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Coupled-cluster method for quantum lattices:
Application to square S= —' Heisenberg antiferromagnets
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A coupled-cluster formalism similar to that used in electronic-structure theory is developed for
quantum-mechanical systems localized to sites on a lattice. It is shown how diagrammatic methods may
be used to represent the cluster contributions in a convenient and systematic manner. The formalism is

applied to the square S =
~ Heisenberg antiferromagnet, yielding with minor computational effort re-

sults of quality comparable to those from computationally intensive quantum Monte Carlo calculations.

I. INTRODUCTION

The widespread success of the coupled-cluster method'
in electronic structure calculations makes it of interest to
examine the possibility of its application to quantum sys-
tems on lattices. This possibility has been identified by
Roger and Hetherington and initial calculations have
been reported by them, by Bishop, and by Bishop, Par-
kinson, and Xian. " However, these calculations were
carried out without the explicit development of a formal-
ism that. would eludicate the identification of cancelling
contributions and assist in systematizing and simplifying
the algebra. Such a formalism must recognize that lattice
problems differ from that of mobile fermions due to the
antisymmetry requirements in the latter case. This paper
derives coupled-cluster equations for lattice problems in a
diagrammatic formulation which is similar in spirit, but
different in detail from that used in electronic structure
theory. We illustrate the use of the equations by apply-
ing them to the S= 1/2 Heisenberg antiferromagnet.

For simplicity we discuss the coupled-cluster formal-
ism for a system of S =1/2 spins on a square lattice with
nearest-neighbor interaction. Extension to other systems
introduces more complexity but is conceptually straight-
forward. At each lattice point p we assign a reference
wave function P„(called a hole state), and note that in the
two-dimensional spin space at that lattice point there will
be one other state P„(a particle state) orthogonal to P„.
It is convenient, but unnecessary to assume that P„ for
different sites p are the same or simply related. From the
P„we build a reference many-spin wave function
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an antiferromagnet. If we form a matrix element
& qtlHl%" &, where 'll and qj' are products of single spin
states (but not necessarily @), the use of Eq. (2) reduces it
to a sum of two-body matrix elements of types
&pvlhlpv&, &pvlhlpv'&, &pvlhlp'v&, . . . , &p'v'Ihip'v'&.
We wish to represent the possibilities diagrammatically,
and do so by letting the presence (or absence) of a line la-
beled p refer to the presence (or absence) of a particle-
hole pair at site p, i.e., the state p' (or p). If the two-body
matrix elements are thought of as inducing particle-hole
transitions, they then correspond to diagram fragments
such as those shown in Fig. 1. As in fermion theory,
"bubbles" are used in matrix elements where a hole state
appears in both left and right half-brackets. There are
three main differences between the present representation
and that most often used in fermion theory: (i) since a
particle and a hole of the same index (i.e., on the same
site) must be created or destroyed together, one line
suffices to represent both; (ii) the lack of antisymmetry
makes it inappropriate to drop index restrictions (in Fig.
I, p and v must be distinct); however, we retain the usual
convention that unlabeled closed lines (those connecting
two operator fragments) are summed over all labels, but
observing the restrictions; and (iii) there are no "energy
denominators" in the present formulation.

1 1H= —g h (p, v) =—Jg n„s„.s
PV pv

(2)

where s& and s are spin operators, n„ is unity if p and v
are nearest neighbors and zero otherwise, and J is a con-
stant we shall assume to be positive, so Eq. (2) describes

where the product is over all lattice sites.
The Hamiltonian H for our system is assumed to be of

the Heisenberg form

0

FIG. 1. Diagram fragments of 0: (a) all those that conserve
spin in the S = 1/2 antiferromagnet with a Neel reference state,
(b) all others. Below each diagram in (a) is its value in units of
A J for the H of Eq. (2), with p and v nearest neighbors, Neel
reference state.
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II. THEORY

The coupled-cluster wave function is obtained from the
reference wave function by applying a cluster operator
exp( T), with

T=gT„,

where T„ is a cluster operator for n spins, and the sum
over n is truncated at a point determined by practical
considerations (in the example to be presented, our most
complete calculations are cut off after n =6). The T„are
defined as follows:

T, = gt„At,
p

(4)

1T3= —, g r„„,A„A A~,
pvX

where A~ is a particle-hole creation operator for site p.
We note that all A for different sites commute, and
A „~p') =0. The t„,t„, . . . are coefficients that are
determined as described below. The diagram fragments
representing cluster operators are shown in Fig. 2.

