
PHYSICAL REVIEW B VOLUME 47, NUMBER 13 1 APRIL 1993-I
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The dynamic correlations of classical and quantum Toda lattices are approached by moment ex-
pansion. For the classical model, the moments of the spectral shape of the displacement-displacement
correlation function are exactly calculated up to the eighth one, while, for the quantum system, their
evaluation is limited to the sixth one, using the effective-potential method in low-coupling approx-
imation. The spectral shape is calculated using the continued-fraction expansion. The relevance of
quantum effects is clearly shown, in dependence on temperature and quantum coupling. At all wave

vectors, the spectral shape presents a single-peak structure, both in the classical and in the quantum
regime.

I. INTRODUCTION

In the last two decades a large amount of work has
been devoted to the study of the dynamic and statisti-
cal properties of nonlinear systems. One of the motiva-
tions of such interest is surely the realization that the
combination of variety, beauty, and stability observed in
the most complex structures existing in nature, biological
systems included, is largely due to their intrinsic nonlin-
ear character. However, a comprehensive machinery, like
that one developed for the linear systems, able to allow
a unified treatment of any nonlinear structure, has not
yet been developed. Due to the difficulty of the general
problem, many efforts have therefore been devoted to the
identification and investigation of the simplest nonlinear
models, for which rigorous results can be drawn and ex-
act solutions in particular cases can be found. Also these
elementary systems, however, despite their apparent sim-
plicity, give rise to a variety of behavior, and provide a
formidable challenge both from the physical and from the
mathematical point of view.

Among such models we consider the one-dimensional
lattice with nearest-neighbor exponential interaction, in-
troduced by Toda in the late sixties. ~ The main feature
of this model is its integrability, so that exact solutions of
the equations of motion for the lattice can, in principle,
be found for given initial conditions. Moreover, particu-
lar solutions, having- a solitonic character, can be found
for the same equation. Also the classical partition func-
tion of the Toda chain can be calculated in closed form, so
that the macroscopic, equilibrium thermodynamic func-
tions can be exactly evaluated.

However, the capability of solving the equations of mo-
tion and producing the exact partition function does not
imply, by any means, that the more interesting problem
of evaluating the nonequilibrium statistical properties of
the system can be equally easily addressed. The rele-

vance of the last problem is apparent by recalling that
the most detailed information about the behavior and
the role played by the elementary excitations of a system
is not contained in the static quantities but in the dy-
namic correlation function. It is just the last one that de-
termines, for example, the response function in neutron-
scattering experiments, and strictly related to it are other
characteristic quantities, probed by other spectroscopies,
such as, for example, the relaxation times.

The dynamic correlation functions of nonlinear inte-
grable systems can be exactly evaluated only in few sim-
ple cases. Up to today, the Toda lattice is not inserted
in this list. Numerical simulations, based on molecu-
lar dynamics (MD), can be used for classical systems.
However, difficulties occur in approaching the thermo-
dynamic equilibrium, due to the presence of an infinity
of conserved quantities as a consequence of integrability.
Therefore, the pioneering simulations did not give defi-
nite results7 and were repeated only recently. s We are not
aware of any attempt to study the dynamic correlation
function of the quantum Toda lattice. For the classi-
cal model, the most detailed investigation was made by
Diederich, ~ who derived and solved a set of nonlin-
ear integrodifferential equations for the correlation func-
tions in the reciprocal space. This approach is essen-
tially a mode-coupling theory, similar to that developed
by Blume and Hubbard to address the same problem in
Heisenberg ferromagnets, and by Kawasaki to study a
lot of physical systems in a neighborhood of the critical
point. The most striking result obtained by Diederich
is the appearance in the spectral shape, for intermedi-
ate wave vectors, of a second peak, which Diederich at-
tributes to solitonic excitations. However, such features
in the spectra are not confirmed by other calculations.
Although the dynamic correlation calculated within the
diluted soliton-gas approximation —whose application
could perhaps be questionable, the Toda solitons being
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gapless —results from two independent contributions at
each wave vector, one coming from phonons and the other
one from solitons, centered at two slightly different fre-
quencies, the soliton peak is almost completely absorbed
in the wing of the phonon component once the intensities
of the two peaks are correctly taken into account. More-
over, we have repeated the mode-coupling calculations,
and they did not reproduce the two-peaked structures, in
agreement with new recent MD simulations. As shown
in this paper, the absence of the soliton peak is also con-
firmed by our moment analysis.

