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Diluted and random-bond Ising model for the Fe-Al disordered alloys
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A quenched disordered Ising model with a distribution function that includes dilution and random
bonds is studied through the mean-field renormalization-group approach. Random bonds are considered
through a ferromagnetic exchange interaction between nearest-neighbor spins (NN) and an antiferro-
magnetic exchange interaction between next-nearest-neighbor spins (NNN). The phase diagrams are ob-
tained and the results are applied to Fe-Al disordered alloys.

I. INTRODUCTION

The magnetic and structural properties of Fe-Al alloys
have been experimentally studied by several authors. '

These works have shown that the bcc structure of these
alloys is ferromagnetic and disordered up to 20 at. % Al
in iron, independent of the heat treatment. When the al-
loys are fast quenched from 700'C the nonstoichiometric
FeA1 structure type is obtained from 20 to 50 at. % Al;
however, if they are very slowly cooled the non-
stoichiometric Fe3Al structure type is obtained from 20
to 33 at. % Al and the nonstoichiometric FeA1 structure
type is obtained from 33 to 50 at. %%uoA1 . Th eFe3A 1 and
FeA1 structure types can be considered as two interlock-
ing simple cubic sublattices, in a way that for the FeA1
structure one sublattice is occupied by iron atoms (Fe
site) and the other by aluminum atoms (Al site), and for
the Fe3A1 structure the aluminum site is occupied by four
Fe atoms and four Al atoms.

The experimental values of the average magnetic mo-
ment p, extrapolated to 0 K, as a function of Al concen-
tration q follows a simple dilution model until 20 at. %
Al. For larger concentrations p shows a rapid decrease
in the range 0.25 & q & 0.30, followed by a slower de-
crease to zero at q=0.40. The same anomalous behavior
is shown for p as a function of the number of Al NN as
well as for the e6'ective hyperfine field with the Al con-
centration and the NN number.

To explain this anomalous behavior Arrot and Sato
proposed a ferromagnetic-antiferromagnetic transition
near the critical concentration. This hypothesis has not
been confirmed by the neutron scattering experiments of
Pickart and Natharis. Vincze and Srinivasan et a7. ' in-
terpreted this anomaly by considering that the Fe mag-
netic moment decreases with the increase of Al NN.
Huffman proposed a ferromagnetic-mictomagnetic tran-
sition when T decreases, hypothesis experimentally
confirmed by Shull, Okamoto and Beck." Shiga and
Nakamura proposed a spin glass as the low-temperature
phase for these ordered alloys near the critical concentra-
tion.

Some theoretical studies have been done in order to in-
terpret the magnetic behavior of these ordered al-
loys. ' ' Shukla and Wortis' using the model pro-
posed by Sato and Arrot' and postulating a spin-glass

behavior that arises by virtue of competition between a
nearest-neighbor (NN) Fe-Fe ferromagnetic exchange J
and next-nearest-neighbor (NNN) antiferromagnetic su-
perexchange given by —o.J, obtained an acceptable fit to
the experimental phase diagram. They used the decima-
tion technique proposed by Kadanoft' and Houghton. '

Grest' assuming the previous model and calculating by
Monte Carlo method, has studied the transition from fer-
romagnetic to spin glass in these alloys as a function of q.
Some differences between this calculation and the experi-
mental results were obtained.

More recently Perez Alcazar and Galvao da Silva'
have reported an experimental study of Fe-Al alloys by
Mossbauer spectroscopy at room temperature (RT). By
an adequate heat treatment they obtained Fe-Al disor-
dered alloys in the range 0 &q &0.5. At RT these alloys
are all ferromagnetic and do not show the anomalous be-
havior of the ordered ones. Quite good fits of these ex-
perimental datas have also been obtained by using a sim-
ple site diluted Ising model. '