In the coupled-cluster method, the energy and the t
coefficients are determined by multiplying the
Schrodinger equation, H exp(T)N=E exp(T)@, on the
left by exp( —T) and requiring the satisfaction of its pro-
jections against N, N„= A„N, @„=A„A N, . . . . The
projection against N yields a formula for the energy:

&@le He I+ &=E .

Each projection against a @„yields an equation for
the t coefficients:

(@„~e He ~C&) =0 (each p, ),
(4„,e He ~4) =0 (each pv). . . .

(6)

In general, if the coefficients for clusters through T„are
to be determined, the equations needed for this purpose
will involve projections on N„with up to n indices.
Since E does not appear in Eqs. (6), a useful strategy will
be to solve Eqs. (6) for the t coefficients and then to evalu-
ate Eq. (5).

The quantity exp( —T)H exp(T)4& may be written in

V

&pv tp.vX,

FIG. 2. Diagram fragments of cluster operators of sizes 1, 2,
and 3. Below each is shown its value.

terms of a series of nested commutators:

e He N =H&b+ [H, T]@+ —, [ [H, T],T]@1

+ —[[[»T]Tl T)@+1
(7)

Equation (7) is a starting point for the diagrammatic eval-
uation of Eqs. (5) and (6). To proceed, we note that suc-
cessive operations on @ by cluster operators and the
Hamiltonian correspond to all diagrams that can be
formed when the included operator fragments are placed
in a vertical order (bottom to top) corresponding to the
operator string (right to left), with no lines extending
below the lowest operator. Moreover, when the lines are
labeled, the index restrictions require that there be no la-
bel duplication at the same vertical position; in the
language of fermion theory, there can be no "exclusion
principle violating" (EPV) diagrams.

We discuss now the evaluation of the terms of Eq. (7),
staring with [H, T]4=HT4 TH@. —We note (i) all dia-
grams of TH N are disconnected, while HTN is
represented by both disconnected and connected dia-
grams; (ii) because there are no energy denominators,
disconnected diagrams with the same structure and label-
ing will have the same value irrespective of the operator
ordering; and (iii) some labeled diagrams of TH% would
become EPV if the order of T and H were interchanged,
but all the other diagrams of TH& are equal to corre-
sponding disconnected diagrams of HTN and cancel all
the disconnected HT@ diagrams. We therefore conclude
that [H, T)N is represented by all connected diagrams of
HT4 minus all disconnected diagrams of HT4 which
are EPV by virtue of index duplication between the
disconnected parts. We need a diagrammatic notation to
indicate the requirement that two disconnected diagram
parts must have an index duplication. We show such a
notation in Fig. 3. If we now generalize "connection" to
include these "EPV connections, " we retain the simple
prescription from fermion theory that [H, T)4 is
represented by the sum of the "connected" diagrams of
HT4.

vv

V--a

V

v
+ o--a o--a

FIG. 3. Examples of the notation for "EPV connected" dia-
gram and the labelings and signs thereby implied. The horizon-
tal arrow indicates that one or more of the labels on the open
line(s) it traverses must also be attached to traversed closed lines
in all distinct ways, and each resultant diagram must have its
sign changed.
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Continuing now to the multiple commutators, we see
that [[H, T],T]4 is represented by the "connected" dia-
grams of [H, T]T@and therefore by the "connected" di-
agrams of HTTN. The result generalizes to higher com-
mutators; we note that because H has but two labels,
there can at most be two EPV connection lines, and that
EPV connections only result when a line from H is closed
(terminates on a T fragment). Thus, an H fragment can
at most tie together four T fragments, meaning that con-
tributions from the series in Eq. (7) terminate with the
fourfold commutator.

