
magnetic system. The static critical exponents for the di-
polar region are very close to the values for the exchange
region. Therefore, we take v= y /2 with v = l. 37/2
=0.69. Equations (4.15) and (4.16) show that while the
transverse susceptibility diverges at Tc when q goes to
zero, the longitudinal susceptibility remains finite. These
predictions have been checked for EuO and EuS by po-
larized neutron scattering.

The inhuence of the dip olar interaction on the
paramagnetic critical dynamics of cubic ferromagnets has
been studied quantitatively on the basis of the MC
theory. ' Here, we would like to review shortly some of
the basic assumptions. As a simple example of the appli-
cation of the MC theory, we derive at Appendix B the in-
tegral equation obeyed by the linewidth I (q) for the
Heisenberg Hamiltonian.

In deriving the MC equations one starts from so-called
generalized Langevin equations for the spectral weight
functions ' F (q, t) This lead. s to a set of two coupled
integral equations (a=L,T)
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The MC approximation amounts to neglecting a projec-
tion operator in the memory function and to performing
factorization of the four-spin correlation functions that
result from the insertion of the equations of motion, Eq.
(4.18), in the memory function. (For a refined version of
mode-coupling theory which allows for a consistent treat-
ment of the Fisher exponent q and gives some

I

justification for the above factorization procedure see
Ref. 31). Physically this approximation means that one
considers that a given mode decays into only two
modes; see Appendix B. This type of approximation
has been found to be very successful in many areas of
condensed-matter theory. In the present case it gives for
the memory function

r

280M (q, t)y (q)=2
2

d kf yUa (k )(gcrT+gaTgpr. goL)
po(gL pB ) (2m ) p

Xy~(k)y (~q —k~ )F~(k, t)F (~q —k~, t), (4.19)

I (q)= J dt M (q, t) .
0

(4.20)

Note that this approximation, which is equivalent with
the Lorentzian approximation used in Eq. (4.9), can be
justified by studying the frequency dependence of the
correlation functions and the resulting linewidths. This
additional approximation finally leads to a simplified set
of coupled integral equations for the transverse and longi-
tudinal linewidths which obey the generalized scaling
law, Eq. (4.13).

The main results derived from these MC equations are
as follows. ' At the critical temperature Tc there is a
crossover in the effective dynamical critical exponent
from z,ff=2. 5 to 2.0 for the transverse and to z,ff=0 for
the longitudinal linewidth. This is expected from scaling
theory as noticed after Eqs. (4.14). But, whereas the
crossover for the longitudinal linewidth occurs in the im-
mediate vicinity of the dipolar wave vector, the crossover
in the transverse linewidth is shifted to a wave vector
which is almost one order of magnitude smaller. This
last quantitative result is only obtained from MC theory.
Above the critical temperature one gets, as a function of
the scaling variable x, a set of curves for the linewidth,
which are parametrized by the product qDg, i.e., the tem-
perature. The deviation of these curves from the isotro-
pic (Heisenberg) result becomes larger as one is ap-
proaching the critical temperature. These predictions
have been confirmed experimentally for the transverse as
well as the longitudinal linewidth. ' Furthermore, the
frequency dependence has also been analyzed within MC
theory and agrees with neutron-scattering experi-
ments. 26'32

For the relaxation rate of the homogeneous magnetiza-

where the functions U& (k, q, q) describe the decay of
mode a into modes P and o (Refs. 4 and 5) and
r)=q k/qk. Notice that the memory, susceptibility, and
spectral weight functions depend on the dipolar wave
vector qn. These coupled MC equations [Eqs. (4.17) and
(4.19)] obey generalized dynamical scaling laws. If one is
not interested in the precise frequency dependence of the
correlation functions, it is a quite reasonable approxima-
tion to assume that the memory kernel M (q, t) decays
much faster in time than the Kubo relaxation function
F (q, t) in Eq. (4.17). Hence the Lorentzian linewidth
can be written as

tion, which can be observed in ESR and magnetic relaxa-
tion experiments, the dipolar interaction leads to a cross-
over from a "critical speeding up" in the isotropic
(Heisenberg) region to a thermodynamic slowing down in
the dipolar limit. As it has been reviewed recently, the
theoretical results are in quantitative agreement with ex-
periment. '

Applying the MC theory to hyperfine-interaction ex-
periments with a short-range interaction (like PAC), one
finds that the autocorrelation time v.~ diverges like
rc ~g corresponding to an efFective dynamic exponent
z,ff=2 in the asymptotic dipolar region. Upon leaving
the asymptotic region there is a crossover to the isotropic
Heisenberg region, where rc o- g

~ corresponding to
z ff 2.5. As in the above cases the predicted scaling
function for the autocorrelation time is in quantitative
agreement with experimental data on Fe and Ni. In the
next section we will study the case of pSR, where, in con-
trast to PAC, the interaction between the muon and the
material is no longer only short ranged.