The mean-field renormalization-group method
(MFRG) was proposed by Indekeu, Maritan, and Stella'
for calculating critical properties of lattice spin systems.
Droz, Maritan, and Stella' applied the MFRG method
to the study of dilute, random fields and the symmetric
random-bond Ising model. The asymmetric random-
bond Ising model has been treated by Lyra and
Coutinho using a fenomenological coxnpetition parame-
ter e. They obtained symmetric phase diagrams for a=1
and asymmetric ones with reentrancies in the ferromag-
netic or antiferromagnetic boundaries depending on the a
value. Recently, Rosales Rivera, Perez Alcazar, and
Plascak ' have studied a diluted and random-bond Ising
model with a probability distribution for the coupling
constant between the pair of nearest-neighbor spins
which includes the concentrations p, x and q for the fer-
romagnetic, antiferromagnetic and diluted bonds, respec-
tively. For q =0, the results are identical to those ob-
tained by Lyra and Coutinho in the Ising limit and for
x =0 the equations for the diluted model studied by
Droz, Maritan, and Stella' are recovered.

In this work we report the theoretical phase diagrams,
calculated by the MFRG method, for a type of diluted
and random-bond Ising model in which the ferromagnet-
ic and antiferromagnetic bonds are taking in the NN and
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NNN interactions, respectively. Then we discuss the ap-
plication of this theoretical model to the binary Fe-Al
disordered system.

II. MODEL SYSTEM

In order to obtain the phase diagrams for this
quenched disordered model, we assume a diluted and
random-bond Ising spin model with NN and NNN in-
teractions. The Hamiltonian for this model can be given
by

and

P(K; )=p5(Ki K)+q. —5(KJ-), (2)

P(K~ )=p5(KJ. +aK)+q5(KJ ) (3)

for the reduced NN coupling and the reduced NNN cou-
pling, respectively. Here p is the ferromagnetic or anti-
ferromagnetic bond concentration and q = 1 —p is the di-
luted bond concentration. a is the fenomenological com-
petition parameter.

III. PHASE BOUNDARY EQUATIONS

In order to obtain the phase boundary equations and
the phase diagrams, we used the MFRG, ' by considering
the one- and two-particle clusters. In the MFRG the in-
teraction within the clusters are treated exactly and that
of the neighboring spins are treated by a mean field act-
ing on the spins of the cluster boundary. In this way the
Hamiltonian for the one- and two-spins clusters are
given, respectively, by

H, = —g b Kl;o, —g b'Klj'a,
1=1 J=1

(4)

H= —gK;cr;cr —gK o;o J,
(ij ) (i j)

where K; =J, /kjiT "and K,"=J,.*/k&T are the reduced
coupling constants between NN spins (ij ) and NNN
spins (i,j), respectively, and o.; =+1. For the diluted and
random bond we use, the probability distributions

z —1

(o.2) —g K2;b2;+ g K2;b2;

(o., ) =h'K' p'(z+a' s),
( cr ) =hpK [(z —1)+a s] [p tanh K + 1] .

(10)

In order to obtain the equations of the critical lines we
used the recursion relations between the order parameter
according with the standard MFRG. But the complete
renormalization fiow in the (K,p, q, a) space cannot be
fully determined by the equations for ( o ) and ( cr ) .
Then we studied the fixed point solutions K' =K =Kc in
the subspace u =a' and p =p'. We then get

(z —as)/(z —1 —as) = 1+p tanhKc, (12)

which gives the ferromagnetic (upper sign) and the anti-
ferromagnetic (lower sign) phase boundaries and

1/(z —1+a s)=p tanh Kc, (13)

for the spin-glass boundary. For a=0, Eq. (12) is identi-
cal to that obtained by Droz, Maritan, and Stella' for
the diluted model.

z —1 S

+ g K,,b, +.g Kljb, tanhK, 2 .
j=1 j=1

To perform the configurational average ( . . ) we as-
sume that the E; and b; are independent random vari-
ables with symmetry conditions for the effective magneti-
zation and the staggered magnetization given by:
b,'=b. ;b, =b and b2 =+b, where the sign +( —

) holds
for the ferromagnetic (antiferromagnetic) order parame-
ter. We then get

(o, ) =p'K'b'(z —a's),
(cr2) =pKb (z —1 —as)(1+p tanhK) .

