
PHYSICAL REVIEW 8 VOLUME 47, NUMBER 13

Quantum theory of spin waves for magnetic-overlayer systems
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A quantum theory of spin-wave excitations in a magnetic-overlayer system is presented. The system
considered in this paper consists of a set of overlayers and a substrate that are both ferromagnetic. The
interactions between spins in both materials are assumed to be Heisenberg exchange interactions. A
Green s-function formalism is employed to determine the spin-wave spectra of the system. Analytic ex-
pressions for the Green's functions in an overlayer system are obtained by solving Dyson's equations
with an assumed coupling constant between a magnetic thin film (overlayers) and a surface system (sub-
strate). The number of surface spin waves associated with the overlayer system is found to be quite
different from that of the pure surface system, where at most one branch of surface wave may exist. In
addition, resonant magnon states are found in the overlayer system. These states retain well-defined
features in the local density of states and do not broaden when the interfacial coupling increases. Nu-
merical calculations for a specific overlayer system are presented as an example of the analysis of spin
waves in arbitrary systems.

I. INTRODUCTION

There has been a growing interest in the magnetic
properties of layered structures during the past few years.
First, recent advances in experimental techniques for
making thin films, such as molecular-beam epitaxy
(MBE), sputtering, etc. ,

' have made it possible to fabri-
cate high-quality layered structures for experimental
research. Second, layered systems often present novel
properties ' that have no counterparts in the pure bulk
systems.

A magnetic-overlayer system is a kind of layered struc-
ture in which a thin magnetic film of one material is de-
posited on the surface of another magnetic material. A
simple overlayer system formed by two ferromagnetic
materials is schematically shown in Fig. 1. The investiga-
tion of spin-wave excitations in such a system is of partic-
ular interest, because properties of isolated films can be
deduced from the experiments on overlayer systems. One
may notice in Fig. 1 that magnetic-overlayer system
possesses both a surface and an interface between the two
materials forming the system. Thus one might expect
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FIG. 1. The overlayer system considered in this paper with
the first l layers occupied by A atoms. B atoms occupy layers
with n «1 +1.

that the spin waves associated with the surface and the
interface in such systems interact with each other, lead-
ing to interesting magnetic behaviors.

Two related structures are semi-infinite systems and in-
terface systems formed by two magnetic materials. The
former can be realized when the two materials in the
overlayer system are identical while the later corresponds
to the case when the thickness of the overlayers becomes
infinite. The spin-wave properties of semi-infinite fer-
romagnetic systems are well understood at the present
time. ' Surface waves which are localized in the surface
region but decay when going into the bulk are found to
exist under certain circumstances, depending on the cou-
pling strength between spins and pinning effect on the
surface layer. The subject of interface spin waves in
bimagnetic systems was also addressed by several au-
thors. For example, it has been found that either 0,
1, or 2 branches of interface magnons may exist in a bi-
ferromagnetic system. On the other hand, Cottam and
Kontos have considered the spin waves of a finite thick-
ness ferromagnetic slab with two equivalent surfaces and
found that the effect of finite film thickness is to split the
surface spin-wave mode into two branches. In such a
case, the bulk magnon energy is quantized. This model
has also been considered by Puszkarskii' and Levy. "

Additionally, Camley' has studied the spin-wave
properties of an overlayer system fomed by two fer-
romagnetic materials that are coupled antiferromagneti-
cally across their interface. Spin-wave properties were
examined within the context of semiclassical quantum
theory for different sets of ground states in his work.

In this paper, we present a quantum theory for the
spin-wave excitations of an overlayer system formed by
two ferromagnetic materials. The coupling between the
two materials is taken to be ferromagnetic so that the
ground state of the system is well defined, i.e., all the
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spins align in the same direction. We employ the
cleavage method developed by Kalkstein and Soven' to
get the expressions for the Green's functions at each layer
in the overlayer system. This method was initially
developed to deal with surface electronic problems.