V. PREDICTION FOR THK ZERO-FIELD
@SRDEPOLARIZATION RATE

OF ISOTROPIC DIPOLAR PARAMAGNETS NEAR Tc

Using the information given in the previous sections,
we can compute the damping rate I,, for specified mag-
nets. But before doing it, we present some general re-
sults.

We recall that in this paper we consider the muon-
lattice coupling tensor G(q) only in lowest order in q.
We first neglect the muon dipolar interaction and consid-
er the case of a pure contact interaction. Thus we have

G P(q=O)=H ~(q=O)=r&H5 ~

see Eq. (3.8). Using Eqs. (2.20) and (4.10) we obtain

po (y„r„H) k~T
4~ 2 U

r T

x'(q) q x'(q)
(2~) I (q) q I""(q) q

(5.1)

Because the susceptibility and linewidth functions depend
only on q, the integral over the angles (fdq
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(5.2)

We have approximated the Brillouin zone by a sphere of
radius qaz. If the dipolar interaction between the mag-
netic ions is negligible, Eq. (5.2) reduces to

1 Po 2kaT ~» zg(q)

where g(q) and I (q) are, respectively, the static wave-
vector susceptibility and linewidth functions for the
Heisenberg (isotropic) Hamiltonian. Using the scaling
laws for these two functions we get, when the tempera-
ture is sufficiently close to Tc, the power-law relation

T—Tc
Tc

W

(5.4a)

with the nonuniversal constant R given by

1 Po )z~, &
AY ak T

2 4~ p p p Q

X d ' 2gxy=Odx x
f'(x, y =0)

(5.4b)

with z =
—,'.

The exponent is to =v(z —1). Because we are only in-
terested in a limited temperature range above T&, T can
be safely replaced by Tc in Eq. (5.4b). Equation (5.4a) in-

dicates that the value of z can be derived from an analysis
of the temperature dependence of the damping rate.
When the dipolar interaction between the ion magnetic
dipoles cannot be neglected, it is still possible to analyze
the data using Eq. (5.4a) in restricted temperature ranges.
Then one gets effective dynamic exponents which have
direct physical meaning. But, as shown below, in pSR
spectroscopy it may be essential to properly take into ac-
count the effect of the muon-lattice dipolar interaction if
one wants to extract reliable information from the data.

We now consider the case where the muon magnetic
moment interacts with the lattice ion magnetic moments
through the dipolar and contact interactions. We first
suppose that the tensor C(q=O) is scalar as found for a
muon in a fcc crystal. Then the coupling tensor near
q=O is written (see Sec. III):

= f dq q~ fod8sin8f o"dg) can be performed. We

obtain

1 Po k~T
(y„r„H )

6~2 4' "" v

where we have defined

r H
p= +

3 4m.
(5.6b)

(5.7)

While Eq. (5.2) has been derived with the hypothesis that
the muon spin interacts with the lattice spins through the
isotropic hyperfine interaction, Eq. (5.7) has been ob-
tained supposing that the coupling is only due to the clas-
sical dipolar interaction. The origin of the relative
weight (2:1) of the transverse modes compared to the lon-
gitudinal modes in Eq. (5.2) is obvious. When the muon
dipolar interaction dominates IEq. (5.5) with H =0], the
relative weight of the modes is inverted; see Eq. (5.7).
This can be understood by counting the modes. The con-
tribution of the 5 ~/3 factor is —', from the transverse
modes and —,

' from the longitudinal modes. The q q~/q
term is only coupled to the longitudinal modes. There-
fore, its weight factor is one longitudinal mode. Hence
all together this counting of modes predicts that when
the interaction is purely dipolar, there are twice more
longitudinal modes coupled to the muon magnetic mo-
ment than transverse modes. This is exactly the predic-
tion made by Eq. (5.7).

For the numerical integration of Eq. (5.6a) it is con-
venient to introduce polar coordinates

r =(x +y )'

and (5.8)

y =arctan(y /x ),
where x and y are the scaling variables defined previous-
ly. We notice that the angle y is a measure for the tem-
perature:

y=arctan(qDg) .