The coefficients in Eqs. (4) and (7) are such that if all T
fragments are drawn at the same vertical position, the
right side of Eq. (7) is represented by the sum of all dis-
tinct legitimate labelings of aB "connected" diagrams
which are distinct (distinctness implies nonsuperposabili-
ty even after interchange of equivalent connections or
horizontal distortions, including left-right reversal).
Therefore, Eq. (5}, which involves the 4& component of
Eq. (7), gives E as the sum of all distinct closed "connect-
ed" diagrams containing one H fragment and below it
zero or more T fragments. For each 4„,the corre-
sponding Eq. (6) requires the vanishing of the sum of all
distinct "connected" diagrams containing one H frag-
ment and below it zero or more T fragments, with open
lines at the top bearing labels pv. . . .

III. APPLICATION

Specializing to the illustrative example, we take the
reference state 4 to be the Neel state, with individual
spin states s, =A/2 on a sublattice consisting of half the
lattice sites, and individual spin states s, = —A/2 on the
sublat tice consisting of the remaining sites, with all
nearest neighbors on different sublattices. The Hamil-
tonian of Eq. (2) then causes the five diagram fragments
in Fig. 1(a), with p and v nearest neighbors, to have the
respective values shown there (all energies in this paper
are stated in units of fi J). All other matrix elements of
H vanish.

The requirement that S„ the z component of the total
spin, be conserved limits the cluster operators T„ to even
n, with half the indices of each t„on each sublattice.
The diagrammatic equation for E is therefore that shown
in Fig. 4(a). The first diagram gives the energy of the
reference state, i.e., the Neel energy. For an N-site sys-

tern, this diagram occurs for 2N distinct nearest-neighbor
pairs, so EN;, ~

=2N( —1/4) = —0.5N, or (per site)

EN;,&/N = —0.5. The other diagram of Fig. 4(a) gives
the remainder of the energy; it also occurs for 2N distinct
nearest-neighbor pairs. If we assume that all t coefficients
have values that depend only on the relative geometry
(but not on orientation) and denote the t„, for nearest
neighbors tz, [the indices refer to the cluster size and
geometry (see Fig. 6)], this diagram contributes
2N (+ 1/2)t2 „or simply t2, per site. Summarizing,

0--6 — 0--a
v

V0--0
v 4 V

V0--0

4 v 4 v

(b) 0.-
2, 1

-a + 2I

E/N= —0.5+t2 i .

Although the energy depends only on the cluster
coefficient t2 &, that coefficient ultimately depends upon
contributions from clusters of all sizes and geometries.
Actual computations will require a cluster-type trunca-
tion.

The diagrammatic equation for T2 is shown in Fig.
4(b). Before evaluating this equation it is helpful to rear-
range it by expanding the EPV diagrams and then replac-
ing the resulting disconnected diagrams by connected di-
agrams to which they are numerically equal. The process
is illustrated for the first EPV diagram in Fig. 5(a}. A
similar process for the other EPV diagram is presented in
Fig. 5(b). Then, combining similar diagrams and rear-
ranging, the T2 equation can be brought to the form
shown in Fig. 5(c). Continuing with the assumption that
the t coefficients depend only on relative geometry, we
now evaluate all the diagrams except those labeled F„
and 6„, obtaining for each diagram the value written
below it. The values for the third and fourth diagrams
reAect the fact that the bubble can have four equivalent
label assignments unless p and v are nearest neighbors, in
which case only three label assignments are available.

(a) E — o---~ +
(c) + 2t„, -- - + (2-2t )2, 1

V

+ (2-2t, , )

(b)

V

+ ---- +

V

+

+ o--a

0

'7

2, 1 4v

4v

—
2( - 21)(4-~„„)t4v

V

G4v

—.(1-t2.1)(4 n v)t4v

0

FIG. 4. Diagrammatic equations for (a) E and (b) T2, for the
S =1/2 Heisenberg antiferromagnet with Weel reference state
{for details, see text).