In this paper the dynamic line shape of the Toda lat-
tice is addressed from a diferent point of view, valid both
in the classical and quantum case. We give some defi-
nite information about the properties of the dynamic re-
sponse function through the evaluation of its frequency
moments. Such quantities can indeed be expressed as
static correlation functions, so that they can be exactly
evaluated in the classical system and approximately also
in the quantum one. Explicit results for the lowest-
order moments (up to the eighth classical one and the
sixth quantum one) are given as functions of tempera-
ture, and a reconstruction of the line shape starting from
the knowledge of the Grst coefBcients of its continued
fraction expansion is presented. This analysis allows us
to have information on quantum dynamic correlations,
and we show that our set of moments seems to be incon-
sistent with a double-peaked structure both for classical
and quantum systems.

II. THE CORRELATION FUNCTIONS
OF THE TODA LATTICE

The Toda lattice is a one-dimensional array of N par-
ticles of mass m, interacting through an exponential
nearest-neighbor interaction potential v(r). Its Hamil-
tonian reads

N
'6 = ) ' + v(x, —x, i)

1=1

v(r) = — e &" "o) —1 + a(r —r())
6

(2.1)

(2.2)

The constant b i fixes the length scale over which the
nonlinearity of the potential shows up, while the ratio a/b
sets the energy scale. The value of r = rp, corresponding
to the minimum of v(r), represents also the equilibrium
distance of two adjacent particles at zero temperature
and zero pressure in the classical system. The relevance
of quantum effects is measured through the dimensionless
coupling constant:

g = (h~o)/(a/b) = (hb&)/Jam

4)p = V rp fA = G fA

(2.3)

(2 4)

i.e., the ratio between the characteristic energy hap of
the quantum harmonic excitations and the overall en-

ergy scale a/b of the system. All the results given in the
following are obtained for periodic boundary conditions
and in the thermodynamic limit (N —+ oo and L —+ oo
with d = L/N held constant, I being the total length of
the chain).

To investigate the dynamic behavior of the system, we
will consider the correlation function:

(2.5)

where u, (t) = x, (t) —id is the "displacement" of the ith
atom at time t from its equilibrium position. In the ther-
modynamic limit, C(k, u) is well defined for every value
of the frequency u and for all wave vectors k of the first
Brillouin zone [

——,—j. For k g 0, C(k, u) is proportional
to the symmetrized correlation function, which deter-
mines the response of the system in a neutron-scattering
experiment:

C(k, ~) = 2 —) e '"" ' 'l dte'"' (u, (t)u,—(0) + u, (0)u, (t)) (2.6)

C(k, u) can be easily related also to other dynamic re-

sponse functions of the Toda lattice considered in the
literature;7 for example, in the classical case and for

k/0,

where (Ak(t)A), (0)), is the correlation function studied
in Refs. 9 and 10.

The frequency moments of C(k, w) are defined by

dte' '(Ag(t)Ag(0)) = 2sin (kd/2)C(k, ~), (2 7)
d4J W C(k, Ld) (2.9)

with
N

Ak, =(N) ~ ) e ' (x„—x„ i)
n=1

(2.8)

Since, from the definition (2.5), C(k, w) is an even func-

tion of both k and ~, the odd frequency moments are
vanishing. Taking into account the stationary properties
of the system, the last ones can be rewritten asks

()) 2~). ,)d(, ))( g( -2)$ —/ (—( )( ))/(( )( )) ) (2.10)
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where we have used the short notation lattices. In the quantum ease, the formula

(2.11) (A) =-z dX A(ihB„X—2z) p(X—2z, X+2z)
z=o

(3.1)

III. THE EFFECTIVE POTENTIAL
AND QUANTUM AVERAGES

The time derivatives of the particle position appearing
in Eq. (2.10) can be easily obtained from the equations
of motion, so that we are only faced with the problem
of evaluating equilibrium averages of functions of coordi-
nates and conjugate momenta. This last step is straight-
forward in the classical case, where it reduces to the
calculation of phase space integrals, which can be sep-
arated in Gaussian integration over the conjugate mo-
menta and configuration integrals, whose evaluation can
be done without particular problems for one-dimensional

I

has to be used, where Z is the partition function,
A(p, q) the p-q ordered form of A and p(X', X) the (non-
normalized) density matrix. An approximate explicit
expression for p, which finally allows us to reduce the
evaluation of equilibrium quantum averages to elassieal
configuration integrals, ean be obtained by treating the
pure-quantum part of the fiuctuations in a self-consistent
Gaussian approximation. ' 'rs In such a way one is able
to account for the full quantum behavior of the harmonic
excitations of the systems and the full classical nonlinear
behavior, the leading nonhnear quantum corrections be-
ing also considered. Within such an approach, one ob-
tains

N/2

p(X—2z, X+2z) =
(

(2vrh P)
dx.-P

m&
exp 2 ~ pg(x) + —

~

zi2
2h2 ( pp
1

]2 exp
2vro. ), (x)

1 2

( )
p4 —~A) (3.2)

