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Vibrational analysis of benitoite (BaTisi309) and the Sis09 ring
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The normal modes of vibration and their frequencies are calculated for benitoite, a mineral whose
crystal structure (space group Ds~) consists of three-membered silicate rings (Sis09) linked by Ba +
and Ti + ions. Factor-group analysis dictates that certain normal modes involve the motion of only
the ring atoms. On the assumption that mode mixings and splittings due to inter-ring interactions
are small, the normal frequencies of the isolated ring of |3h, symmetry are determined by fitting to
suitable averages of selected frequencies in the Raman spectra. A valence force potential consisting
of only central interactions between nearest neighbors and bond-bending interactions centered at
the silicon atoms is used. This potential is then extended to the full crystal structure by including
interactions involving the Ba + and Ti + ions. The frequencies obtained are in excellent agreement
with the infrared and Raman spectra, requiring only minor adjustment of the force constants obtained
for the isolated ring. The identification of normal modes characteristic of three-membered silicate
rings may prove to be a valuable guide in the interpretation of the infrared and Raman spectra of
amorphous silicates, potentially leading to new information on the ring statistics of these materials.

I. INTRODUCTION

Cyclosilicates are minerals containing a single type of
three-, four-, or six-membered silicate ring. Several ex-
perimental studies of their vibrational spectra have been
reported. s s More work needs to be done, however, to re-
late the observed spectra to the dynamics of the rings
and their coupling within the crystal structure. A better
understanding of the vibrational spectra of cyclosilicates
may be useful in characterizing the vibrational spectra of
crystalline and amorphous silicates which contain rings.
Furthermore, this knowledge can aid in understanding
the vibrational spectra of other silicates with difFerent
polymerization of the silicate tetrahedra.

Benitoite (BaTiSisOs) is a cyclosilicate containing
rings of three linked tetrahedra (SisOs). It belongs to
the space group P6c2 (Dss&) and has two formula units
per unit cell. 5 Figure 1 shows the crystal structure, where
each ring is shown as composed of tetrahedral units. The
rings are located one above the other along the c axis.
The c axis passing through the origin is the axis of three-
fold symmetry. Twofold symmetry axes are perpendic-
ular to the c axis, pass through the origin, and through
the Ba and Ti ions. The two rings are symmetrical with
respect to rotation about the twofold axis. The c axis
and one of twofold symmetry axes are designated as the
z and 2; axes, respectively.

The infrared reflectance spectrum of benitoite was first
reported by Matossi and Kruger. The Raman spec-
trum of benitoite in powder form was first reported by
Gri%th. "Adams and Gardners presented the Raman and
infrared reflectance spectra of single-crystal benitoite.
They were able to show almost all of the lines predicted

from the factor group analysis, and assign their symmetry
species quite unambiguously. Recently, we again mea-
sured the Raman and infrared spectra of benitoite sin-

gle crystals and observed frequencies which are con-
sistently lower by 12 cm than those reported in Ref.
8. For reasons indicated below and discussed at length
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X

FIG. l. Schematic diagram of the structure of benitoite.
The rings are shown as three linked tetrahedra. The c axis is
the threefold symmetry axis and is set to be the z axis. The
twofold symmetry axis is along the line connecting Ba to Ti
in the ab plane and is set to be the x axis.
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elsewhere, we have used our results in the normal mode
calculations.

Although the vibrational spectra of benitoite are
known, no normal mode analysis has been reported.
Matossi and Saksena, Agarwal, and Jauhri calculated
the normal frequencies of the silicate ring (SisOs) in ben-
itoite, assuming its symmetry to be D3h, . Later, it was
discovered5 that the ring actually has C3p symmetry; the
normal frequencies of a ring with this symmetry have not
yet been calculated. Furthermore, mode splittings due to
interactions between the rings (Davydov splittingis i4)
prevent direct comparison between calculated and ob-
served frequencies. We have performed the first complete
normal coordinate analysis of benitoite. It enables us to
assign normal modes to the observed frequencies and to
determine the magnitudes of atomic interactions between
the rings through the cations.