To obtain the spin-glass order parameter we use the
relations proposed by Lyra and Coutinho: b

i ~j ~ij & bmj & bmi Ij ~m16ij . With these
conditions the Edwards-Anderson spin-glass order pa-
rameter for each cluster can be obtained by squaring
Eqs. (6) and (7), respectively, and performing the
configurational average; that is

z —1 z —1

2 K12ala2 g K lib lia 1 Q K2j 2j o2
i =1 j=1

IV. THEORETICAL PHASE DIAGRAMS
AND DISCUSSION

—g K*„b„o., —g K2jb2 o2, .
i =1 j=l

where z and s are the NN and NNN numbers, respective-
ly, and bj and b (rn =1,2) are the effective fields acting
on the respective boundary cluster. The magnetization
per spin of the one- and two-spin clusters for small
effective fields are given, respectively, by

(o., ) = g K'„b + g K, 'b',

Figure 1 shows the phase diagrams in the Tc (p)/rc (1)
against concentration p, for z =8, s =6 and two typical
competition parameters +=0.2 and o:=0.5. Where we
have normalized the temperatures with the critical tem-
perature rc (1) obtained for a=0 (diluted model). These
NN and NNN values correspond to a bcc lattice. From
this figure it can be noted that with these parameters the
ferromagnetic, paramagnetic, and spin-glass phases are
obtained. The antiferromagnetic phase is not stable for
these conditions and this can be proved with Eq. (12)
which shows that this phase is obtained only for a values
larger than 1.17 which gives an impossible physical situa-
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FIG. 1. Diluted and random-bond phase diagrams for
different values of the competition parameter a.

tion with NNN coupling larger than that for NN cou-
pling. We can see that the ferromagnetic region de-
creases and, the spin-glass region increases when the
competition parameter a increases. Also we can note
that the width of the spin-glass phase at T =0 enlarges as
a increases. All these facts can be understood with the
knowledge that the n increase produces a larger antifer-
romagnetic bond which reduces the critical
paramagnetic-ferromagnetic temperature and increases
the competition between the two types of bonds stabiliz-
ing in this way the spin-glass phase until p =1. This is a
consequence of the constant o. value, that permits the
competition between the ferromagnetic- and antiferro-
magnetic interactions also until p = 1.

The antiferromagnetic phase does not appear, because
a pure antiferromagnetic region is impossible to find
when ferromagnetic bonds between NN spins are always
present. We found analogue results for the sc structure
(z =6,s = 12). From Eqs. (12) and (13) we can prove that
for a =0.652 only paramagnetic and spin-glass phases ap-
pear in the phase diagram. For a=0 we obtained a typi-
cal diluted ferromagnetic phase diagram with only
paramagnetic and ferromagnetic phases and a critical
concentration p, = 1/7 for T =0 K.'

V. APPLICATIQN TO THE Fe-Al DISORDERED ALLOYS

For the Fe-Al disordered alloys system we obtained the
phase diagram using Eqs. (12) and (13), and postulating
for the competition parameter an expression given by

a= Apq . (14)

Some experimental evidences reinforce the choice of
this model and this competition parameter. (1) It was
shown experimentally' that these alloys, following an
adequate heat treatment, can be obtained in a disordered
bcc phase, thus we can use a random model. (2) In the
Fe-Al ordered alloys the Al atom does not have magnetic
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FIG. 2. Diluted and random-bond phase diagrams for a=pq
and two different types of exchange interaction given in the text.