Here and in the following the subscript k denotes
variables transformed by the orthogonal matrix Uy;(x),
which diagonalizes the frequency matrix

(3.3)

1 . 8 V
V~(x) = (V(x+())„—2) n,, (x)(g ~ (x+g))

1 ~. sinh fi, (x)
P - fi (x)

(3.7)

where e), = Q„Uk, Ui,~ni„and the expression for the par-
tition function simplifies to

whose eigenvalues are ~q(x). In Eq. (3.3) we have intro-
duced the notation (f(g)) for the (x-dependent) Gaus-
sian average over the pure-quantum fluctuation variables

g = ((,), defined by

N12
pF m

2~52p)
dxe —P ~(") (3.8)

—(„/2o, g (x)

(f(c) -=~4 f(c)
2~o.g (x.)

The parameters

(3.4)

and

o, ),(x):—
/

eoth fg(x)—
2maA, . x A;x) (3 5)

pi, (x) —:m (u„(x) nA,, (x) (3.6)

with fA:(x) =
2 ph~A;(x), are the pure-quantum contribu-

tion to the Gaussian fIuctuations of position and momen-
tum, respectively, for a harmonic oscillator of frequency
uA, (x). Finally, the effective potential VG(x) is given by

In order to proceed with the explicit calculations for
a many-body system, like the one we are interested in,
a further approximation, valid when the nonlinear quan-
tum efFects are small, can be introduced. Such a low
couphng approximation (LCA) relies on the expansion of
the frequencies ~~(x), and of all the renormalization pa-
rameters depending on them, around the configuration xo
corresponding to the (self-consistent) absolute minimum
of VG(x), in such a way that the implicit dependence on
x is removed. Due to the translation symmetry of the
system, the configuration xo corresponds to uniformly
spaced particles with lattice constant d, so that the trans-
formation UA, ; is reduced to a space Fourier transforma-
tion. Within LCA the effective potential for a system
with pairwise additive interaction turns out to be again
pairwise additive, and for our one-dimensional model we
have
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N

Vg(x) = ) vG(x, —z, g)
2=1

with

(3 9)
2

(dk = v"(d) . ~ (kdb

consistent expression:

(3.14)

vG(x) = v(x) ——v" (d)'D+ H
2

where

(3.10)

(3.11)

v(*) = (v(v+(* —(*-i)) = ). —, v'"'(*)
l

—
lx, E! &2)

Once Eq. (3.10) is inserted in Eq. (3.8), the config-
uration integral can be easily evaluated by applying the
methods described in, ' so that, apart from an inessen-
tial additive constant, the free energy per particle f re-
sults:

f = k'BT ln
I s I

+ spd+ ln&G(sp), (315)
r mk~Ti
( 2~h, ' )

where
In the above equations two renormalization parameters
have been introduced: EG(s) = —sx —PvG(x) (3.16)

H = (NP) ) (lnsinh fI, —ln fg) (3.12)
and sp is fixed by the saddle-point condition for the in-
tegral appearing in Eq. (3.8)

'D = N ) 4sin (kd/2) aA, (3.13)

which restores the quantum behavior of the harmonic
excitations, and 1 dPG(s)

EG(s) ds
S=Sp

(3.17)

which describes the pure-quantum square fluctuations of
the bond length, so it is a renormalization parameter
that typically occurs for one-dimensional systems with
nearest-neighbor interactions only. Both H and V in
Eq. (3.10) are evaluated using for the frequencies the self-

I

The actual derivation of explicit expressions for the
classical and quantum moments, up to the sixth one,
for a general nearest-neighbor interaction potential is de-
scribed in detail in Ref. 15. Here we report only the final
results for the LCA quantum moments:

pp(k) = 47r
1

—d
1 ~ + c(.A,

. + o.i, Ave
(XG(sp), b 1

&&G sp ) 4sin kd 2
(3.18)

pq(k) = 4vr + wl, ng + w& (og + op) hvar
k~T

(3.19)

kgyT ( 'D,„( 1 k~T V
V4(k) = 4~~~ I ~2G+ v*"(d) 1-„d + ~„'ma+ ~„'(2n +Acre) bv +s—bv4

m (, 2 ) v m 2
(3.20)

ps(k) = 47r
1

w~G + v" (d)v'"(d)D ——v"'(d) (D —D)
1

+ 2 (WssG —W~G) + v"'(d) (3D —'D) „wI, + cu&c('A: + u)& (3c(,'A; + (rp) pvz
'U

+ urz (M'D —b'D) + mwi
i

„('D+6D) — „(6D—h~)
1

hvar
krsT s v"'(d) ~

~ (v'" (d) v'"(d) ~

ms " v"(d)
" &v"(d)

2k&T g gal ( D D fnhdi+, tv„' v"'(d)13D —D — „„'6vv) .
ms ( 2 v" d

(3.21)
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The new renormalization parameters introduced above
are

1

Ea(so)
dx v(")(x) v (x) e

and

1'D = —) 4 sin
N
1

b'D = —) 4 sin
N

k

6'D = —) 4 sin
N
(dan Berg

&I =
2 BCdA;

t'kdl z t'kd)
cos

i

—
i

—1 ni,&2)

(—",') -. ,

(kd) s (kd'l
/

—1

(3.22)

(3.25)

where v(")(x) denotes the nth derivative of v(x) with
respect to its argument.