We present the normal coordinate analysis in two
steps. First, we treat the Si309 ring as an isolated
molecule and obtain its normal modes and frequencies.
Next, we calculate the lattice dynamics of benitoite at
zero wave vector and describe the results. The values
of the force constants obtained for the isolated ring are
essential in obtaining the reasonable values of the force
constants for the crystal. In the fitting procedure, it is
important to use reasonable initial values to avoid spuri-
ous results due to false minima. The values of the force
constants determined for the isolated ring provide good
initial values of the force constants for the crystal. This
approach is justified because the strength of the coupling
between the rings is known to be less than that among
the atoms in the ring. More importantly, we want to
find the representative vibrational frequencies of the iso-
lated ring and establish the relationship between the vi-
brational frequencies of the ring and those of the crystal.
Knowledge of this relationship may be essential in under-
standing the vibrational spectra of amorphous silicates
containing rings.

In Sec. II, we explain brieBy the method used in the
normal coordinate analysis of the isolated ring and the
crystal. In Sec. III, we present our results for the isolated
ring and in Sec. IV for the full crystal structure. In Sec.
V, we discuss several implications of our results in the
study of crystalline and amorphous silicates.

II. METHOD OF CALCULATION AND FIT

Normal mode analysis for crystals is well described by a
number of authors. " Customarily, the analysis of the
crystal is accomplished by constructing the dynamical
matrix D. On the other hand, calculations for molecules
are most often performed using Wilson's FG matrix
or related methods. In this study, the dynamical ma-
trix was constructed not only for the crystal, but also for
the Si309 ring because the D matrix can be simply and
systematically block diagonalized. The block diagonal-
ization is essential for two reasons. First, it determines
the species of the calculated normal frequencies. Other-
wise, one has to manipulate each corresponding normal
mode to determine its species, a process which becomes
tedious and time consuming as the total number of the

atoms in the system increases. More importantly, fit-
ting the calculated frequencies to the observed frequen-
cies species by species is impossible without the block di-
agonalization. Block diagonalization is valuable when (i)
the total number of the frequencies is large, (ii) the modes
of different species are too close to be distinguished by
their frequencies alone, and (iii) the frequencies of se-
lected species must be used for the fit. In the present
work, the last of these advantages is essential.

We describe brieBy how to obtain the normal frequen-
cies and modes. We set g and g as the displacement
vectors with respect to the equilibrium positions of the
atoms in the Cartesian and internal coordinate systems,
respectively. The dimensions of q and g are 3N and M,
respectively, where N is the total number of the atoms
and M is the total number of internal coordinates in the
system. We find the B matrix which transforms q into ('
using the relation

Note that B has dimension M x 3N and may in general
be singular. Constructionis of B is straightforward for a
molecule, but requires the summation over several unit
cells for a crystal structure. The potential energy V for
a given system can be easily constructed by the use of ('
as follows:

where F,~. = k,.~. and G is the inverse of the diagonal ma-
trix whose diagonal component is the atomic mass. The
normal frequencies and normal modes can be obtained
from the eigenvalues and eigenvectors of D. However,
those solutions do not identify the corresponding species.
Thus, we proceed to find the unitary matrix. U, which
block diagonalizes the D matrix and leads to the block
diagonalized matrix,

D' = UtDU.

Then, the eigenvalue solution of D' by

D'e' = ~'e'

produces the normal frequency ~, . The atomic displace-
ment vector

1
e, = G~Ue', (6)

presents the normal mode corresponding to u, .
We have developed a FORTRAN program which calcu-

lates D from the positions and masses of the atoms in the
system and from the atomic interactions specified for the

where (; is the ith component of g and k,~ is the force con-
stant. We assume a valence force potential consisting of
only central interactions between nearest neighbors and
bond-bending interactions. Hence, k,~

= k,~b,~ where b,~
is the conventional Kroneeker delta. The determination
of U leads to the construction of the dynamical matrix,

D = G~B~FBG~,
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given system. The program also block diagonalizes D by
constructing U automatically22 by imposing the orthogo-
nality condition among the projection vectors23 obtained
for each species. It also determines the force constants
by minimizing the relative mean-square error

o'=) )
p i=1

~Col ) 2
4,p

~obs )
where p refers to the species, N„is the total number of
observed frequencies for the species p, and ~;~' and u, b'

are the calculated and observed frequencies, respectively.

