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Order of two-dimensional isotropic dipolar antiferromagnets
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The question of the existence of order in two-dimensional isotropic dipolar Heisenberg antiferro-

magnets is studied. It is shown that the dipolar interaction leads to a gap in the spin-wave energy

and a nonvanishing order parameter. The resulting finite Neel temperature is calculated for a square

lattice by means of linear spin-wave theory.

The question of order in low-dimensional systems has
attracted the interest of theoretical and experimental
physics for a long time. It has been pointed out by Bloch
and proven exactly that long-range order is absent in
isotropic two-dimensional Heisenberg ferromagnets with
short-range interaction. The same is true for one- and
two-dimensional He (Refs. 3 and 4) and antiferromag-
nets.

In real systems one unavoidably has a dipolar interac-
tion in addition to the short-range exchange interaction,
which breaks the rotational symmetry. It has been shown
by Maleev that the q dispersion law of the isotropic
ferromagnet is modified such that a Gnite order parame-
ter exists in two dimensions. The Gnite-temperature be-
havior and in particular the transition temperature have
been calculated by Pokrovsky and Feigelman.

At first glance one might believe that the dipolar in-
teraction is unimportant in antiferromagnets due to can-
cellations because of the alternating order and it may
come as a surprise that this expectation is incorrect. A
first hint that the dipolar interaction can influence an-
tiferromagnetic behavior comes from the critical region.
There the nonlinear coupling of fluctuations of the stag-
gered magnetization and the magnetization, which is no
longer conserved, leads to a change of the critical dy-
namic exponent and of the scaling functions. In the
low-temperature phase, antiferromagnetic spin waves in-
volve the coupled precessional motion of magnetization
and staggered magnetization. Since the conservation law
for the magnetization is broken by the dipolar forces also,
the magnon frequency becomes finite at a wave vector
q = 0. Thus we will show below that (i) two-dimensional
(2D) Heisenberg antiferromagnetic order exists on sim-
ple square lattices due to the dipolar interaction, with
the spin orientation perpendicular to the plane; (ii) the
magnon frequency has a gap, the magnitude of which de-
pends on the dipolar interaction and the exchange inter-
action; (iii) the critical field for which the spins rearrange
is finite; and (iv) there is a finite Neel temperature which
is evaluated.

The Hamiltonian of a dipolar antiferromagnet reads

sI — ) ) ( j/' gg+g(pj~) sps~ g/lRso ) st
Lgl' aP

with spins St at lattice sites x.~. The first term in brackets
is the exchange interaction J~~ and the second the dipole-
dipole interaction with

(2)
3(xi —xil )(g (xi —x[1)p

Although we are mainly interested in these two terms,
we have also included a homogeneous external Geld Ho
along the z axis (g denotes the Lande factor and pii
the Bohr magneton). In a two-dimensional system with
additional dipole-dipole interaction, the rotational sym-
metry is broken; thus the Hohenberg-Mermin-Wagner
theorem does not apply.

We consider a square lattice in the xy plane with lat-
tice constant a and the spins orientated alternatingly
along the z axis. By means of the Holstein-Primakoff
transformation, the Hamilton operator can be expressed
in terms of the Bose operators (ait, ai) neglecting terms
higher than bilinear in Eqs. (3) and (4)

(at+ ait), S," = ~i (ai —ai'),
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with the coeKcients
(4)

Aq = S(2Jq, —Jq —Jq+q, ) + S(2A", —Aq —
Any+, ),

(5a)
(5b)
(5c)

(5d)

Bq = S(Jq+q, —Jq) + S(Any+, —A**),

Cq =iSA*",

Dq = iSA*" + zgp~Hc

Si' ——+(S —ai t ai),
where the upper (lower) sign is for the first (second) sub-
lattice. This transformation and a Fourier transforma-
tion yields

H = ) ( Aq ataq+ 2Bq (aq a q+ atat )
q
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In this description [Eq. (3)] the primitive cell is the
chemical, which is half the magnetic. The wave vector
qp ———"(1,1) represents the antiferromagnetic, staggered
modulation via e'q'"'. The A i are the Fourier trans-
form of the dipole tensor [Eq. (2)] and can be calculated
by the method of Ewald summation. P