The classical moments can be easily deduced from the
quantum ones by simply dropping all the terms propor-
tional to a~ and oA, or 'D and 'D, and by using the bare
potential v(x) instead of vo or v(x) in Eqs. (3.18)—(3.21)
and in the definition of X and W, which in the classical
case will be denoted without the subscript G. For the
classical lattice, starting from

W„ —v("&(d)
v" (d)

(3.23)

Finally, the constants W~ have been defined as follows:

d4x, ] BzU BU 1

dt4 ms - Bx,Bx„Bx P/Pn)

&a(so)
d* v&"&(x) .-"*—~v~(x),

(3.24)

l

(3.26)

we have obtained also the expression for the eighth mo-

ment, which at the end comes out to be

ps (k) = 4n 4 64sin (kd/2)W& + 16 sin (kd/2)( —4W& —3k&TWs + 4WzW2g)

+4 sin (kd/2)(2' + 6k~TWs —6W2Wsq + 12k~TWss + 4Wgz2) (3.27)

IV. THE MOMENTS OF THE SPECTRAL SHAPE
OF THE TODA LATTICE

The application of the above formalism to the Toda
lattice is made relatively easy by the form of the interac-
tion potential. In fact, when Eq. (3.10) is considered, it
is immediately seen that the efFective potential has the
same form of the original one:

kBT 6

a/b aP
(4 5)

The special form of the Toda potential allows us to
obtain analytic expressions for the functions X and W so
that all the macroscopic thermodynamic functions and
the moments can be computed. If we define the reduced
temperature

r

v~(r) = —e " "0 —1 + a'(r —ro) +p'r + C,
6

(4 1)

1.5

1.0

if the following renormalized parameters are de6ned 0.5
Vb /2

p'= a y —e~b /'

(4.2)

(4.3)

0.0
0.0 1.0 2.0 3.0

C= H+ar e i —1

++~

We note that 'Db /2 (( 1 is a consistency test for the
validity of the I CA for the Toda lattice.

FIG. 1. SpeciFic heat per particle at constant length d =
ro (cg) and constant pressure p = 0 (c„) of the classical and
quantum Toda chain; the quantum results refer to a coupling

g = 1. Continuous line: Effective potential results; filled and
open squares: Bethe-ansatz results (Ref. 21); dot-dashed line:
classical result.
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and the parameter

g=e er b'/2 —b(d —ro) (4 6)

we have

Db 1 bH
X(s) = exp s—ro + g 28 t9 a8

ge
—&6 /2

(s/b+1/8) (s 1 )I'I -+- I-
ib 8) b'

and so is determined by Eci. (3.17):

ln 6je 1 + + — =g ro-Zb—' 2 (SO

qb 8

(4 7)

(4.8)

where I' is the Euler gamma function, and g its loga-
rithmic derivative. These two equations, together with
Eq. (3.15), allow us to obtain all the macroscopic ther-
modynamic quantities of the system.

The approach based on the efFective potential turned
out to be valid in many applications. For the thermody-
namics of quantum Toda, where exact results are avail-
able, a direct comparison has been presented in Ref. 20

I

(4.10)

where some static correlations were also calculated.
In order to prove the validity of this method, we show

in Fig. 1, the temperature behavior of the specific heat
at constant lattice length, cg, for d = ro, and at constant
pressure, c„, for the zero-pressure state, compared with
the exact results of the Bethe ansatz. 2i In spite of the
rather high coupling g = 1, both quantities are in ex-
cellent agreement with the exact calculations, and this
should allow us to be confident on the moment evalua-
tion.