FIG. 5. (a) and (b) Reduction of the EPV diagrams of Fig.
4(b); {c) result of substituting from (a) and (b) into the equation
of Fig. 4(b), with values shown under the diagrams.
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The equation represented by Fig. 5(c) can be rearranged
to our final computational form:

(1+t2, )n„
pv 6

(F„+G„)
(4—n„)(1 —t, )

(9)

2,1 '2,3 2,4 2,5 2,6
'

2,7

2,8 t gg 2,10 2,11 2,13

~ ~
~ ~

~ ~

The symbol n„was defined in Eq. (2).
Each choice of labels p, v in Eq. (9) yields a separate

equation; there will be one independent equation for each
relative geometry. It wi11 be found that t„, rapidly be-
comes smaller with increasing distance between sites p
and v, so that only a few relative geometries actually have
non-negligible t„. The geometries and the identification
numbers we have assigned to them are shown in Fig. 6.
The diagram F„can now be evaluated as the sum over
index numbers i,j of —,'t2, t2 . times the number of ways
the displacement 2, i from p and the displacement 2,j
from v (in any direction) can be on adjacent unoccupied
sites. (The "—,'" is from the matrix element of h). We il-

lustrate by exhibiting F», F», and F» in an approxi-
mation retaining t2 - for j ~3:

F2, 1 t2, 1(t2, 1+6t2,2+ t2, 3 )+ 2, 2(7t2, 2+4t2, 3 )+2t2, 3

F2 2 =t2, ( —'t2, +3t2 2+2t2 3 )+t2 2(3t2 2+4t2 3 ),
F3 3 t2 1( t2 1 +4t2 2)+4t2 2

(10)

Our initial calculations will be with truncation after
T2, corresponding to G„ tentatively set to zero. Equa-
tions (9) and (10), though nonlinear, are easily solved
simultaneously by a successive approximation scheme in
which the (n +1)th iterations of the t2, are obtained by
evaluating Eqs. (10) with the nth iterations on the right-
hand sides. We start with t2, = —1/6 and all other t2,
zero. We report calculations keeping t 2 ~

throughj,„=3,5, 8, and 13. Table I shows the va1ues of t2,
thereby obtained, also all fully converged tz through

j =8 (i.e., those obtained in the limit of large j,„). Al-
ready at j,„=3we have over 99.9%%uo of the T2 energy; it
is practical to reach a j „value for which convergence is
essentially complete. The T2 energy leads to a total ener-

gy (per site) —0.6508. Bishop et al. report results for
this problem only at the T2 approximation; their T2 re-
sult is in agreement with ours.

Our next calculations include T4. The diagrammatic
equation for T4 is shown in Fig. 7. From Fig. 7(b) we
reach the final computational form

The diagram G„ is a sum over index numbers i of —,
' t4,

times the number of ways the cluster 4,i can be posi-
tioned to cover sites p, v, and two additional sites adja-
cent to each other, but not necessarily to 1M and v. (Again
the "—,'" is from h). We illustrate G2 „622, and G23 in

an approximation retaining the 13 most important four-
clusters (see Fig. 6).

G2, =—'(2t4, +4t4 2+8t4 3+2t4 4+4t4 8+4t4 9

410 411+ 412+

G2 2
= '(t4 2—+2t4 3+2t4 3+2t4 6+2t4 7 )

G3 3
=T'(t4 4+4t4 7 ) .

'4, 1 '4,2 t 43 ' 4,4 t 45 '4,6 47 —F„.~ —G„.~ +&p ~
—L„~

8 —n 2 (1+t2, )

4,8 4,g

~ ~
0 ~ 0

4.10

0 ~ ~

4, 11 4.12 4,13

where n„& is the number of adjacent pairs in the set
pvk, cr. Assuming p and A, to be on one sublattice and v
and o. on the other,

~ 0
~ ~
~ ~

0 ~
~ ~
~ ~

~ ~
~ ~

~ ~
~ I ~

~ ~
~ ~

TABLE I. Values of cluster coe%cient t2, for square Heisen-
berg antiferromagnet in T, approximation with cutoA after
t2,. ', also converged values of t». Energy unit: A J.

jmax '

6,1 6,2 6.3 6,4 6,5 Jmax

Values for j
J

FIG. 6. Clusters of sizes 2, 4, and 6 and the identification
numbers assigned to them. The assumptions used in calcula-
tions cause a single identification number to apply to all clusters
related to each other by rotation or reAection.