III. NORMAL COORDINATE ANALY'SIS OF THE
SILICATE RING Side View

Figure 2 shows the structure of the Sis00 ring in ben-
itoite. The atomic positions are obtained from Fischer
who refined the atomic positions of benitoite reported
earlier by Zachariasen. 24 Note the three different Si-0
distances, each of which differs slightly from the grand
average of 1.62 A.. The common reference frame for the
ring is the same as that defined for the crystal (Fig. 1)
except that the origin is shifted along the c axis to be
at the center of the ring. The ring is viewed as three
linked Si04 tetrahedra. Each tetrahedron has two bridg-
ing oxygen atoms, designated O(1), which are shared
with two neighboring tetrahedra, and two nonbridging
oxygen atoms, designated O(2). The selection rules for
the Sis00 ring are shown in Table I. The isolated ring
has Csg symmetry and its irreducible representation is
6A'+4A" +6E'+4E". The total number of vibrational
frequencies is 20.

The first step in the normal coordinate analysis is the
construction of V. Table II shows the nature of force
constants used in constructing V. The Si-O(l) stretching
force constant ey can be further divided into two separate
force constants, K, and Ki, where the subscripts 8 and
t signify the shorter and longer bond lengths between
Si and O(1), respectively. We find, however, that this
division does not improve the fit significantly, and we
therefore set Kq ——x, = x~. It is worthwhile to mention
the bond-bending force constant (Ks) centered at Si. In
the crystal structure of benitoite, the O(2) bonding is
more ionic than that of O(1). In light of this picture, Ks
may be further divided. At this stage of the calculation,
we treat the ring in benitoite as the isolated molecule
assuming that there are no interactions between the ring
and the surrounding atoms. For this reason, we treat
equally all of bond-bending force constants centered at
Si. The potential energy (Vi) for a tetrahedron composed

Y

FIG. 2. Schematic diagram of the Si309 ring with the
same reference frame in Fig. 1, except that the origin is
shifted to be at the center of the ring. The atoms are num-
bered for the sake of identification in describing the potential
energy.

of atoms 1, 4, 6, 7, and 10 (see Fig. 2 for the numbering)
has the form

2Vi = Kl (Ti 4 + Ti {&) + K2 (Ti 7 + Ti 10)
2 2 2 2

+ Ks (4,1,0 + 4,1,7 + ~0, 1,7
2 2 2

2 2 2+~4, 1,10 + ~6, 1,10 + ~7, 1,10)& (8)

where T„ is the change in bond length between atoms
p and v, and b„~is the change in bond angle at atom
v for the triangle composed of atoms p, v, and g. The
potential energies V2 and V3 for the other two tetrahedra
are constructed in the same way as in Eq. (8) and are
added together to produce the potential energy

Vring —Vl + V2 + V3

for the Sis00 ring.
For V„„z,each of the V, 's contains 10 internal coor-

dinates, but provides only 9 independent internal coor-

TABLE I. The irreducible representations of the Si309 ring and benitoite. The number for
each species is the number of the normal frequencies or modes. The acoustic modes A" + E' are
included for benitoite. R and IR inside the parentheses refer to Raman active and infrared active
species, respectively.

Structure
Ring (C3h, )

Benitoite (D3g)
6A'(R)

7A', (R) + 9A',

Species
4A" (IR)

5A", + 7A,"(IR)
6E'(R, IR)
16E'(R, IR)

4E"(R)
12E"(R)
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TABLE II. The nature and values of the force constants for the Si309 ring. 0 includes both
O(1) and O(2).

Present work
Ref. 12

eq (10 dyne/cm)
Si-O(l) stretch

4.2
4.0

e2 (10 dyne/cm)
Si-O(2) stretch

4.3
5.0

K3 (10 "erg)
0-Si-0 bend

1.5
18

K3/d = 0.7 x 10 dyne/cm where d = 1.6 A. is the average Si-0 bond length.

(d+ + (d

2
(10)

dinates since one of internal coordinates is linearly de-
pendent on the others. Nevertheless, each V, provides
the complete set of internal coordinates for a tetrahe-
dron, since 9 vibrational frequencies are expected for each
tetrahedron. On the other hand, U„„sdoes not provide
the complete set of internal coordinates. For the ring, 20
vibrational frequencies are expected from the symmetry
analysis. Equation (9) shows that U„„shas only 27 in-
dependent internal coordinates, which leads to only 18
vibrational frequencies. As a result, one vibrational fre-
quency of species A" and another of species E" have the
value of zero. Including more interactions such as the di-
rect interaction s between O(2) in one tetrahedron and
O(2) in another tetrahedron provides the complete set of
internal coordinates for the ring. However, those inter-
actions are not physical, since the corresponding atoms
are not directly bonded to each other. For this reason,
we use Eq. (9) without including more interactions.