Turning to the calculation of the quantum moments,
we obtain the following results for the functions WG of
the Toda lattice:

w„G = —8 ( b)"-e '-/'q,
6

~. .= (-') s' (-~)"+- -"*«C+~),
where ( = (1/8+ so/b). Moreover,

bv2= =e / —g —1
~

=—bv
bvs rb' -2 8

(-b)
so that the following expressions for the moments are
Anally obtained:

4' 1"'=
b '4.;. (kd/2)

8~'")+ "+ "" (4.1i)

4'
p2 =

2 8 cd() (1 + cog + (o!A, + cry) 6v], (4.12)

4vr 4 . 2 (kdl 8 ( 'Db25
/i4 = 8cdo4 4rlsin2

~

—
~

—
~

1+
~

e ~b /2(+aA, + (2ni, +aA, )bvb' q2) rig 2) (4.i3)

8 cdo 4gsin —
I I I

e ( +e / 'Db ——(D —'D)b e
I

2 —
C

6 ~ 2 kd~ (8~ 'nb 2 — 17b 2 —2 1 2 27b-
b' 2

2

+ 2I —
I

e ~"c,'+(3V &)b2e ~'— 2-0 —1
I('9) g ) 4sin (kd/2)

+nA, . + (3o.i, + o A, ) 6v

~bs (36D —6'D)b2 z,i,s/2 2 (/i D —6D) 2

where

ay = fi, coth fg —1, (4.15)

(4.16)
—=1
cri, = — 2 —fq coth fq—

2 sinh fk)
Again, the moments of the classical correlation function of the Toda lattice can be deduced from the previous ones
by setting to zero all the renormalization constants; the eighth classical moment is given by

p,s —— 8cdo[4gsin (kd/2)] /

— ( + 2 + (4.17)

V. CONTINUED FRACTION APPROACH
TO THE SPECTRAL SHAPE

Starting from the knowledge of the frequency mo-
ments, a reconstruction of the correlation function itself

I

can be devised. The naive method consists of expanding
the time-dependent correlation function by the series:

C(k, t) = ) (—1)" ", t2" . (5.1)
n=O
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&(» ) = po(k)F(k ) = V (k) —& Vo(» & ) (5.2)

However, this expansion becomes poorly convergent
when time increases, and the knowledge of very high-
order moments would be necessary to reproduce C(k, t)
for long times. A typical behavior is shown in Fig. 2.

A different useful approach can be introduced by con-
sidering the following continued fraction representation
of the function C(k, w):s2 2

bg = —,P2

Po
p4

P2
P2

Po

1 ps /p4
2

S2

b4= 4 s 22 s
l

——bi —3bi b2 —3bi b2 —b'i b2
b&b&bs qpo

(5.6)

po(k, z):—
bi

62z+ + 0 ~ ~

(5.3)

where the normalized function F(k, u) has been defined.
The complex function &po(z) (the argument k does not
play any role in this analysis) can be defined by iterating
the recursive equation

1
(z) =

z+ 6'„+ip„+i(z) (5.4)

In the time domain, the inverse Laplace transform of
p„(z),p„(t) is called the nth memory function and obeys,
as a consequence of Eq. (5.4), the following generalized
Langevin equation

This scheme appears to offer a more manageable expan-
sion for the dynamic response function in terms of static
quantities. In the harmonic approximation b„vanishes
for n ) 1. For weakly anharmonic systems, the knowl-
edge of the first 6's allows us to reproduce the spectral
shape with satisfactory accuracy, by truncating the iter-
ation after some n, i.e. , introducing a reasonable approx-
imation of the nth memory function (5.4). ' However,
the choice of the termination can be a source of arbitrari-
ness in reconstructing spectral shapes of strongly anhar-
monic systems, in the absence of some insight into the
behavior of the dynamic variables of the system.

In the n-pole approximation, 2r b„y„(z) is simply ap-
proximated by a constant value 1/r„= b„p„(z=O),
i.e. , the more complicated variables associated with the
n-th memory function are supposed to have a very short
memory (Markov process). The inverse relaxation time

dgn
dt

= —b„+i dr F„+i(t—r)(p„(r) . (5.5) dt p„(t) (5.7)

The expansion coefficients b„are related to the frequency
moments. The explicit expressions of the first ones
are

1.0

0.5

~ 0.0
LL

is determined assuming a trial functional dependence,
e.g. , a Gaussian, for y~(t) or for y„2(t). In the first
case we have 1/7„= b„gx/2b„+i, while in the second
1/r„= garb„ i/2, so that the number of b's to be de-
termined is reduced by two.