3
5
8
13

—0.150721
—0.150824
—0.150833
—0.150834

—0.150834
—0.008791
—0.003915
—0.001242

—0.000774
—0.000239
—0.000316
—0.000171
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F„,i, =4( —
—,')[t„ ti (n,i +n„)

+t„ ti, (n i+n„)],
1

Kg~i g
=—g n p~( tpvkp t~a + tpvpe2

+tppiat~~+tp~i~t~p) ~

1L„,i =2 — g (n„,ti„t„,t„+ni,t„,ti, tipv cr

(13)

(14)

The only T6 contributions we shall include in G„&
are from the five six-clusters shown in Fig. 6, and we only
use them for the 13 most important T4 clusters. The for-
mulas for the first four 64 are

G4, = —
—,'(4t6, +8t6 2+8t6 3),

G4 2
=

—,
' (t6 2 +2t6, 5 ) ~

G43 6 i 62 63+2t64),

G4 4 p(t6, 3+t65),

+ ---- +

+

Note

+ +

+ +

(b) ---a + 4

Ggvka 84(-)(8- n ~ )I F
gvka

The summation in Eq. (15) is limited to sites r neighbor-
ing the cluster points; that in Eq. (14) is not limited but
sites ~ not neighboring the cluster points give extremely
small contributions.

Tentatively setting the G4 to zero, we use Eq. (12),
along with Eq. (9), to determine simultaneous solutions
for the t2 . and the t4 . . We use the same iterative
scheme as for the t2 alone. We wrote a computer pro-
gram to generate about 600 candidate four-clusters,
finding that energy convergence to 10 was reached
with eight T2 clusters and 43 T4 clusters, and that only
slightly poorer results were still obtained when the num-
ber of T4 clusters was reduced to 13. Table II shows tz .

(j = 1,8 ) and t4 ~ (j = 1, 13 ) for fully converged (largej,„)calculations and also for a calculation truncated to
the clusters shown. We note that the inclusion of T4
lowers the total energy per site from the T2 value of
—0.6508 to —0.6649. The only previously reported cal-
culation for this problem that includes a T~ contribution
is that of Roger and Hetherington. Their calculation is
not directly comparable with ours because it includes
only a portion of T2 and only one T4 cluster, but it did
indicate that T4 makes a significant energy contribution.

Our final calculation included the five T6 clusters
shown in Fig. 6. We shall be satisfied with a 10% error
in these T6 coefficients, and therefore keep only the lead-
ing terms in the diagrammatic equation, as shown in Fig.
7(c),

4t
t6= —M6 j(12 n6) .— (17)

1(-
4 ) np.vXa t

&vAa

p.vka

p.via

TABLE II. Values of cluster coe%cients t2, and t4, for
square Heisenberg antiferromagnet in T2+T4 approximation,
for fully converged and for truncated sets of t2, and t4, . Ener-

gy unit: A J.

---0 + 4 = 0
j

Jmax
=8 Jmax

t4 j.j,x =13 Jmax
=

4(—)(12 - n 6 )t M6

FICx. 7. Diagrammatic equations for T4 and T6.. (a) For T4,
before simplifying; (b) for T4, after simplifying; each
parenthesized group in (a) has been reduced to a single diagram
or a simpler parenthesized group; (c) for T6 (leading terms
only). The indication "Note" marks a diagram in which the two
inequivalent pair clusters will be reduced to a form in which the
pairs are equivalent, so the resulting diagram must be multiplied
by 2. The open lines are unlabeled; labels must be attached to
them in all distinguishable ways. Values are shown under the
diagrams in (b) and (c). Note that I'„q includes the coefticient
cc455

1

2
3
4
5
6
7
8

—0.16490
—0.01165
—0.00535
—0.00185
—0.00118
—0.00039
—0.00049
—0.00027

—0.16491
—0.01155
—0.00533
—0.00198
—0.00127
—0.00045
—0.00055
—0.00033

1

2
3
4
5
6
7
8
9

10
11
12
13

+0.02221
+0.00372
+0.00414
+0.00482
—0.00111
—0.00045
—0.00052
—0.00026
—0.00027
—0.00039
—0.00016
—0.00011
—0.00004

+0.02226
+0.00373
+0.00414
+0.00480
—0.00109
—0.00045
—0.00052
—0.00024
—0.00025
—0.00036
—0.00015
—0.00010
—0.00003
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TABLE III. Values of cluster coe%cients t. ..t4, , and t6, for
square Heisenberg antiferromagnets in Tz+ T4+ T6 approxima-
tion, with t6, cut off after j =5, for fully converged and for
truncated sets of tz,. and t4, Energy unit: A J.