The values of the force constants are determined by
fitting the calculated frequencies to the observed frequen-
cies. Two problems arise. First, the calculated frequen-
cies are obtained for the isolated ring, whereas the ob-
served frequencies are obtained from the vibrational spec-
tra of benitoite. The calculation yields neither the pairs
of lines (Davydov splitting~s ~4) due to the coupling of the
rings through Ba and Ti ions in benitoite, nor the exter-
nal vibrational modes due to the motions of Ba and Ti or
rigid rotation or translation of the rings. Secondly, some
of the vibrational spectra of benitoite contain LO-TO
shifts, whereas our calculation does not take this effect
into account. We adopt the following ideas to minimize
the problems. It is believed that the highest frequencies
in the vibrational spectra of benitoite most closely repre-
sent the internal vibrations of the ring. For this reason,
we select to fit the highest frequencies available from the
vibrational spectra of benitoite. For pairs of frequencies
that are apparently due to Davydov splitting, their aver-
age can be used for the fitting, that is

linearity of Eq. (7), we choose the four observed frequen-
cies 1048 cm ~ (Alz), 917 cm ~ (Az), 628 crn (A&), and
932 cm ~ (E"), obtained from our Raman spectra9 and
Eq. (10). The resulting values of the force constants are
shown in Table II. Based on those values, the normal
modes and frequencies of the ring are easily obtained.
We believe that this approach is the best way to extract
the vibrational frequencies of the ring molecule from the
vibrational frequencies of benitoite.

Saksena, Agarwal, and Jauhri performed a normal
mode analysis of the SisOs ring, using symmetry coordi-
nates. In their calculation, they assumed the symmetry
of the ring to be D3h, and set all of the Si-0 bond lengths
equal to 1.6 A. The values of force constants were ob-
tained in an effort to match the calculated frequencies to
all of the observed frequencies of the infrared spectra of
benitoite available at that time. Table II compares our
force constant values with those previously reported.
While the values for K~ are in good agreement, this is
not the case for K2. We obtain r& approximately equal
to K2, whereas they found K~ to be significantly less than
K2.

Saksena, Agarwal, and Jauhri reported the frequen-
cies of the A" and E' species only. We believe there to
be two minor errors in their calculation which affect the
three lowest frequencies in the E' species. For this rea-
son, we repeated the calculation, using the same model.
The first column in Table III shows the normal frequen-
cies. The second column in Table III shows our values
of the normal frequencies of the ring with C3h symme-
try, the structure in Fig. 2, and the force constants in
the second row in Table II. The differences between the
first and second columns in Table III are large enough to
be observed. Do these differences arise solely from the

TABLE III. Comparison of the calculated frequencies of
the E' species of the Si309 ring with different symmetries.
Our results are obtained from the force constants in the sec-
ond row of Table II. The values are given in units of cm

where ~+ and u are the higher and lower frequencies,
respectively, for each Davydov pair. We fit the vibra-
tional frequencies of only the Az and E" species, simply
because these frequencies do not have LO-TO shifts. At
least three observed frequencies are necessary to deter-
mine three unknown force constants. Since the fitting
with three frequencies becomes unstable due to the non-

Ref. 12 (corrected)
D3h,
271
332
499
750
907
1083

&3h.

256
299
468
706
857
1072

Present work
D3h,
256
300
469
708
856
1071
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symmetry difference? We test that hypothesis by calcu-
lating the normal frequencies of the E' species, assuming
that the O(l) and O(2) atoms in Fig. 2 rotate around the
origin to produce the point symmetry D3h, for the ring,
while keeping the same force constants as for C3h, sym-
metry. The resulting frequencies are listed in the third
column of Table III. The differences are of the order of 1
cm i. Thus, the differences in our frequencies and theirs
are mainly due to the differences in the force constants,
not in the symmetry.