The Hamiltonian (Eq. 4) is diagonalized by a gener-
alized Bogoliubov transformation with two kinds of cre-
ation and annihilation operators c,', c,",c,', c,":

H=E(0)+) ) E' c' c',
q i=i

2
i i i' i$ i i i itQq —g XLq Cq +Vq C q +Sq+q Cq+q + tq+q C q qi=i

(E') = 2i(Oi +02),
with

(8)

and

+8Cq Cq+q + 2(gpBHp)

+16(C +, (A ~, —B +,) —C (A —B )]
x [Cq (Aq+qo + Bq+qo ) Cq+qo (A.q + Bq)]
+4(gpBHO) [(Aq+ Aq+q, ) —(Bq —Bq+q, ) ].

Let us now discuss Eq. (8) in the case of primary in-
terest, namely, vanishing external field (Hp = 0). The
dipolar interaction has two effects: First, in contrast to
the isotropic case, the excitation spectrum is no more de-
generate; i.e. , two different branches appear. Second, it
produces an energy gap for q —+ 0,

Ep = 2S A" —A (Jq, —Jp) —(Ap —A")

with

(9)

Af~ = 2(A*„*+A"„").

In Fig. 1 the dispersion relation is shown for three val-
ues for the ratio of dipolar and exchange energy x =
4~&~, with isotropic nearest-neighbor exchange interac-

tion (J ( 0). The two branches can be resolved only
for large values of K. For more realistic ratios (10 s) the
two magnon branches practically coincide, but a signifi. —

cant deviation from the pure exchange case still remains

[cI,cq ] = 6v q 6i [c~,cq] = [c~,cq ] = 0,

with wave vectors restricted to the magnetic Brillouin
zone. Here E(0) is the ground-state energy. The spin-
wave energies then assume the form

FIG. 1. Spin-wave dispersion relation [Eq. (8)] of pure
exchange antiferromagnets with nearest-neighbor interaction
(solid line) and with additional dipolar interaction (S = 1/2),

( )'for the ratios of dipolar energy to exchange energy K =
along the —[(,$, 0] direction: K = 0.1 (dashed line), K = 0.01
(dot-dashed line) and K = 0.001 (dot-dashed-dashed line).
The splitting of the two magnon branches is visible only for
K = 0.1.

For dipole interaction alone the system would order with
the magnetization in the plane. Thus the dipolar energy
difFerence between in-plane and out-of plane orientation
must be exceeded by the exchange energy in order to fa-
vor the assumed configuration. In particular, the gap is
proportional to the square root of the difference of the
static energy between the configurations of in-plane and
out-of-plane magnetization. In a three-dimensional sim-
ple cubic lattice the first root in Eq. (9) vanishes because
of the symmetry, but in two-dimensional systems there
is a finite gap for perpendicular antiferromagnetic order.
We note that for suKciently large exchange energy the
gap is the geometric mean of dipole and exchange energy,
which in turn implies that the gap is much larger than
the dipolar energy for e (( 1.

Let us add some comments on the interplay of ex-
change and dipolar interaction. The former imposes the
antiferromagnetic order, while the latter leads to the ori-
entation perpendicular to the plane and prevents thermal
fluctuations from its destruction. To exhibit more clearly
the physical origin of the energy gap and its principal
dependence on dipolar and exchange interaction, we ex-
hibit the equations of motion for the spin components.
Approximating the longitudinal part (z component) by
S&' —Seiq'"' and specializing to g = 0, the equations
for the transverse components become

Sp = (Ap —Bp)Sq, , (10a)

S", = —(Ap + Bp)Sp, (10b)

with an analogous set for the Sz component. The co-

in the immediate vicinity of the zone center. The argu-
ment of the first square root in Eq. (9) for the gap equals
the difference of dipolar energy for out-of- and in-plane
staggered orientation and is positive. Thus stability of
the ground state requires
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efficient on the right-hand side of Eq. (10a) assumes a
finite value in contrast to pure exchange antiferromag-
nets where S* is conserved. Thus the coupled motion of
Sp and S~ leads precisely to the finite-energy gap Ep
[Eq (9)]."

