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A generalized model for the nonlinear transport of vibrational energy in a molecular chain is derived.
It contains the coupling to both the optical and the acoustic modes of the lattice. The model reduces in
simplified situations to the Davydov model or the Holstein model. Reductions to two forms of discrete
nonlinear Schrédinger equations are discussed, and the corresponding solitary wave solutions are
presented. In general, the molecular chain contains some randomness, which is caused by different phys-
ical mechanisms: (i) randomly distributed molecules around the chain, (ii) different masses of the side
groups, and (iii) random distributions of the intermolecular distances. The various effects are discussed,
and special attention is given to their influences on the transmission coefficient. Besides Anderson locali-
zation in the (nearly) linear regime, it is found that solitonlike waves can be excited, which may lead to
an anomalous nonlinear convective transport of vibrational energy. This is a very important effect in a

random molecular chain.

I. INTRODUCTION

The transfer of vibrational energy in biological sys-
tems, such as long chains of hydrogen-bonded peptide
groups (PG’s), by means of self-trapped mobile states (sol-
itary waves or solitons) was suggested by Davydov and
Kyslukha.! The idea was to explain how the energy
released by hydrolysis of adenosine triphosphate (ATP)
can be transported from one end of a protein molecule to
the other.? The amount of this energy is about 0.422 eV.
It is partly stored in the high-frequency intramolecular
C =0 stretching mode (amide-I vibrations with frequen-
cy about 1665 cm~!). Besides the usual electric dipole-
dipole coupling (resonance interaction) between neigh-
boring PG’s, which can be described by the standard ex-
citon Hamiltonian, Davydov and Kyslukha have intro-
duced the short-range interaction of amide-I vibrations
with low-frequency longitudinal acoustic phonons of the
molecular chain.® The latter coupling is caused by the
dependence of the amide-I energy on the distances to
neighboring left and right molecules (PG’s). The linear
(in intermolecular relative displacements) expansion term
of this dependence leads to the nonlinear exciton-phonon
coupling. Then the dispersive effects caused by the reso-
nance interaction are counterbalanced by this nonlineari-
ty resulting in the existence of the dynamically stable so-
called Davydov solitons.*”"!> For a comprehensive re-
view and today’s status of the theory see Ref. 13.

The main point in the Davydov theory is the self-
trapping mechanism originated from the classical works
of Landau'* and Pekar.!* Based on Pekar’s polaron, a
simple one-dimensional model for a diatomic molecular
crystal has been introduced and studied by Holstein.!¢
The model consists of a discrete nonlinear Schrodinger
(NLS) equation of the tight-binding form. The wave
function describes the probability amplitude of a single
excess electron in the conduction band. As was
discovered by Scott and co-workers,!” the Holstein model
proved to be very appropriate for the explanation of spec-
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troscopic data measured on crystalline acetanilide,
(CH;CONHC¢H;), or ACN, at low temperatures. In
Davydov’s model the wave function of the discrete NLS
equation describes the self-trapped localized states of the
amide-I vibrational energy. This self-trapping results
from the (nonlinear) coupling of the high-frequency C=
O stretching mode with low-frequency acoustic modes of
this crystal.

In this paper we consider the nonlinear coupling of the
amide-I high-frequency oscillations with both the acous-
tic and the (low-frequency) optical modes. If only the
first coupling is present, we obtain the Davydov model,
whereas, if only the second coupling is present, the Hol-
stein model is found as the limiting case. Besides this
generalization, a big part of this paper deals with the
influence of a random environment on the excitation and
dynamics of possible solitary states. Usually, any chain
will be influenced by the environment consisting of mole-
cules randomly distributed around this chain. Besides
this type of randomness, irregularities are also caused by
the different masses of PG’s, including their side groups.
Finally, a third type of randomness originates from a pos-
sible random distribution of the intermolecular distances
involving a random distribution of the intersite coupling
constants. When investigating the transport of vibration-
al energy in a random molecular chain we want to find
out whether the Anderson localization'® occurs also in
the nonlinear regime. The Anderson localization means
that in scattering experiments the transmission coefficient
decays exponentially to zero with increasing scattering
lengths. The question is whether this phenomenon will
be changed when propagating solitons can be excited.!’
The latter (collective) modes may possess a sufficiently
large inertia which could enable the solitons to override
the irregularities caused by the randomness. This impor-
tant problem will be investigated in this paper.