IV. NORMAL COORDINATE ANALYSIS
OF BENITOITE

The selection rules for benitoite are shown in Table
I. The total number of optical frequencies is 54; half of
them are nondegenerate, and the rest are doubly degen-
erate. Table I also shows the correlations of the species
between the ring and the crystal. The correlation analy-
sis indicates exactly how the coupling of rings in benitoite
causes the Davydov splitting of the vibrational frequen-
cies of the isolated ring. The nondegenerate modes of
the isolated ring are correlated with two separate species
of nondegenerate modes of the crystal, while the dou-
bly degenerate modes of the ring are related to the same
species of doubly degenerate modes. Thus, pairs of lines
due to Davydov splitting are observed in the vibrational
spectra of the E' and E" species, but not in the spectra
of the nondegenerate modes.

One way to simplify the normal coordinate analysis for
a complex system is to separate the lattice modes into
internal and external modes. This approach is plausible
if a group of atoms in the crystal acts as a structural unit
that is relatively isolated from the surrounding atoms. It
is generally accepted that Ba and Ti bonding to the rings
in benitoite is weak with respect to the bonding within
the rings, 2 which would justify a separation into modes
internal and external to the rings. The external mode fre-
quencies can be calculated from a suitable valence force
potential by treating the rings as point ions. ~7 This ap-
proach is not well suited to the present work, however.
It yields only effective force constants between the rings
and the Ba and Ti ions which link them. More specific
knowledge of the interactions between these ions and the
nonbridging oxygens will be needed in order to build our

understanding of structurally related crystals and glasses.
Also, the Davydov splitting of the internal modes cannot
be obtained from this model, making it impossible to ver-
ify the assumptions used above in describing the isolated
ring. We therefore performed the vibrational analysis
of the benitoite crystal structure without attempting to
separate internal and external modes.

The crystal structure as shown in Fig. 1 is used to con-
struct the potential energy by a method similar to that
presented in the previous section for the isolated ring.
Table IV describes the various terms in the valence force
potential. Note that the bond bending at Si is now di-
vided into three difFerent interactions: ks, ks, and k7, cor-
responding to O(l)-Si-O(l), O(1)-Si-O(2), and O(2)-Si-
O(2), respectively. These were treated separately, since
the nature of the interaction at O(2) is more ionic than
that at O(1). All the interactions of Si-O(2)-Ba, Si-O(2)-
Ti, and Ba-O(2)-Ti, however, are treated equally, since
the corresponding force constants are small. Of course,
the fitting may improve as one introduces more force con-
stants. At the same time, increasing the number of ad-
justable parameters can lead to unphysical results such as
negative values of the force constants. The potential cho-
sen for our analysis leads to physically reasonable values
of the force constants and is sufhcient to produce nonzero
frequencies for all of the normal modes. As discussed in
the previous section, only the observed frequencies of the
A'i and E" species were used in the fitting. Table IV
shows the resulting values of the force constants. The Si-
O(1) bond stretch (ki) and Si-O(2) bond stretch (k2) do
not change much from the corresponding values ~q and e2
for the isolated ring. In other words, the bond strengths
within the ring do not change much whether the ring is
isolated or is subject to the crystal environment. This
confirms that the vibrational spectra of benitoite can be
described to a good approximation in terms of the iso-
lated ring. The Ti-O(2) bond stretch (k4) is stronger by
about a factor of 3 than the Ba-O(2) bond stretch (ks).
This result is in agreement with the classification due
to Lazarev~ of Ti + and Ba + as medium-strong cations
and weak cations, respectively. Adams and Gardners
suggest that the Ba-O(2) bond stretch can be ignored
compared with the Ti-O(2) bond stretch. This is true to
a certain degree, since our results show that the Ba-O(2)
bond stretch is smaller than the Ti-O(2) bond stretch

TABLE IV. The nature and values of the force constants for benitoite.

Force constant

ky

k2
k3
k4
k5
k6
k7
ks
kg

kyp

Interaction

Si-0(1)
Si-0(2)
Ba-0(2)
Ti-0(2)

0(1)-Si-0(1)
0(1)-Si-0(2)
0(2)-Si-0(2)
0(2)-Ba-0(2)
0(2)-Ti-0(2)

Si-O(2)-Ba, Si-0(2)-Ti, Ba-0(2)-Ti

Present work

4.2 x 10 dyne/cm
4.1
0.66
1.6
0.74 x10 erg
1.8
1.3
0.12
0.45
0.15



7874 CHARLES C. KIM, M. I. BELL, AND D. A. McKEOWN 47

1054 1049
(1049) 1048

974

1088(LO)
/

/
/

/
/

950
(945)

by a factor of 3. The Ba-0(2) bond stretch cannot be
totally neglected, however, since the quality of the fit
is significantly improved by introducing this interaction.
The ratio of the bond-bending to bond-stretching forces
provides a measure of the ionicity or covalency of the
bonding. The values of the force constants in Table IV
indicate that the nature of the Si-0 bond is the most
covalent, followed by the Ti-0 and Ba-0 bonds.