II. MODKI.

The system considered in this paper can be conceived
as one thin ferromagnetic film grown eptaxially on top of
another material. The geometry of the structure is illus-
trated in Fig. 1. The first I atomic layers (from the 1st to
the Ith) are A material whose local spin operator is
denoted by S, . The remaining layers are B atoms with
spins denoted by Sb. We assume for simplicity that each
material has a simple cubic crystal structure and the in-
terface between them is a (100) plane. The extension to
include different kinds of crystal structures, such as bcc
or fcc, and different interface planes can be made readily.

We then assume that the interactions between spins are
of the Heisenberg exchange type with the Hamiltonian of
the system expressed as

H= —g J; S;.S. .

J, = Jb,

J,b,

if 1~i,j ~l;
if i,j ~l+1;
if i =I, j =I +1; or i =I+1,j =l .

(2)

Notice that we have neglected the changes of J, in the vi-

cinities of the surface and interface of the system. If it
must be considered, it is straightforward to include such
changes in the present formalism.

It is convenient to think about the overlayer system as
being created by bringing together a thin film and semi-
infinite system through a coupling potential. In this way,
Dyson's equation can be used to determine the Green's
function for the coupled system (overlayers) with known
Green's functions of the individual systems (thin film and
the substrate). Proceeding in this manner, we will first
give the expressions of the Green's functions of spin
waves for a semi-infinite system and a thin film.

Here S; is the local spin operator at lattice site i and
J;.)0 is the exchange integral between nearest-neighbor
spins. J;- may take different values corresponding to
different types of bonds between the ith and jth atoms,
1.e.,

'n
l COb +lPb

G (n)=
Pb

(4)

where n is the atomic layer index number, and

aib =E 6Th+eh(k)

(4T2 ai2 )1/2 for ai2 & 4T2.

i sgn(cob )(cob 4Tb)'—, for cob )4Tb
'Pb

(5)

Here sgn(cob) denotes the sign of cob. We can create a
semi-infinite system by introducing a perturbation to the
bulk system which breaks the bonds between the planes
n =l + 1 and n =I. Such a perturbation potential can be
expressed as

V(/, /+ 1)= V(I + 1, /) = Tb,

V(/, I)= V( I + 1,/+ 1)= Ub,

(7)

where V(/, I) and V(/+1, /+1) represent the diagonal
parts of the perturbation on the surfaces n = l and
n =I +1, respectively. For convenience in the discussion
below we can let these diagonal parts have arbitrary
values, but for a free-surface problem, it is obvious that
their values are fixed, i.e., V ( I, I ) = V ( I + 1, / + 1 ) = —Tb.

The surface Green's function can be obtained from the
bulk Green's function and the perturbation through the
following Dyson's equation:

6'=6 +6 VG'

where G' and G represent the surface and bulk Green's
functions, respectively.

After substituting the expressions for 6 and V, one
finds that the surface Green's function is give~ by

im —nf
COb + lPb

2Th
G'(m, n)=iamb

'

' ~m+n —2(1+1))
COb EPb

2 Tb

E(k) =6Tb —eb(k),

where Tb =2JbSb, eb(k)=2Tb[cos(k„a)+cos(k~a)], a is
the lattice constant, and k is a two-dimensional wave vec-
tor parallel to the surface plane, i.e., k=(k„k ). The
subscript b here stands for the B material. The Green's
function for spin waves of a bulk system can be easily
constructed in the mixed Wannier-Bloch representa-
tion, '

A. Semi-in6nite system iPb+(aib 2Ub)
X

iPb (cob —2, Ub )— (10)

In a previous work, Yaniv obtained the Green's func-
tions of spin-wave excitations for a semi-infinite system
by introducing a decoupling potential to the correspond-
ing bulk system and solving the Dyson's equations. Here
we only outline the main steps of this cleavage method
when applied to the corresponding bulk system.