The paper is organized as follows: Since we study a
generalization of the Davydov and Holstein models, in
Sec. II we combine the acoustic and optical modes and
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write a general set of three difference-differential equa-
tions. In Sec. IIT we reduce these equations to discrete
NLS equations. We also present there the well-known
sech-soliton solutions. In Sec. IV we list typical parame-
ter values for both limits, the Davydov and Holstein
models. Models for one-quantum dynamics in a random
molecular chain are discussed in Sec. V. A particlelike
dynamical equation is also derived in that section. Re-
sults of numerical scattering experiments in a random
chain are shown in Sec. VI. The role of soliton solutions
will be shown. Some concluding remarks are outlined in
Sec. VII. The paper is supplemented by two appendices.
In the first one, the modulational instability of discrete
systems is analyzed. In the second one we present the
multiparticle generalizations of the previous models for
future investigations.

II. A GENERAL NONLINEAR MODEL
FOR THE TRANSFER
OF THE INTRAMOLECULAR EXCITATION

Let molecules (e.g., peptide groups), in each of which
some low-frequency translational and/or rotational
motions of atoms take place, be situated along the x axis
at sites x =nl, with n=0,%1,... and lattice spacing I.
The nearest-neighboring molecules are considered to be
coupled (in the simplest case harmonically, “as realized
by springs”), so that the equidistant sites x =n/ are their
equilibrium positions. Besides the intramolecular
motions resulting in optical modes, each molecule can
move along the x axis as a whole entity. As a result, the
longitudinal acoustic mode in the chain will be generated.

Next, each molecule can be found in the excited state.
In the case of protein consisting of coupled peptide
groups we have the intramolecular high-frequency C=0
oscillations (the amide-I excitation mode with a frequen-
cy of approximately 1665 cm™!). In this paper, this
mode is described quantum-mechanically, whereas the
acoustic and optical (low-frequency) modes are treated
classically. We present schematically this model chain in
Fig. 1. Here, for simplicity of notations, we restrict our-
selves to one (low-frequency) optical mode, shown in Fig.
1 by the pair of coupled atoms. For the intramolecular
amide-] excitations the exciton Hamiltonian! can be
used. For our general model it may be written as

H:2[EnBrTBn—BJ(Jn—an—l+Jan+l)] > (1)
n

where E, is the energy of the excited amide-I at the nth
molecule (PG) which depends on both, the relative dis-
placements of the nth molecule and its neighbors, as well
as on the intramolecular displacements of atoms. J, is
the energy of the resonance dipole-dipole interaction of
the excitations at the nth and (n +1)th molecules. In a
general case it also depends on the relative distance be-
tween these molecules. B,:r and B, are the operators of
creation and annihilation of a quantum of the intramolec-
ular excitation at the nth molecule which satisfy the usual
commutation relations

(B,,B).1=8,,, [B,B,]=0=[B,Bl]. 2)
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FIG. 1. Schematic representation of the model chain and the
environment. Only three molecules of the chain and three mol-
ecules of the environment are shown. Inside each molecule the
pair of coupled (by the potential V') atoms represents a low-
frequency optical mode, and the amide-I mode is shown by the
C =0 symbols. Double arrows represent interactions.

It is appropriate to expand the quantities £, and J, as
follows:

En :E0+[XL(an—an—1)+XR(an+l_an)
+xgB. 1+ -, (3)

and
Jn:J+XJ(an_an+l)+”' 4 @)

where E, and J are the energy of the excitation in
amide-I and the interaction of these excitations at neigh-
boring molecules in the undistorted chain, respectively.
The coefficients x; = (xz =0) are the constants of the in-
teraction of the intramolecular excitations with the rela-
tive displacements of the left (right) molecules. «, is the
displacement of the nth PG from its equilibrium position;
Xg =0 is the constant of the interaction of the excitation
amide-I with the intramolecular displacement of atoms
B, (in the nth molecule), the constant Y, (the sign of
which coincides with that of J) describes the degree of
decreasing the resonance interaction when the distance
between the neighboring molecules is increasing.