moment but it contributes to the production of an anti-
ferromagnetic superexchange bond between Fe atoms
separated by it. Then we can suppose a model with dilu-
tion and ferromagnetic exchange between NN atoms and
dilution and antiferromagnetic exchange between NNN
Fe atoms. (3) The Fe-Al system is completely ferromag-
netic for p =1 and not magnetic for q =1, respectively.
Also, for amorphous alloys the NNN interaction has a
maximum value which is one order of magnitude smaller
than that between NN. Experimentally, for Fe-Al disor-
dered alloys it was shown that the relation between the
Al interactions is lest than 0.2. Then we postulate for a
the relation (14), where A is a parameter to be adjusted in
accord with the experimental datas. Amorphous and
disordered magnetism are very similar. For the Fe-Al or-
dered alloys Shukla and Wortis' used a constant a value
given by o;=0.14 and Grest' used a value +=0.4. These
results favor strongly the choice of the Hamiltonian mod-
el (1) and the probability distribution (2) and (3) in order
to describe in a more complete way the magnetic proper-
ties of disordered Fe-Al alloys.

Figure 2 shows the phase diagrams obtained from Eqs.
(12) and (13) using a competition parameter given by
a= Apq, with A =1. The phase diagram with large fer-
romagnetic and spin-glass phases (dashed lines) were ob-
tained using a constant exchange parameter. In order to
take into account the increases in the lattice parameter
produced by the Al atoms we use an exchange parameter
that changes with the Al concentration in the form
J=J(q)=J, —Joq (Ref. 17) and so, we obtained the
smaller ferromagnetic and spin-glass phases showed in
Fig. 2 (solid lines). The adjusted values of these parame-
ters were J& =12.846 meV and Jo/J] =0.95 ~ We can
note that this change in the exchange parameter reduces
the critical ferromagnetic-paramagnetic and spin-glass
paramagnetic temperatures. Below the paramagnetic-
ferromagnetic transition curve we do not find a spin-glass
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phase because the antiferromagnetic exchange parameter
goes to zero when p increases, and then there is no com-
petition.

Finally, in order to obtain a quantitative comparison of
the present theoretical results with experimental datas,
we show by dots in Fig. 3 the experimental critical tem-
perature for the transition ferromagnetic-paramagnetic as
a function of p obtained by Mossbauer spectroscopy. ' In
this figure we also show the theoretical phase diagram us-
ing Eqs. (12) and (13), with an exchange parameter J(q)
given previously and the competition parameter given by
a= Apq. The best agreement with the experimental data
was obtained for A =0.2. In this case the spin-glass
phase is stable only for low temperatures, less than 20 K,
and low Fe concentration, between 14 and 15.5 at. % Fe.
This can be seen in the inset of Fig. 3 and is a conse-
quence of the small a value.

In conclusion, we can see that the present model, al-
though simple, can give a theoretical point of view of a
diluted and random-bond Ising model, with ferromagnet-
ic and antiferromagnetic interactions in the NN and
NNN, respectively. Previously theoretical reports for
this model, consider ferromagnetic- and antiferromagnet-
ic interactions only in the NN. The present model postu-
late the paramagnetic, ferromagnetic, and spin-glass
phases for a values varying from 0.0 to 0.652. For o.
values between 0.652 and 1.67 we have only spin-glass
and paramagnetic phases and for a& 1.67 the antiferro-
magnetic phase appears. Otherwise, values close or
larger than 1.0 are not physically possible. When we ap-
plied this model to the Fe-Al disordered system including
some experimental reports, we obtained good agreement
with the experimental ferromagnetic-paramagnetic tran-
sition temperature. This good agreement also was ob-
tained using a simple site diluted Ising model' consider-
ing only ferromagnetic NN interactions, so the antiferro-
magnetic superexchange between NNN reported for Fe-
Al ordered alloys was not taken into account. Our model
considering the superexchange supposes that all NNN in-
teractions are antiferromagnetic and we show that in the
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FIG. 3. Phase diagram for the binary Fe-Al disordered
phase. The dots represent the experimental result of the fer-
romagnetic (F) to paramagnetic (P) transition. The solid lines
represent the theoretical results according to the present model
and with a=0.2pq and the parameters previously reported for
this system.
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Fe-Al disordered alloys it is possible to have spin-glass
phase for low temperatures and Fe concentrations. Ex-
perimental work at low temperature is now in progress in
order to complete the phase diagram for this system and
to prove the existence of the spin-glass phase.
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