From the spin-wave energy [Eq. (8)] we can calculate
the critical field for which the antiferromagnetic Neel
state gets destabilized by a magnetic field. It is given
by the field Ho for which the energy (q = 0) vanishes:

Hp ——

Now we turn to Nih(T), which is divergent for pure
exchange antiferromagnets, implying the absence of an-
tiferromagnetic order in this case. The small wave-vector
approximation in Eqs. (13)—(15) is not accurate for tem-
peratures near the phase transition, but it is sufBcient for
our crude estimate. From Fig. 1 it becomes clear that
the regime of small wave vectors is essential for the cal-
culation of the sum. The existence of a nonvanishing gap
makes the sum convergent and allows a phase transition
[Eq. (12)] at a finite temperature T~.

Nih(Tiv) = mo —Np = b' (16)
Hence the critical field is proportional to the energy gap.
In 2D the anisotropic dipolar interaction stabilizes the
antiferromagnetic configuration in an external field up to
the above value.

Now we turn to the evaluation of T~, the transition
temperature for a vanishing external field, i.e. , the tem-
perature at which the staggered magnetization vanishes.
We use linear spin-wave theory; i.e. , interactions be-
tween magnons and temperature renormalization of the
magnon energy are neglected. This approximation is jus-
tified at low temperature and should lead to an order-of-
magnitude estimate of the main dependence on exchange
and dipolar interaction. The staggered magnetization
then reads

Eo Ko —b

p A'gyT~ g k~T~ 1 (17)

for T~ with b =
&

~b'. In the limit of vanishing gap2gp, gN
(Ep —+ 0) we recover again the impossibility of a phase
transition. From Eq. (17) an asymptotic solution for
small dipole energies can be derived:

After replacing the sum in Eq. (14) by an integral and the
Brillouin zone by a circle of the same area, the evaluation
leads to the following implicit equation (the upper bound
of the integral is set to infinity):

N(T) = gpa NS —) (ai ai) = mo —No —Nih(T)
l

b

kgb ln bbb.

D
ln—0 (18)

We now consider isotropic nearest-neighbor exchange
(J & 0) and focus only on the limit of small wave vectors
and small dipolar energies (r (( 1). The deviation of the
ground-state magnetization due to thermal excitations
then takes the form

D
Nth(T) = gpB ) (14)

and the deviation, originating from the zero-point oscil-
lations,

1 - DNp= —gp~) ~

. —1
2 - i,E'

i,q

(15)

(»)
Here, N denotes the number of lattice sites. This sum is
calculated by means of the transformation [Eq. (7)] and
requires the evaluation of the coeKcients u~, v~, sz, t~,
which are complicated functions of the the coefficients
in Eqs. (5a)—(5d). The number of thermally excited
magnons Nih(T) can be expressed in terms of the mean
number of excitations,

i
(

i i) Z'/k~T
—1

We now compare our results with experiments on
K2MnF4 for which the spin-wave dispersion has been
measured. KzMnF4 is a quasi-two-dimensional antifer-
romagnet with the spin orientation perpendicular to the
ab plane, a transition temperature T~ = 42 K, and an
exchange energy

~
Ji~ = 8.7 K (S = 5/2). An energy

gap of Ep ——7.5 K is observed. Evaluation of the energy
gap via Eq. (9) yields Ep = 7.6 K, which is in remarkable
agreement with the experimental result. Solving Eq. (17)
with the zero point deviation Np = 0.2&gjlgy, our esti-
mate for the transition temperature becomes T~ ——112
K, which is too large by a factor of 3. It will be lowered
if instead of the small wave-vector expansion the correct
dispersion relation [Eq. (8)] shown in Fig. 1 is used in
the evaluation of Nih [Eq. (14)]. Furthermore we have

neglected the interaction of magnons, which will be im-

portant at higher temperatures and will lower T~. This
could be treated by more elaborate theories, e.g. , Ref. 14,
but goes beyond the scope of this paper.

In summary, we have shown that two-dimensional an-
tiferromagnetic order is possible due to the dipolar inter-
action.

with D = 8S~ J~ and Ez = gD a q~/2+ Ep2. The zero-
point deviation Np has a finite value 2 for the pure ex-
change interaction already, and is effected only negligibly
by the dipole interaction. The dipole interaction favors
the antiferromagnetic order and leads to a reduction of
Np of order K.
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