Figures 3 and 4 show the calculated frequencies for the
isolated ring, those for the benitoite crystal, and the ob-
served frequencies. s s We list the results by Adams and
Gardner after subtracting 12 cm from their values.
The vibrational frequencies in the figures are presented
species by species. The dashed lines relating the calcu-
lated frequencies of the isolated ring to those of benitoite
are derived by gradually increasing Ba and Ti interac-
tions with the ring. Those relations clearly determine the
Davydov pairs. In every case, the calculated frequency is
suKciently close to an observed mode of the same species
to permit an unambiguous assignment. In particular, we
are able to clearly identify modes which are due primar-
ily to the internal vibration of the ring. The rest of the
observed modes are then primarily either translational or
rotational motions of the ring, or translations of the Ba
and Ti ions. These external modes are described briefly
next to the corresponding lines in the figures. Roughly

1072

857

1075
1074

845
839

1087

993

917
903

962 947
943

938
926

706

754
736

710
700
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E' E'

549530
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392
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I

213
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IIRing rot168

Ti 157

Ba 99

II

II Ring rot. 67

0 I
Ring (calc.) Benitoite (calc.)

F II EII

565

493

386
361

222
209
192

149
113

67

Ram an (obs. )

E II

FIG. 4. The vibrational frequencies of doubly degenerate
optical modes of the ring and benitoite. The solid lines rep-
resent the vibrational frequencies and each of their heights
is proportional to the corresponding value of the vibrational
frequency. The Raman spectra are obtained from Ref. 9. The
dashed lines relating the solid lines are our interpretation.
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(896)
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917 912(TO)
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491
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(633)
(587)—
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(488)~+
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565

525 534

(478)—
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312
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(337) 337

Ti (250) —~ 256
Ring rot. 214
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(401) ~~
399

/
/

/
/

Ti 267 ~

424(LO)

379(TO)
376(LO)

307(TO)

Ring (calc.)

A'

Ring rot. (176)—

Ba (48)—

Benitoite (calc.)

A', , {A2)

Rarnan (obs. )

A',

Ring trans. (173)—
/ (141)—

/
/ Ba 92

/
/

/ r 29

Ring (calc.) Benitoite (calc.)

{A",), A2

69(LO)
60(TO)

Infrared (obs. )

A2

FIG. 3. The vibrational frequencies of nondegenerate op-
tical modes of the ring and benitoite. The solid lines rep-
resent the vibrational frequencies and each of their heights is
proportional to the corresponding value of the vibrational fre-
quency. The Raman and infrared spectra are obtained from
Refs. 9 and 8, respectively. The dashed lines relating the solid
lines are our interpretation.

speaking, the vibrational modes internal to the ring have
frequencies above 300 cm, while the external modes
occur below this frequency.

The A& and A2 species are shown in Fig. 3. Table
I indicates that seven A& frequencies are expected, and
all are actually observed. The calculated ring breathing
mode at 347 cm ~ matches our observed frequency of
337 cm ~, but is not observed by Adams and Gardner.
Although the modes of species Az cannot be observed,
they are related to the AI modes by Davydov splittings
which we find to be small. The good agreement with
experiment for the A~ modes thus leads us to expect that
the calculation is accurate for A2 as well.