(a)

-I/2 't
py

y y X, a

' ltyhy

Jmax max ~ J

1 —0.16816 —0.16817 1

2 —0.01245 —0.01236 2
3 —0.00572 —0.00571 3
4 —0.00203 —0.00218 4
5 —0.00130 —0.00140 5

6 —0.00044 —0.00052 6
7 —0.00055 —0.00061 7
8 —0.00031 —0.00038 8

9
10
11
12
13

t4 jj,x =13

+0.02696
+0.00406
+0.00507
+0.00517
—0.00103
—0.00034
—0.00049
—0.00011
—0.00010
—0.00004
—0.00000
—0.00003
—0.00004

Jmax
= J

+0.02701 1

+0.00406 2
+0.00507 3
+0.00515 4
—0.00102 5
—0.00034
—0.00048
—0.00009
—0.00009
—0.00001
—0.00002
—0.00002
—O.OM)03

t, ,
J'max = 5

—0.00049
—0.00011
—0.00012
—0.00008
—0.00008

0 ---X +

----X +

----X + 2

(-—,)t y 4(-')(4- n )t

2t 2, 1

2 (- )tq t n~y
1

y1

O--O

2, 1

4 t 2 1(-)(4 - n ) t1

4 lay p.y

1

2tz I

I

2tg 1
~ -N +

1 wgss

Here n6 is the number of adjacent pairs in the index set
for t6 and M6 is the diagram so labeled in Fig. 7(c).

We illustrate the evaluation of Eq. (17) for t6 (j =1,5)
in an approximation dropping all terms containing t4
with j)4:
t6, 1 [t2, 1(4t4, 1+12t4 3)+8t2,2t4, 2]

t6 2
——'[t2 1(t4 1+2t4 2+2t4 3)+3t2 2(t4 2+t4 3 )] )

[t2 1(t4 ] +2t4 3+2t4 4)

+3t2, 2t4 3 + 3t2 3t4 2]

t6 4
——'[t2, (2t4 2+4t4 3 )+ t2, 2(2t4, +3t4 2+ 3t4 3 )],

t6 5
=—'[t2, (4t4 2+2t4 4)+6t2 2t4 3+2t2 3t4, ] .

Iteratively solving simultaneously Eqs. (9), (12), and (17),
we obtained the coeKcient values shown in Table III.
The total energy per site has now been lowered to—0.6682.

IV. STAGGERED MAGNETIZATION

In a coupled-cluster formalism, the most consistent
way to calculate properties is by iricluding an appropriate
perturbation in the Hamiltonian and then determining its
first-order (or, if relevant, higher-order) contributions to
the energy. For the staggered magnetization (denoted
M ) we add to H the operator H'=g Q„E„s,„, where
c„=+1on the sublattice with s, =A/2 in the reference
state, and c„=—1 on the other sublattice. Then, because
K' is diagonal and has only the diagram fragments shown

1

2.1'2 1n» 4-n1(4)( )ty )

FIG. 8. Diagrams for calculation of staggered magnetization:
(a) fragments of the staggered magnetization operator and of
first-order cluster contributions, in units of R, with values under
the diagrams; (b) first-order perturbation of the energy; (c)
unsimplified diagrammatic equation for the first-order contribu-
tions t„; (d) simplified equation for t„, with values under the
diagrams.

t„.(2+4t2, ) F„. G„„——
t v (4 n„„)(1—t2, )—

(20)

The diagrams F„and G„(first order in t ) can be evalu-
ated by methods similar to those presented in Sec. III.
The 6„ involve four-clusters t„& which can be shown
to satisfy

in Fig. 8(a), M =(dE/dg)s=o can be represented di-
agrammatically as in Fig 8(b). . The t [represented di-
agrammatically in Fig. 8(a)] are the coefficients of g in the
expansions of the corresponding t. The first diagram in
Fig. 8(b) has (in units of fi) the value +0.5X, and is the
staggered magnetization of the Neel state. The second
diagram has the value 2%(+ 1/2)t2, . Thus,

jX=+0 5+t2 (19)

Writing all cluster operators as a sum of zero-order (un-
perturbed) and first-order terms, the equation for t„con-
sists of the first-order terms in the projection equation,
Eq. (6), involving @ . This equation, in diagrammatic
form, is shown in Figs. 8(c) and 8(d).