Using these new two variables we derive

(5.9)

We have used the A~r(q) expression from Eq. (4.10) and
the orthogonality property of the projection operators
given at Eq. (4.6). When the Fermi contact interaction is
large compared to the classical dipolar interaction, i.e.,
~p ~

))1, Eq. (5.6a) reduces to Eq. (5.2) as expected.
On the other hand, when the Fermi interaction is negli-

gible, i.e., p = —,', we get from Eq. (5.6a)

161o z a» 2 y (q) y"(q)
27 4~ "

U o I (q) I (q)

G ~(q~O) = —4m
q qp

q

From this result we derive

8 pp kg T
z 3 4 VP

——5~ +r H5
3 P (5.5)

' —3/4

(5.10a)

(5.6a) where the nonuniversal constant 'lV is given by
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g pO Vp, fg f kB T g po y„g~ k~ Tc

347Tq 0 U 34iq 0 0

(5.10b)

8~ y 2g 3/2
'N= Qpo/4m " Qk~ Tc .

gL, Pa
(5.10c)

Using Eqs. (4.12b) and (4.14b) it is possible to give an ex-
pression of 'N which does not refer to Y and 0:

N

cD

cd

CD
C
CL
E
cd

Cl

0.01

I I I I I I I II I I I I I I

The theoretical value of %' for each of the four magnets
considered in this paper is listed in Table II. The calcula-
tions have been performed using Eq. (5.10b) with the en-
ergy scale constant given by 0,„,. A computation of 'N
from Eq. (5.10c) gives values which are compatible with
the former ones, taking into account the material param-
eter uncertainties. The lower cutoff ro is

2+g —2

qaz
(5.10d)

It can be taken as 0 in the critical region.
Following Frey and Schwabl [Ref. 4, Z. Phys. 8 71,

355 (1988)],we define the functions

LT(~)1+ f dyy 1/2X

(qD g)' "0 f' (y, y)

(5.11)

With these functions, which are presented in Fig. 10 of
Ref. 4 (with the lower cutoff set to 0), Eq. (5.10a) reduces
to

A,,='N[2p I (p)+(1—p) I (lp)] . (5.12)

Figure 10 of Ref. 4 indicates that while I (y) exhibits a
strong temperature dependence in the whole temperature
range of the critical region, I (y) is practically tempera-
ture independent for qDg) 1. Therefore, the temperature
dependence of the pSR damping rate A,, depends on the
relative weight of I (q&) and I (lp) which is controlled by
the parameter p. As has been pointed out by Yushan-
khai, " the transverse fluctuations do not contribute to k,
if r„H/4~= —

—,'. In this case A,, becomes temperature
independent near Tc. Using the previous equation we
are now going to plot A,, ( T) for different physical cases.

In Fig. 2 we present the experimental data of Nishiya-
ma et al. for metallic Ni. The solid line shows the tem-
perature dependence given by Eq. (5.12) with
'N, „,=0.30 MHz. The other parameters are listed in
Tables I and II. We have used the I ' (y) functions
computed from the MC theory. It is rewarding that the
"K,„~, and 'lH, h„, values agree within =20%. Notice that
there is no adjustable parameter for the temperature vari-
able. The dashed line shows the prediction made by Eq.
(5.2) which neglects the eff'ect of the muon-lattice dipolar
interaction. The nonuniversal parameter Q' has been
chosen in such a way that the dashed and solid lines coin-
cide at high temperature. It is obvious that it is impor-
tant to take into account the muon dipolar interaction.

0.001

0.1

I I \ I I I III I I I I I I

1 10
T-Tc (K)

FIG. 2. Temperature dependence of the pSR damping rate
for metallic Ni. The points are the experimental data of Nishi-

yama et al. (Ref. 8). The solid line is the result of the model
which takes the muon dipolar interaction into account. The
dashed line gives the prediction when this latter interaction is
neglected.

In Fig. 3 are presented our predictions for EuO and
EuS. We have used the parameters given in Table II. We
have taken 'N, &„,=5.35 and 6.87 MHz for EuO and
EuS, respectively. A comparison with experimental data
is not possible because, up to now, no such data have
been reported.

The shape of the A,,(T) functions shown in Figs. 3 and
2 are strongly different mainly because of the effect of the
interference between the hyperfine interaction and the
muon dipolar interaction for Ni. This leads to a small
value for p and therefore to a small contribution of the
transverse Auctuations to A,, at moderate low tempera-
tures. At temperatures close to Tz, (T Tc ) (0.3 K, A,,—
is predicted to increase rapidly when going down in tem-
perature. This behavior is produced by the transverse
Auctuations which contribute significantly to the damp-
ing when approaching the Curie temperature. It would
be interesting to have experimental data to check that
prediction.