The dispersion relation of the bulk magnons of a fer-
romagnetic system B with simple cubic structure is given
by the following well-known expressions;

where m and n are layer index numbers with m =I+1
denoting the first layer of the substrate.

From Eq. (10), it is clear that in a surface system, in
addition to the bulk state of spin waves given by pb =0,
there may exist a surface spin-wave state whose energy is
determined by

sgn(cob )(cob 4Tb )' +cob —2Ub =—0 .
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B. Thin-film system

6 (m, n)=6'(m, n)+ g G'(m, p)V(p, q)G (q, n) . (12)

Because V(p, q) is nonvanishing only when the p and q
I

The Green's function for a thin-film system can be ob-
tained in a similar way as that for a semi-infinite system.
%'e start from a surface system with the surface layer be-
ing n = 1 and introduce the same decoupling potentials
described in Eqs. (7) and (8) to the planes between n =I
and n =I +1. At this time, the unperturbed system (6 )

is the surface system and the final system (Gf) is a thin
film with surfaces being n = 1 and n = l, respectively.

To obtain the film Green's function, it is necessary to
write down Dyson's equation in matrix form as

refer to equal or adjacent planes, the above equation can
be reduced to

G (m, n)=G'(m, n}+G'(m, l)V(l, l}6 (l, n)

+6'(m, I + 1)V(l + 1,l)Gf(l, n), (13)

where we have made use of the fact that 6 (I + 1,n) =0
Substituting the expressions of 6'(m, n), V(l, l), and

V(l + 1, I) into the above equation and then setting m = I,
we obtain the Green's function Gf(l, n):

G (l, n)=G'(I, n)[1 —6'(l, l)U2 —G'(l, l +1)T, ]

(14)

After substituting Gf(l, n) back into Eq. (13), we final-
ly obtain the film Green's function

Gf(m ) 1.
—1(F(m —n[+( 1fg2 )[T2(FI—m —n+1+F —I+m+n —1 Fl+m —n+1 F—I —m+n —1}Nl~ P1 = i@a (~ a a a a a a

+ U U (Fl —m —n+1+F—I+m+n —1 FI+m —n —1 F—I —m+n+1)
1 2 a a a a

(Fl+m —n+F —I —m+n Fl —m —n+2 F—I+m —n —2)a 1 a a a a

+ T U (Fl+m —n+F —I —m+n Fl —m —n F—I+ m+n) 11
a 2 a a a a gj (15)

where we defined

Q)a +LPa

-2T.
b,, =F,' '( TnF, —U1 )( T,F, —U2 )

F, '+'(T, F, ' ——U1)(T,F, ' —U2),

(16)

and T =2J,S, . The definitions for ~, and p, are given
I

by Eqs. (5) and (6), respectively, by changing the sub-
script a to b. U, and U2 are the diagonal elements of
perturbation at surfaces n =1 and n =I, respectively.
They may assume different values for a film with two un-
symmetrical surfaces, as in the case of an overlayer sys-
tem.

The element of the Green's function that is relevant to
the density of states (DOS) is the diagonal one, which is
given by

Gf(n n} I ( g }
—I[ T2( T—I+2n —1+Fl 2n+1 —Fl+1 F—I —1)+U U (Fl 2n+1+F —I+2n —1 F—!—1 F—I+1}

Pa a a a a a a 1 2 a a a a

+ U T (Fl +F I Fl 2" +2—F I+2"—2)+ U T (Fl +F I —Fl 2"—F I+2n)] (17)

From the above equation, we can write down the matrix elements at the top and bottom surfaces of the film, i.e.,

Gf(1 1) ~

( g )
—l[T2(F—I+1+Fl—1 F1+1 F—I —1)+ U T (FI +F—I Fl —2 F—I+2)]

and

Gf(l I) —I ( g )
—1[T2(F—I+1+F—ll Fl+1 F—I —1)+U T (Fl+F—I Fl —2 F—I+2)]

(18)

(19)

One may see that 6 (1,1) and G (I, I) are not equal when
U1% U2.