The t„equation can be rearranged to the form

vier�(4+

n~v2g t2 1 ) F~vi~ Govt a +i~ pvia Lpvio.
8 —n„„2 (1+t2, )

(21)
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The I'„&,G„&,E„&,and I.„& are first order in t
and are evaluated by the methods of Sec. III. The 6„&
involve clusters t6, given by

TABLE IV. Comparison of calculations of the energy and
staggered magnetization for square Heisenberg antiferromagnet
consisting of X sites. Energy unit: A J; magnetization unit: A.

t6=(6t6 —M6)I(12 —n6) . (22)

Here M6 is first order in t.
Truncating t2 at j,„=5, t4 . at j,„=13 and t6 at
,„=5,we obtain in the T2, T2+ T4, and T2+ T4+ T6

approximations the respective t2, values —0.097,—0. 127, and —0. 139, corresponding to staggered magne-
tizations (per site) 0.40, 0.37, and 0.36.

Neel state

GFMC
6x6
8X8
12 X 12
extrapolated

—0.5000

—0.6789
—0.6734
—0.6702
—0.6692

0.50

0.40'
0.38'
0.35'
0.31

V. DISCUSSIC)N

The results of the present calculations and those of two
other groups of workers are summarized in Table IV.
(For a more complete survey of earlier work, see Ref. 6.)
The Green-function Monte Carlo (GFMC) study is non-
variational, but becomes exact in the limit of zero statisti-
cal error. When run on finite systems with periodic
boundary conditions, it shows a finite-size effect which
can be extrapolated to give infinite-system results. The
resonating valence bond (RVB) study is variational, and
was run on 32 X 32 lattices (the GFMC calculations indi-
cate a negligible finite-size eff'ect at this system size).
There is no logical extrapolation procedure applicable to
the RVB data.

Our results are also nonvariational, but become exact
in the limit of including clusters of all sizes. The extrapo-
lated values shown in the table were obtained by fitting a
geometric series to the results of actual calculations. This
procedure is reasonable and a posteriori justified by the
results, but is not supported by a definitive theoretical ar-
gument. In any event, the present work supports a claim
that both it and the GFMC calculations are free from un-
noticed systematic errors.

One of the most significant differences between the
three sets of calculations is the computational labor re-
quired. Both the GFMC and RVB studies involve nu-
merical Monte Carlo procedures that can become compu-
tationally extremely intensive. The present study could
have been carried out by hand; actually a PC was used to
organize the work and reduce the possibility of error
(typical running time: a few seconds). We note that the
GFMC and present studies actually reached energies ap-
proximately equally close to the extrapolated value.

The main difference between the results of the three
studies lies in the estimates of staggered magnetization.
The RVB study used an ad hoc long-range wave function
and could not be claimed to be converged (with the lack

RUB
dimer
best short range
with long range

—0.604
—0.6682
—0.6688

0.00
0.00
0.23

Present work
T2
T2+ T4
T2+ T4+ T6
extrapolated

—0.6508
—0.6649
—0.6682
—0.6692

0.40
0.37
0.36
0.35

'Green-function Monte Carlo; Trivedi and Ceperley, Ref. 6.
"Resonating valence bond; Liang, Doucot, and Anderson, Ref.
8.
'Estimated from a graph.

of convergence potentially affecting the staggered magne-
tization more than it would aff'ect the energy). The
GFMC and present studies do not completely agree, but
the largest actual calculations of both types are quite
close. We do not totally disclaim the possibility of error
in our value of M /N; a fair amount of nonautomated
algebra was involved.

One of the nice features of the coupled-cluster formal-
isrn is that it applies directly in the infinite-system limit,
and is (in electronic structure language) size consistent.
Thus, as we have seen, truncated calculations neverthe-
less apply to an infinite system and extrapolations are to
account for omitted types of clusters rather than for finite
system size.

Final=-„'~„~ve note that the current formulation is not ex-
act1y a partially summed perturbation expansion, in con-
trast to the usual electronic structure formalism. This
fact directly rnanifests itself in two ways in the diagram-
matic representation: (1) there are no energy denomina-
tors, and (2) one cannot repeatedly substitute the diagram
equations for cluster operators to obtain a traditional
linked cluster expansion.
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