Let us start with one quantum of the amide-I excita-
tion in the chain. In this case, the time-dependent wave
function for the state of the chain can be represented as*

[w(z))=3 ¢,(¢)B]|0), (5)

where |0) is the ground state (the exciton vacuum), and
the set of the coefficient functions ,(¢) represents the
probability amplitude for the excitation quantum to be
found at the nth PG. From the normalization condition
(W(2)|W(¢))=1 for the state vector (5) we immediately
find the relation

Sy, (0)*=1. (6)

n

The state vector (5) evolves according to the time-
dependent Schrodinger equation

i%(0/0t)|W(t))=H|W¥(t)) , )

with the Hamiltonian (1) in which the displacements
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a,(t) and B,(t) are classical quantities. Therefore, the
total Lagrangian

.,£=<\I’ i'ﬁsa?'—H ‘P>+,Clm s (8)
with
Llatziac+Lopt ’ 9)
where
an —an
“Lac=Ma 2 —;_ai _U(Z)U —l}l_— ’ ] ’ (10)
and

) (11)

B

1
can be introduced. Here M, is the molecule (PG) mass,
and M, is the reduced mass of the intramolecular atoms
(diatomic subsystem). The dimensionless potentials U
(intermolecular) and ¥V (intramolecular) are assumed to
have single-minimum topology. They are normalized in
such a way that their second derivatives at minima are
equal to unity, i.e., U"(0)=1=V"(0). The velocity v, is
the speed of sound in the chain, and the parameter o, de-
scribes the frequency of small-amplitude oscillations of
the diatomic subsystem. The dot over «, and 3, denotes
the differentiation with respect to time z. Calculating the
average

)

<w
=3 ¢:(iﬁ¢n —E, ¥, ¥t (12)

1.
‘Copt=MO 2 [—2_33: _lzw(z)V

., 0
lﬁat H

we find from the “least action principle,”

8" L sty )1 =0, 13)
the following set of three difference-differential equations:
ifih, =E, b, —(Jy _ ¥ 1+ ¥u 1) (14)
MadnzMang U an+ll—an —U an—lan—l H

XUt 41 P19, D)+ xr U, 2= ¥, 1)
+2x; Re[ ¥ (¢, 11— ¥ -], (15)
MoB, = —IMo@3V' (B, /D~ Xp ¥, |” . (16)

Here the functions E, and J, are given by the linear ex-
pansions (3) and (4).

The conjugated momenta are defined in the standard
manner:

I, =3L /3y, =i#d? ,
¢=93.L /3¢, =M,a, , (17
P2=03.L/3B,=M,B, .
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Then the equations of motion (14)-(16) can also be ob-
tained in the usual way from the Hamiltonian

H=3 (i}, +Mal +MBL)—L
= 2 1/}:(En¢n _Jn~l¢’n—1_‘]n¢n +1)+-7{ac+-7{0pt ’

(18)

where 7f,. and #,, correspond to L,  and L, as
presented in (10) and (11).

Note that the Lagrangian given by (8)-(12), or the
Hamiltonian given by (18), are written in asymmetric
forms. They can be easily transformed to symmetric
forms by using the equality

%ZW’n(t)lZ:O . (19)

As a result, we obtain the following expression for the
average (see also Ref. 13):

<\I’ iﬁ—a—-—H

o ~H |[¥)= S Uimid,—dtv,)

_End’:!pn
H (Yn, 1t Yn¥a)]
(20)

It follows from (20) that the corresponding conjugated
momenta for the coordinates ¢, and ¢} are (i#/2) ¥
and —(i#i/2)y,, respectively. In a similar way, the Ham-
iltonian #f can also be written symmetrically.