The A&' and A2 species are shown in Fig. 3. Adams
and Gardner reported both the estimated values and
Kramers-Kronig values of A& frequencies. Their esti-
mated values are given in the figure. Six frequencies
are expected in the infrared spectra, but only four are
observed. The calculated frequency at 29 cm ~ may be
too low to be observed. The mode predicted at 533 cm
may be too weak to be observed. The mean-square differ-
ence between the calculated and observed frequencies is
greater for A2 than for A~ species. This is to be expected,
since the calculation neglects the long-range Coulomb in-
teractions which produce a splitting of longitudinal (LO)
and transverse (TO) modes in this species. The calcu-
lated frequencies are generally in better agreement with
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the observed TO frequencies. This, too, is expected since,
depending on the detailed treatment of the local electric
field, the effects of the Coulomb interactions will appear
predominantly or exclusively in the LO modes. Despite
the fact that frequencies of this species are not used in
the fitting, the calculation is able to predict the observed
TO frequencies with a worst-case error of 30 cm

The E' species are shown in Fig. 4. The vibrational
spectra of E' symmetry also exhibit LO-TO shifts. We
show only the observed TO modes, since they agree bet-
ter with the calculated frequencies. Fifteen frequencies
of E' species are expected and more than this number
are observed. As in the Az case, the agreement between
theory and experiment for E' is poorer than for the A'i
and E" species. The observed frequency at 993 cm
does not appear to have any counterpart in our calcula-
tion. It is too far from 1087 cm to be considered as
its counterpart in a Davydov pair. It may be, however,
due to a combination or overtone. Among the various
possibilities of having E species from combining two dif-
ferent species, the combination of 938 cm i (E") with
67 cm i (E") produces 1005 cm i (A'i+Az+E'), which
is the closest to the observed frequency 993 cm i (E').
In terms of modes, it is the combination of ring vibration
with a lattice vibration. The calculated frequency of 115
cm i is related with the observed frequency of 104 cm
rather than 112 cm, simply because the intensity of
the line at 104 cm is stronger than that at 112 cm
The vibrational mode near 750 cm is known as the
"ring band, "s since the infrared line is very strong and
is a characteristic feature in the spectra of cyclosilicates
containing rings. On the other hand, weak Raman lines
at 754 cm and 736 cm are observed.

The E" species are shown in Fig. 4. Twelve modes of
E" symmetry are expected in the Raman spectra. All
of them are observed. s The observed frequency at 169
cm i by Adams and Gardner is close to the calculated
frequency of 168 cm i, but is not seen in our data. s The
calculated frequency at 168 cm could correspond to
the 169 cm i line observed by Adams and Gardner or
more probably, to the stronger 192 cm line observed
in both sets of data. s We suspect that the line observed
at 169 cm by Adams and Gardner may not be one of
the fundamental modes.

~ Tl ~ si 0Ba 0o

A', 629 cm ' E', 706 cm ' E", 530 cm

0 0 0

0
~ 0

0

A'~, 633 cm E', 710 cm E", 488 cm

FIG. 5. Primarily vibrational modes of the ring and ben-
itoite. The normal mode of the isolated ring (first row) is
related with its counterpart in benitoite (second row). The
diagrams in the top and bottom box are the top and side
views, respectively. The length of the arrow is drawn to scale,
indicating the relative amplitude of the motion of each atom
for a normal mode.

~ Tl ~ Sl 0 Ba QO

the high-frequency modes involve relatively less motion of
the Ti and Ba ions. Figure 6 shows several low-frequency
modes which are essentially external to the ring, corre-
sponding to rigid rotation or translation of the ring or to
translation of the Ti ions.

V. DISCUSSION
0 0 0 0

Our calculation yields the normal modes correspond-
ing to each of the calculated frequencies. Figures 5 and 6
show some of these normal modes. Only half of the crys-
tal structure (Fig. 1) is shown because each mode is ei-
ther symmetric or antisymmetric with respect to rotation
about the twofold axis. Figure 5 illustrates several high-
frequency modes which are essentially ring vibrations.
Also shown is the correspondence between the calculated
normal mode of the isolated ring (first row) and its coun-
terpart in the crystal (second row). The response of the
surrounding atoms to the vibration of the ring can also
be seen. In general, the higher the mode frequency, the
more the normal mode of the crystal lattice resembles its
"molecular" counterpart in the isolated ring. Likewise„

0

0
A, , 214 cm A, , 173 cm E', 245 cm

FIG. 6. Primarily external modes of benitoite. The dia-
grams in the top and bottom boxes are the top and side views,
respectively. The length of the arrow is drawn to scale, indi-
cating the relative amplitude of the motion of each atom for
a given normal mode.
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The normal mode analysis gives us confidence in our
interpretationg of the observed spectra, even where our
assignments differ from those of Adams and Gardner. s

In particular, our identification of the pairs produced by
Davydov splitting is highly reliable since it is based on
a quantitative correlation of the normal modes of the
isolated ring with those of the crystal.