In the Gaussian approximation2s ss at the nth order,
the expansion (5.3) is truncated assuming that at a suffi-
ciently high-order n the correlation of the associated dy-
namical variable 2 can be considered a Gaussian with
variance b„~i. The Laplace transform rp„(z) is

-0 5

-1.0
10

„(z) =
2b„+i

z j2b~+12 2 z/+2b„~ge*dx

(5.8)

FIG. 2. Normalized classical correlation function
F(k, t) = C(k, t)/po at 0 = 0.25 and kd = vr. The Fourier
transform of the continued-fraction expansion edith Gaussian
termination at third order (continuous line) is compared with
the numerical solution of the mode-coupling equations (dot-
dashed line) and with the series expansion (5.1) truncated
at the fourth (dotted line), sixth (dashed line), and eighth
(long-dashed line) order.

b„~i~~ ——(nt+ 1)b„~i . (5.9)

Finally, by calculating the moments of different trial line
shapes with two near peaks, we have induced that the
existence of such a structure is always connected with

We notice that the n pole approximation preserves the
first 2n moments, all the others being infinite. Instead,
the nth-order Gaussian approximation preserves the first
2(n+ 1) moments, while all the others remain finite, de-
termined by the relation
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1.0

0.5

~ 0.0
U

9
2

LL

ki

Ii
Ii
I i
I

I
I
I

I
I
I I

I

Ili g

-O. S

-1.0
10 15

FIG. 3. The same as Fig. 2 at kd = 0.2'. Only the Fourier
transform of the continued-fraction expansion and the mode-
coupling results are reported.

the fulfillment of a condition such as

FIG. 4. Comparison between the different termination cri-
teria of the continued-fraction expansion of the normalized
classical correlation function. Dashed line: first-order Gaus-
sian; long-dashed line: second-order Gaussian; continuous
line: third-order Gaussian; dot-dashed line: five-pole approx-
imation.

64 ( 62 (( 6i . (5.10)

VI. RESULTS AND DISCUSSION

Using the aforementioned methods and the equations
of the previous sections, we have calculated the classical
and quantum moments of C(k, u) at difFerent wave vec-
tors and temperatures. Successively, the coefBcients of
the continued fraction expansions have been evaluated.
Some selected results are shown in Tables I—III. All data
are reported using reduced units defined in terms of 4)p

and 6, and refer to the zero-pressure state.
First, let us notice that the expansion for C(k, t), given

in Eq. (5.1), is convergent only for lowest times; adding
new terms is less and less signi6cant. This can be seen
in Fig. 2, where the classical C(k, t), derived by Fourier
transforming the C(k, u) obtained by a third-order Gaus-
sian approximation, is displayed for comparison. In Fig. 2
we also report the result of our mode-coupling calcula-
tion, done by integrating the equation of motion given in
Ref. 9. In the numerical integration a uniform mesh of
160 wave vectors in the Brillouin zone has been consid-
ered; the time step used is 7r/(200uo), and the integration
has been performed up to cuot 70. The mode-coupling
approach preserves the moments up to the sixth. It turns

out to be in agreement with the continued fraction expan-
sion at high A;, while it exhibits some differences at low
wave vectors (Fig. 3). However, it is important to stress
that the mode-coupling is an approximate approach, so
that it cannot be considered as a reference test, like a sim-
ulation. Although such theories seem to be useful in the
study of dynamic critical phenomena 3 as well as in the
interpretation of many experimental outcomes, no
rigorous justification of the underlying approximations is
available. Moreover, it is not easy to single out the na-
ture and to estimate the size of the errors introduced by
the approximations employed.

Let us make some speculations based on the overall
behavior of the coefBcients 6„. We remember that their
values are calculated exactly in the classical case. Note
that (i) the quantum values tend to approach the clas-
sical ones at higher temperatures, as required; (ii) the
values of bq are much smaller than bi at least at lower
temperatures, signaling the presence of a peak that is
narrower for the quantum system; and (iii) the values
of b4, available for the classical model, are much larger
than those of b2. they turn out to be of the same order
as the classical b3, which is independent of k, according
to Eqs. (3.18)—(3.21) and (5.6).

This leads to the conclusion that the spectral shapes at
low temperatures have to present a single peak close to

TABLE I. Values of the moments and of the coefBcients b„at the zone boundary in the classical chain and for two different
values of the quantum coupling at three selected temperatures.

kd= vr

8=0.1

0=0.25

0=1.0

Clas.
g=0.4
g=1
Clas.
g=0.4
g=1
Clas.
g=0.4
g=1

ppb

0.331
1.275
3.172
0.892
1.470
3.265
5.170
5.334
6.152

V&t' /~o

1.257
5.021

12.493
3.142
5.446

12.441
12.566
13.227
16.411

P4b'/~o

5.024
19.985
49.237
12.561
21.603
48.358
50.250
52.392
62.413

alp 6 /llJ p

21.092
80.401

195.394
56.502
90.771

190.728
301.440
303.129
309.842

Ps& /~o

95.376

304.385

3215.097

3.802
3.939
3.939
3.522
3.705
3.811
2.431
2.480
2.668

b2/ufo

0.196
0.0409
0.0021
0.477
0.262
0.0761
1.568
1.481
1.136

b3/(do

4.069
4.181

50.083
4.194
3.549
2.914
5.100
4.880
3.889

64/Cdp

2.928

4.303

10.898
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TABLE II. Values of pp and of the coeKcients b„at half zone boundary in the classical and
quantum chain for two di8'erent values of the coupling and at three selected temperatures.