We now consider the case of a muon in a bcc crystal.

I I I I I

Illa'

I I I I I IIII I I I I I III) I

10 =

I I I I I I III I I I I I III I

0.01 0.1 10
T-Tc (K)

FIG. 3. Temperature dependence of the pSR damping rate
for EuO and EuS predicted by mode-coupling theory. The
theory presented in this paper has been built to describe the
critical dynamics of paramagnets. Therefore, its predictions for
relative temperature ( T—T& )/Tc ~ 0. 1 may be questionable.
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G ~(q~0) = —4m d g~P + HgcP
A r„

q
(5.13)

From this result we derive

A,, ="lV[(p„'+p~ )I (g)

+ —,'[(1—p„)'+(I—p~)']i (q )],
with

r„H
p. =d + "

(5.14a)

(5.14b)

In metallic Fe the muon diffuses between magnetically
inequivalent interstitial sites (in Ni the sites are all mag-
netically equivalent). We will suppose that the muon
diffuses either between the tetrahedral or octahedral sites.
In a first approximation we take the diffusion into ac-
count by performing an ensemble average over the damp-
ing rates corresponding to the different possible sites.
Thus we have

Then the coupling tensor near q=O for a given site is
written (see Sec. III):

octahedral sites. For a definite statement more data are
needed, particularly near Tc. Equation (5.10b) predicts
two theoretical values for the frequency scale depending
on the (qn, go) value. The values are listed in Table II.
For the octahedral site, %',h„, (2.56 MHz) is larger than
'lV,„,(1.55 MHz) by =40%. This disagreement between
theory and experiment may not be surprising if one con-
siders that for Fe the material parameters do not seem to
be well determined (there are two sets of these parame-
ters). In fact, the @SR data give a constraint on them.
As for the case of Ni there is no adjustable parameter for
the temperature variable. We notice that most of the
data have been recorded in the crossover temperature re-
gion where A,, is not predominantly due to the transverse
Auctuations. Therefore, the meaning of the analysis of
the data with a power law such as given by Eq. (5.4a) is
questionable. The data have been recorded with the
transverse geometry. In a cubic metal such as Fe, the
transverse field damping rate and the zero-field damping
rate should be equal if the applied field is suKciently
large. ' This is probably the case for the data of Herlach
et a/. Therefore, the comparison made in Figs. 4(a) and
4(b) between the data and the theory is meaningful.

—i (g(1)+g(2)+g(3)) (5.15)

The Fe damping rate can now be computed from the pre-
vious equation with the help of Eq. (5.13a) and the C,
coe%cient given in Sec. III. We obtain

I
I I I I I I III I I I I I IIII I I I I 1111(

I [4s, +2s2]I (y)

+ [2(1—s, ) +(1—s2) ]I"(lp)[, (5.16a)

where we define

r„H
s, =C,+"

4'

0.1

CL
E
CU

Cl

0.01

Tetrahedral site

I I I I I I III I I I I I I III

and (5.16b)
0.1 1 10 100

T-Tc (K)

r„H
s =1—2C, +

4~

In Figs. 4(a) and 4(b) we present a comparison between
data recorded on metallic Fe and the theory developed in
this paper. The experimental points are from Herlach
et al. In Fig. 4(a) [4(b)] we suppose that the muon
diffuses between tetrahedral [octahedral] interstitial sites.
There are two sets of material parameters; see Table II.
For each figure, the dashed and solid lines are the result
of the theory with (q&, go) equal to (0.045 A ', 0.95 A)
and (0.033 A ', 0.82 A), respectively. In the case of the
muon diffusing between tetrahedral sites, the value of the
nonuniversal constant %'„, used for the fit is equal to
1.40 MHz for the first set of material parameters and to
2.50 MHz for the second set. In the case of the muon
diffusing between octahedral sites, the nonuniversal con-
stant 'N, „~, is found to be equal to 0.85 MHz for the first
set and to 1.55 MHz for the second set of parameters.
We observe that the second set of parameters gives a
better fit. Furthermore, a comparison between Figs. 4(a)
and 4(b) seems to indicate that the muon diffuses between

I
I I I I III[ I I I I I III) I I I I I I II(

0.01
I I I I I I I I II I I I I IIII I I I I I I I II I

0.1 1 10 100
T-Tc (K)