The energy levels of spin waves in the film are given by
the roots of the equation 5, =0. It can be shown that
there are total I roots for this equation and each root
spans into a subband when k varies. If we compare these
energy levels with the bulk energy band, we may distin-
guish the volume modes from the surface modes in the
film. The former has energy lying inside the bulk band,
while the latter otherwise. Our numerical solutions to

the equation 6, =0 are in agreement with those of Ref. 9.
%'e also found' that in the case of two surface states, the
change of one of the U's can only alter one of the surface
states noticeably, leaving other states almost unaffected.

C. Overlayer system

As we mentioned earlier in this paper, the overlayer
system can be conceived of as a coupling between a thin
film and a semi-infinite system. Vfe now introduce this
coupling potential V and treat it as perturbation in
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Dyson's equation. Because we have solved the problems
for a film and a semi-infinite system with arbitrary values
of diagonal matrix elements, we need only to write down
the nondiagonal element of the coupling potential, i.e.,

V(m, n) =2J,b(S,Sb)'~ (20)

+G (m, l+l)V(l+1, l)G(l, n) . (21)

By letting m =I and 3+1, we get the coupled equations
for G(l, n) and G(l + l, n), which can be solved directly.
After substituting their expressions back into Eq. (21), we
obtain the diagonal Green's functions for the overlayer
system,

G (n, n) =G'(n, n)+4J,bS,SbG (I, l)G'(n, l +1)
X G'(I + l, n)[1 —4J,bS, S&G~(l, l)

X G'(l +1,l +1)]
(22)

for n ~ I +1, and

G(n, n)=G (n, n)+4J,bS,SbG'((+ 1,l+1)G (n, l)

XG~(l, n)[l —4J, S, S„G(Il,l)

XG'(I+ 1,l+1)]
(23)

for O~n ~I.
The diagonal perturbations involved in forming the

overlayer system can be easily evaluated by using Eqs. (1)
and (2), i.e.,

U) = —2J,S,
for the top layer of the film n = 1,

U2 ——2J,S, +2J,bSb

for the interface layer in the film n = I, and

U) = —2JbSb+2J, bS,

(24)

(25)

(26)

for the interface layer in the semi-infinite system
n =l+1.

Substituting the expressions of G', G, and those of U's
into the Eqs. (22) and (23), the analytic Green's function
at each layer for the overlayers system is uniquely deter-
mined. The local density of magnon states at point k, on
atoms in the ith layer, is given by

1p;(E;k)= ——Im G(E;i,i;k) .

We now turn to some discussions of the properties of
spin waves in the overlayer system. Generally speaking,
in a manner analogous to those in the semi-infinite sys-

for m =l, n =I +1 or m =l +1, n =I.
From Dyson's equation, G =G +G VG, where G is

the Green's functions of the film and semi-infinite system
and G is that of the coupled system, we get the following
equation:

G(m, n)=G (m, n)+G (m, l)V(l, 1+1)G(1+1,n)

1 —4J,bS, Sb G~(l, 1)G'(1+ 1, l + 1)=0, (28)

while for a pure surface system, the surface state is given
by Eq. (11).

Because of the complexity of the forms of G and G', it
is hard to determine an analytic solution to Eq. (28).
Even the numerical analysis turns out to be complicated.
The number of roots, as well as their locations is found to
be dependent on the number of film layers, the strength
of interface coupling and the J's and S's of the individual
system. Fortunately, we found that the discussion-could
be greatly simplified if we start by comparing the spec-
trum of the uncoupled systems, the film and the sub-
strate. We knew ' that for a film or semi-infinite system,
if the surface exchange integral is the same as that in the
bulk, there would be no surface state in either of the sys-
tems. However, when the two systems are combined,
there may appear surface states due to the mismatch of
their spectra and the change of interface coupling. Below
we present some discussions for a specific overlayer sys-
tem, which can serve as an example for the analysis of the
surface waves for arbitrary overlayer systems.