kd = 0.5'
0=0.1

8=1.0

Clas.
g=0.4
g=1
Clas.
g=0.4
g=1
Clas.
g=0.4
g=l

Ppb

0.661
1.823
4.493
1.783
2.403
4.702

10.335
10.502
11.350

bi/ado

1.901
1.960
1.966
1.761
1.821
1.883
1.215
1.228
1.281

62/4JQ

0.0982
0.0304
0.0027
0.238
0.167
0.0613
0.784
0.762
0.659

63/Cdo

4.069
10.148
80.902
4.194
5.119
9 ]99
5.100
5.027
4.690

64/Cd 0

5.926

7.302

13.897

~ = ~br. In view of the condition (5.10), doubly peaked
structures seem to be inconsistent with the set of calcu-
lated b's, especially at lower wave vectors, where b's and
b4 are much greater not only than b2, but also than bi,
indeed, their large values would not affect the neighbor-
hood of the single peak strongly enough to transform it
into a double peak.

The situation must be similar for the quantum model,
even though b4 is not available; the much higher values
of hs at lowest temperatures indeed make practically in-
effective any possible modification of b4. The absence of
two-peaked structures at any wave vector has been con-
firmed by recent molecular-dynamics simulations that
did not find the "soliton peak. " In addition, our mode-
coupling calculations also do not exhibit doubly peaked
spectral shapes, in contrast with the previous analogous
results 0 at intermediate wave vectors.

In order to verify the convergence of the continued
fraction expansion, we have compared difFerent termi-
nations at increasing stages. One example of this check
is displayed in Fig. 4 for the classical case, where more
moments, exactly calculated, are available. The Gaus-
sian termination appears to be convergent starting from
the second-order one, in agreement with the behavior
of b'4 with respect to bs. The n-pole approximation is
convergent from the fourth stage and gives similar spec-
tral shapes. This qualifies us to use the second-order
Gaussian termination, both for the classical and quan-
tum model, as we do in the following.

The calculated spectral shapes are reported in Figs. 5
and 6, at selected wave vectors, for two difFerent tem-

peratures. As expected, the spectra present a single
peak whose position shifts towards lower frequencies as
the temperature is raised, and whose width increases
with wave vector and temperature. As discussed be-
fore, the peak turns out to be centered near the value
of ~br. Taking into account Eqs. (3.18) and (3.1.9),
this peak shows, at lowest temperature, the A: depen-
dence of the phonon excitations. The quantum peaks
lie at a frequency slightly higher than the correspond-
ing classical ones, and are narrower. This can be ex-
plained by remembering that our approach reduces to
the self-consistent quasiharmonic approximation at low-
est temperature. Therefore, no damping is present in the
quantum system for vanishing temperature. At T = 0
and p = 0 both the classical and quantum spectra are
simply given by b functions centered at the same fre-
quency. As the temperature increases the frequency shift
of the classical peak is more rapid, due to the stronger
frequency renormalization of the elementary excitations
and the more relevant role of the thermal fiuctuations
in the classical system is also the reason of the larger
damping effects.

VII. CONCLUSION

We have approached the dynamic correlations of the
Toda lattice by calculating the Grst frequency moments
of the spectral shape of the displacement-displacement
correlation function.

For the classical system, the moments have been ex-
actly calculated up to the eighth one, by an analytic ex-

TABLE III. The same as in Table II, but for the wave vector kd = 0.2n. .

kd = 02m

0=0.1

8=0.25

0=1.0

Clas.
g=0.4
g=l
Clas.
g=0 4
g=1
Clas.
g=0 4
g=1

Ppb

3.460
4.987

10.401
9.338
9.997

13.161
54.117
54.284
55.158

bi/(do

0.363
0.368
0.373
0.336
0.339
0.347
0.232
0.233
0.235

b2/ufo

0.0188
0.0118
0.0019
0.0455
0.0417
0.0255
0.150
0.149
0.144

63 /4)o

4.069
14.273
77.643
4.194
6.285

12.710
5.100
5.142
5.296

b4/ufo

8.352

9.728

16.324
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12 kd= vr/5

kd=m/2

0
0.5 1.0 1.5 2.0 2.5

0
0

FIG. 5. Normalized classical and quantum correlation
function at three selected wave vectors and at 8 = 0.25. Con-
tinuous line: classical result; dashed line: quantum result with
coupling g = 0.4; dotted line: quantum result with coupling

g = 1. The maximum value of F(k, io) at jcd = vr/5, which
lies out of the figure, is 35.78.

pression based on the transfer matrix. 9 6 The analysis of
the coefBcients of the continued fraction expansion leads
to the conclusion that doubly peaked structures are not
consistent with the calculated values. The presence of
a single peak is confirmed by our mode-coupling calcu-
lation, in agreement with recent numerical simulations.
Indeed, we have found single-peaked spectral shapes at
any wave vectors using both n-pole and Gaussian termi-
nations; we have verified that the second-order Gaussian
termination is very near the third one and does not differ
much from the four- and the five-pole approximations.