FIG. 4. Temperature dependence of the pSR damping rate
for metallic Fe. The points are the experimental data of Her-
lach et al. (Ref. 9). The curves are the predictions of mode-

coupling theory for different sets of material parameters. In (a)
[(b)] the muon is supposed to diff'use between tetrahedral (octa-
hedral) sites. The solid and dashed lines show the results ob-
tained with (qD, go) equal to (0.033 A, 0.82 A) and to (0.045
A, 0.95 A), respectively; see Table II.
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VI. SUMMARY AND CONCLUSION

In this paper we have established the relation between
the pSR zero-field damping rate and the susceptibility
and spectral weight functions of a magnet. This has led
us to study in detail the interaction between the muon
magnetic moment and the lattice ion magnetic moments.
We have given a formula for the q representation of that
interaction. Because of the long-range nature of the clas-
sical dipolar interaction, it is not sufficient for a fer-
romagnet to only consider the nearest-neighbor ions to
the muon.

We have reviewed the predictions made by the scaling
theory and the mode-coupling theory for the critical dy-
namics properties above the Curie temperature of a
Heisenberg dipolar ferromagnet. This has allowed us to
define the parameters and to examine the hypotheses
made by these theories.

Using mode-coupling theory we have been able to ex-
plain the paramagnetic critical behavior of the pSR
damping rate published for metallic Fe and Ni. With
previously determined material parameters, we have
computed the nonuniversal constant 'N only within
=20% for Ni (=40% for Fe). This slight discrepancy
may be explained by the uncertainties on the material pa-
rameter values. In fact, the pSR data may give a con-
straint on these values. We have accounted well for the
crossover behavior as the critical temperature is ap-
proached. We have made predictions for EuO and EuS.
Our results show that the interference between the
hyperfine coupling interaction and the muon dipolar in-
teraction has a strong effect on the measured damping
rate.

Our analysis seems to indicate that the muon diffuses
in Fe between octahedral sites when T= Tz. Because the
hyperfine field coupling constant is practically the same
at Tc and at low temperature, "we have some indication
that the muon site is the same at low and high tempera-
ture.

pSR spectroscopy can be very useful to study the criti-
cal spin dynamics of ferromagnets because the measure-
ments can be performed in zero external field (therefore
there is no problem with demagnetization field) and on
any compound (the probe is implanted in the sample). It
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APPENDIX A: q REPRESENTATION
OF THE DIPOLAR TENSOR

The purpose of this appendix is to calculate

D ~(q)= g D, ~ exp(iq r,).
a'= exp(iq r0}v g exp(iq. i),

c}r dry /r[

(A 1)

where we have used the identity r, =ra+i (see Fig. 1).
The sum runs over all the direct lattice sites.

We notice that

82 1

ar Bragi )i —x)

1

dry [r(
(A2)

Therefore, as a first step towards the evaluation of (Al),
we study g;(I/~i —x~)exp(iq. i). We follow Ewald's
method. ' ' Using the identity

/i
—x/

we can write

—J dpexp( —
~i
—x~ p ), (A3)

is now possible to analyze pSR data using the theoretical
framework presented in this paper. Therefore quantita-
tive information on the magnetic properties of the com-
pound can be obtained.

Very interesting pSR data exist on metallic Gd. ' They
cannot be analyzed with the theoretical framework
presented here because this metal has a non-Bravais and
nonorthogonal crystal structure. It would be very useful
to generalize the present work for such crystal structures.

exp(iq i)= J dp . —g exp[ —
~i
—x~ p +iq (i x)] ex—p(iq x)

1 X 0

+ g —J dpexp( —
~i
—x~ p ) exp(iq i) .

&7r p
(A4)

Following Ewald, we have divided the integrals into two regions: from 0 to p and from p to ~. Now the expression in
brackets (( ] ) in the first term is a function of x with the lattice periodicity. Hence it can be expressed as a Fourier
sum over the K vectors of the reciprocal lattice. ' ' We then easily derive

1 . . 4m —
q (K+q)

, exp(iq i) = exp exp(iq x)+
X~ vq 4p vp K (&0) 4p

exp[i(K+q) x]

+ —g y, q2(p ~i
—x~ ) exp(iq. i),

1T i

(A5)
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where v is the volume of the Bravais lattice primitive cell.
We have used the functions introduced by Misra:

(x)= f dpp exp( —px) .
1

(A6)

These functions have the following useful transformation
properties:

(x)=go(x )+ (m /x )y, (x),
a (x)= —y +,(x) .