We first consider the case in which J, =J, S, =2,
Jb =J, and Sb =1. The spin-wave spectra of the uncou-
pled film and the substrate material are shown in Fig.
2(a). It can be seen that two branches of spin waves of
the film lie outside the bulk energy region of the substrate
material. Thus we may expect that at least two branches
of surface spin waves exist when the two systems are cou-
pled. Our numerical results in Fig. 2(b) show that when
J,b is small, there are indeed two branches of surface
states which lie above the volume mode, i.e., they are op-
tical branches. As the interfacial coupling J,b gets
bigger, there may appear another branch of optical sur-
face spin wave, which is truncated by the volume modes.
It is found that there are at most three branches of sur-
face waves existing for the system we chose. Another in-
teresting feature we noticed in Fig. 2(b) is that the in-
crease of the interfacial coupling J,b raises the branch
with the highest energy more noticeably than it does on
other branches with lower energy.

tern, the spin waves in an overlayer system can be
classified into two categories. The first class has energy
lying in the bulk bands of the substrate material. These
waves can propagate throughout the whole crystal. We
call these states bulk modes. Their energy satisfies

~E 6T—b+eb(k)~ (2Tb .

The second class of states has wave functions which are
mainly localized in the overlayer region but decay ex-
ponentially when going into the substrate. These states
have an energy which lies outside the bulk energy region
of the substrate material. We call these states surface
modes. Because the overlayers system possesses both a
surface and an interface, the spin waves associated with
them will interact with each other. This leads to the sur-
face modes that are quite different from those of pure sur-
face system. Equations (22) or (23) can be used to show
that the energy of the surface modes in the overlayer sys-
tern is given by the roots of the following equation:
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FICr. 5. Local density of magnon states on the surface atoms

at k=0 in the case of /=8. The parameters are J, =Jb=J,
J=0.2J, S, =2, and Sb =1. The black bars are the contribu-
tions from the localized states.

states. The black bars in the figure correspond to the
contributions from the localized states. Other peaks in
the figure come from the resonant modes. Physically,
these resonant states have wave functions with much
larger amplitudes in the overlayers region than in the
substrate.

The LDOS on atoms in other atomic layers has been
calculated using Eq. (27). The results show the same
features as the cases discussed above. The only difference
is the intensities of the peaks are different in each case.
The same discussions hold for the LDOS on atoms at any
point k.

In summary, we presented a quantum theory for the
spin-wave excitations of a ferromagnetic overlayer sys-
tem. Analytic expressions for the Green's function in

such a system were expressed in terms of those of the film
and surface systems. In spite of the similarities in the
spin-wave propagation between overlayer systems and
pure semi-infinite systems, there are overlayer-induced
resonant states in the overlayer system. These states have
well-defined features in the LDOS of magnons and could
be observed in experiments. The energy spectra were cal-
culated for a specific system which can serve as an exam-
ple for the discussion of arbitrary magnetic-overlayer sys-
tems. We hope that our theory can stimulate further ex-
periments on overlayer magnetic systems, especially the
observation of the resonant states.

Finally, it is worth mentioning the limitations of the
present formalism. Firstly, we employed the Heisenberg
Hamiltonian with nearest-neighbor iterations to de-
scribed magnetic systems. Though many systems, espe-
cially magnetic insulators, can be described by such a
model, this model is not appropriate for metallic magnet-
ic systems. Secondly, in the present formalism, we have
kept our parameters at a minimum number by neglecting
the changes of coupling constants in the surface and in-
terface region. In addition, no pinning effect on the sur-
face and interfaces was considered. In principle, there
should be no problem to extend the current formalism to
include these considerations. '
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