A particularly questionable assignment by Adams and
Gardners is that of the 738 cm (E') and 492 cm
(E') modes as due primarily to Ti-O(2) bond stretching. s

Our analysis identifies these modes as internal to the
rings. While we do obtain some Ti motion in modes with
frequencies as high as 750 cm, the interpretation of
Ref. 8 requires a much larger value of the Ti-O(2) bond-
stretching force constant than would be consistent with
our calculations. This force constant plays another cru-
cial role in the analysis. Our results are consistent with
the conventional view that the Ti-0 bond-stretching in-
teraction is much stronger than the Ba-0 bond stretch-
ing. If, on the other hand, we fit our model to the fre-
quencies reported in Ref. 8 without shifting the data by
12 cm in order to bring them into agreement with our
measurements, the result is a Ti-0 bond-stretching force
which is weaker by a factor of 3 than the Ba-0 bond
stretching. A similar problem arises if we neglect LO-TO
shifts and include the observed frequencies of E' species
in the fitting.

In Sec. III, we demonstrated a method which can ex-
tract the vibrational frequencies of the isolated ring from
spectra measured on the crystal. This is valuable because
knowledge of the spectrum of the Si309 ring is an im-
portant key to understanding the spectra of amorphous
silicates containing rings. As shown in Figs. 3 and 4, the
frequency difference between corresponding modes in the
isolated ring and the crystal increases as the mode fre-
quency decreases. For example, the E' mode at 247 cm
in the ring corresponds to the 310 cm mode of the crys-
tal, a shift of 63 cm . Sharma, Philpotts, and Matson
related the vibrational spectra of the smallest ring struc-
tures in some tectosilicates to those of the isochemical
glasses, where the rings can be considered as more or
less isolated molecules. They found, in particular, that
the vibrational frequencies of crystalline LiAlSi206-II,
NaAlSisOs, and CaA12SisOs are higher than those of
the corresponding glasses by about 20 cm . The eKect is
even more dramatic in our calculations, probably because
we compare the crystal with an ideal, completely iso-
lated ring, rather than a glass where there remains some
coupling between the ring and its environment. These
considerations suggest that information of the type pre-
sented in Secs. III and IV can be used to understand the
vibrational spectra of amorphous silicates. As we con-
tinue to analyze the spectra of additional cyclosilicates,

as well as silicates having other types of polymerization,
we expect to obtain further insight into the behavior of
silicate glasses.

Finally, we consider the peculiar behavior of the A&
mode observed at 628 cm ~. As shown in Fig. 6, this is
a breathing mode in which only O(l) moves. Galeener,
Barrio, Martinez, and Elliottzs have pointed out that in a
glass a mode of this type would be essentially decoupled
from its environment. They attribute the sharp line at
606 cm ~ in v-SiOq to such a breathing mode of a planar
three-ring. Our results are consistent with this analysis.
It should be noted that the 628 em line is not partic-
ularly intense in the Raman spectrum of benitoite. It is
possible that the prominence of the corresponding fea-
ture in the spectrum of SiOq glass is due entirely to its
decoupling from the amorphous network, which prevents
it from being broadened to the same extent as the other
vibrations. The fact that the decoupled ring breathing
mode in benitoite is roughly 20 cm higher in energy
than its counterpart in u-Si02 is perhaps not surprising in
light of the discussion in the previous paragraph. Studies
of the analogous modes in other cyclosilicates are needed
in order to determine how much variation in frequency,
intensity, and linewidth will occur in various stuctures.
The results will help to establish whether or not the be-
havior of this decoupled mode is in some sense universal
in silicates.

We have presented a normal mode calculation for the
cyclosilicate mineral benitoite based on a correlation of
the vibrational properties of the Sis09 ring with those
of the crystal. Despite the simplicity of the valence-force
potential used (and the absence of long-range Coulomb
interactions) the results enable us to give a complete de-
scription of the observed infrared and Raman spectra.
More importantly, they permit us to identify modes char-
acteristic of the Si309 ring, study their coupling to the
rest of the crystal lattice, and begin to infer the behavior
of these modes when the ring is embedded in the ran-
dom network of a glass. Studies of other silicate minerals
are in progress, with the aim of taking systematic advan-
tage of this strategy to expand our understanding of the
vibrational and structural properties of silicate glasses.
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