(A7)

(AS)

APPENDIX B:
COMPUTATION OF THE 0 CONSTANT

The purpose of this appendix is to compute from the
mode-coupling theory the nonuniversal energy scale con-
stant defined by Eq. (4.13). Especially, we want to scru-
tinize its dependence on the lattice structure. The energy
scale constant can be computed by considering only the

The second and final step towards the derivation of
D ~(q) is made by taking the derivatives of (A5) with
respect to components of x [with the help of Eq. (AS)]
and then setting x= —ro. In addition, Eq. (Al) has to be
used. The result is given at Eq. (3.1) of the main text.

Heisenberg part of the Hamiltonian given at Eq. (4.2).
The effect of the dpiolar interaction is included in the
scaling function f'"' (x,y).

First we are going to compute an expression for the
memory function of a Heisenberg system. The equivalent
equation for the full dipolar Hamiltonian [Eq. (4.2)] is
given in Eq. (4.19). Upon using the Lorentzian approxi-
mation, Eq. (4.20), we will derive an integral equation for
the linewidth. The solution of this equation at T=Tc
will give us the formula for the energy scale.

In the MC approximation the memory function is re-
lated to the susceptibility function and the Kubo scalar
product as follows:

Po(gLPB )M' (q, t)=
p "(q)

(81)

where the dot over a spin variable stands for its time
derivative. The time evolution of J (q, t) can be comput-
ed from the Heisenberg equation. One obtains

2+g 2

J„(q,t)= f 3
(2k q q—)J (kt)J, ,(q —k, t) .

(2~)

(82)

Inserting the equations of motion, Eq. (82), in Eq. (Bl)
we get

M (q, t)= f f (2k q —
q )(2k' q —

q )(J (k, t)J, (k —q, t),J (
—k')J, (k' —q)) .

(83)

Following the mode-coupling method, we decouple the four-point scalar product as follows:

(J (k, t)J, (q —k, t),J (
—k')J, (k' —q))=k~T(J (k, t),J —k'))(J, (q —k, t),J,(k' —q))5&&. . (84)

(J~(k, t), J, ( —k)) =
2 ykF„(t) .

Po(gLPa )
(85)

Combining Eqs. (85), (84), and (83) we derive the equa-
tion obeyed by the memory function:

'2

M(q, t)= 2@a2

2
Po(gL, Pa )

X f u(k, q, g)y(k)y(~q —k~)(2'�)

Due to rotational symmetry in spin space all physical
quantities are independent of the Cartesian components.
Therefore, we drop the Cartesian index. A two-point
Kubo scalar product can be expressed in terms of a sus-
ceptibility and a spectral weight functions as follows:

1

po(gt. pg ) X(q)

vd kX f u(k, q, g)y(k)y(~q —k~)(2'�)

I (q)=2

Notice that, due to rotational invariance in coordinate
space, the memory, susceptibility, the spectral weight
functions just depend on k =

~
k ~.

Using Eq. (4.20) the integral equation for the linewidth
function can be deduced from the equation of the
memory function we have just derived. In addition one
has to remember that Eq. (4.20) implies that the spectral
weight function is an exponential function in time space
with the linewidth as the damping rate. Then the in-
tegral equation for the linewidth reads

XF(k, t)F(iq —ki, t),
where the vertex function is

(86a) X 1

r(k)+r(~q —k~ )
(87)

q'
'

u(k, q, g) =2 kqq— q.k
7 YJ

qk
(86b)

This expression for the linewidth I (q) has a simple physi-
cal interpretation. The relaxation rate I (q) of the fiuc-
tuations of wave vector q is given by the rate for it to de-
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cay into fluctuations of wave vector k and (q —lt), respec-
tively. The vertex strength of this two-mode decay pro-
cess is given by u(k, q, ri). Higher-order decay processes
are neglected in this mode-coupling approach.

We are now in a position to obtain an expression of the
energy scale function in the Lorentzian approximation,
QL„. At T= Tc we have, following Eqs. (4.11) and
(4.13),

Using these scaling relations in Eq. (B7), we derive

UQL„=2/a k~ Tc
4a

2

P =2rr J drif u(q, k, ri)
o q (q —k)2

and

g(q) =rq
(BS)

5/2
X

k s/z+
~ q ~

~

su (B9b)

AI (q) =QL„q'i
A numerical integration for P gives P—=5. 1326. From
Eq. (B9a) we obtain Eq. (4.14a).
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