For the quantum system, the moments have been cal-
culated up to the sixth one. We have evaluated the quan-
tum averages by means of the effective potential in low

FIG. 6. The same as in Fig. 5 at 0 = 1.0. Only the quan-
tum result for coupling g = 1 is reported.

coupling approximation. The range of validity of this
calculation at constant pressure, p = 0, has been derived
by the comparison with exact Bethe-ansatz data for the
specific heat for coupling g = 1. The very good agree-
ment leads us to be confident of the applicability of the
methods at all temperatures for g & 1. The spectral
shapes, calculated by the second-order Gaussian approx-
imation, show a behavior similar to the classical ones,
with a narrower single peak. Both in the classical and
quantum Toda lattice, the peaks of the spectral shapes
can be ascribed to the phonon excitations.

A,CKNOWLEDGMENTS

We thank F. Mertens and A. Neuper for information
about their simulation data. Useful discussions with A.
R. Bishop are also acknowledged. This work was done
with the support of the NATO S.P. Chaos, Order and
Patterns, (CRG 901098).

S.E. Trullinger et al , Solitons (N. orth-Holland, Amsterdam,
1986).
M. Toda, J. Phys. Soc. Jpn. 22, 431 (1967).
M. Toda, J. Phys. Soc. Jpn. 23, 501 (1967).
M. Toda, Theory of 1Vonhnear Lattices (Springer, Berlin,
1981).
M. Toda and N. Saitoh, J. Phys. Soc. Jpn. 52, 3703 (1983).
V.E. Korepin, A.G. Izergin, and N. M. Bogoliubov, Quan
turn Inverse Scattering Method, Correlation Functions and
Algebraic Bethe Ansatz (Cambridge University Press, Cam-
bridge, UK, 1992).
T. Schneider and E. Stoll, Phys. Rev. Lett. 45, 997 (1980).
F.G. Mertens and A. Neuper (private communication).
S. Diederich, Phys. Rev. B 24, 3186 (1980);24, 3193 (1980).
S. Diederich, Phys. Lett. 85A, 233 (1981)."S.Diederich, Phys. Lett. 86A, 294 (1981).' M. Blume and J. Hubbard, Phys. Rev. B 1, 3815 (1970).
K. Kawasaki, in Phase Wansition and Critical Phenomena,
Vol 5a, edited by C. . Domb and M.S. Green (Academic,
London, 1976).
F.G. Mertens and H. Biittner, J. Phys. A 15, 1831 (1982).
A. Cuccoli, V. Tognetti, A.A. Maradudin, A.R. Mc Gum,
and R. Vaia, Phys. Rev. B 46, 8839 (1992).
A. Cuccoli, V. Tognetti, and R. Vaia, Phys. Lett. A 160,

184 (1991).
R. Giachetti and V. Tognetti, Phys. Rev. Lett. 55, 912
(1985).' R. Giachetti and V. Tognetti, Phys. Rev. B 33, 7647 (1986).
F. Giirsey, Proc. Cambridge Philos. Soc. 46, 182 (1950).
A. Cuccoli, M. Spicci, V. Tognetti, and R. Vaia, Phys. Rev.
B 45, 10127 (1992).

'M. Hader and F.G. Mertens, J. Phys. A 19, 1913 (1986).
H. Mori, Prog. Theor. Phys. 33, 423 (1965).
H. Mori, Frog. Theor. Phys. 34, 399 (1965).
M. Dupuis, Frog. Theor. Phys. 37, 502 (1967).

2sU. Balucani and V. Tognetti, Phys. Rev. B 16, 271 (1977).
B.J. Berne and R. Pecora, Dynamic Light Scattering (Wiley,
London, 1976).
S.W. Lovesey and R.A. Meserve, J. Phys. C 6, 79 (1972).
K. Tomita and H. Tomita, Prog. Theor. Phys. 45, 1407
(1971).
H. Tomita and H. Mashiyama, Prog. Theor. Phys. 48, 1133
(1972).
A. Cuccoli, S.W. Lovesey, and V. Tognetti, Phys. Rev. B
39, 2619 (1989).

'A, Cuccoli, S.W. Lovesey, and V. Tognetti, J. Phys. Con-
dens. Matter 2, 3339 (1990).