III. DISCRETE NONLINEAR
SCHRODINGER MODELS

In this section we consider some particular cases of the
general set of equations (14)—-(16) when discrete nonlinear
Schrodinger (NLS) equations can be established. For
simplicity we restrict ourselves only to the symmetric
case when x; =xg =Xp- Next, for the sake of simplicity,
only harmonic interaction potentials U and V are con-
sidered, i.e., these functions are given by

Ulu)=1u?, V(y)=1y*. 21

The results can be easily extended to more general cases
when anharmonicities are important. Let us also neglect
the inertia of the molecules, including the motions of
their intramolecular atoms; i.e., the time derivatives on
the left-hand sides of Egs. (15) and (16) are assumed to be
zero. In each of the following three particular cases: (a)
Xp=X;=0 and xp#0, (b) xp=x,=0 and xy7O0, and
() xp=xrg=0 and x,7#0, we are able to get from
(14)-(16) discrete NLS equations with particular non-
linear terms (i.e., different versions of discretization of the
continuum NLS equation). In fact, a discrete NLS equa-
tion can be also obtained in the general case when both
the acoustic and optical modes are included. In the fol-
lowing, we investigate the various cases separately.
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A. Acoustic mode

For the coupling of an excess quantum quasiparticle
with the acoustic mode the equations of motion (14) and
(15) take the following form [see also (3)]:

lﬁl/)n :E0¢n —J(wn—1+¢n +1)+XD(an+1_an—l)1/)n

+XJ[(an.—.an—l)wn—1+(an+l~—an )¢n+1] ’
2 (22)

Vo
&, = 7 (o, +1—2a,+a, ;)
Xp
+ Ma (|¢n+1|2_|¢n*1|2)
2x
+ |5 [ Rel¥i W=t 0] (23)

It is convenient to rewrite these equations in dimension-
less forms by introducing the scaled (dimensionless) time

T=vt /1, 24)

as well as the following new functions:

. (T)=(£1)"exp[(i /ANE,—2|T )t 19, (¢) , (25)

and

u,(r)=a,(t)/l . (26)

Then Egs. (22) and (23) are transformed into [where, for a
moment, we allow U to be more general than (21)]

i(d¢,/dT)=—D(¢, 1 —2¢,+¢,_,)
+%g{c(u,,+1—u,,~1)¢n

+(1_C)[(un_un—l)¢n—l

o, = u)d, 111},

(27)
|

i(d¢,/dT)=—D(¢, —2¢,+¢,_))
—(A/8) X, — 1P +2l0, 12+ 8, 4110,
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d?u, /d™*=—(3/0u,)[U(u,—u, _)+Uu, , —u,)]
+ga{(c/2)(|¢,, +l|2_|¢n—1|2)
+(1—c)Re[¢;(d, 11— 0, -]} -

(28)
Here, for convenience, the dimensionless parameters
D= 11J| o= Xp ’
fivg xp+Ixsl
N (29)
_ 2ot #
& o IMyu,’

have been introduced. Note that 0=c =1 holds.

Neglecting the inertia term on the left-hand side of Eq.
(28), i.e., assuming that d*u, /d =0, we obtain the fol-
lowing discrete relation between the deformation of the
chain and the wave function:

U'lu, 1—u,)=—1golc¢,*+¢, +1»

(1 =c)¢ndn+1t¢n16.)] -
(30)

This equation can be solved with respect to u, ,—u, for
quite general functions U(u,,;—u,). For negative
values of u,,,—u,, when the chain is compressed, the
function U(u, ;—u,) and its derivatives are increasing
when u, .;—u, is decreasing. Therefore, for negative
values of u, ;—u,, Eq. (30) has a unique solution. This
solution may be substituted into Eq. (27) to create a
discrete NLS equation. Depending on the function U, a
whole family of discrete NLS models may be obtained.
In the continuum limit soliton solutions for this general
case have been studied in Ref. 20. In the two particular
cases, when the function U is quadratic or contains addi-
tionally a cubic anharmonicity, the solution for
u,+,—u,, and therefore the corresponding discrete NLS
equations, can be written explicitly. In the continuum
limit the effect of a cubic anharmonicity in the Davydov
model has been studied in Ref. 21. Here we restrict our-
selves only to the case of a quadratic function U. In this
case we obtain the following discrete NLS equation:

+c(l_c)[(¢:—l+¢:+l)¢i+2|¢n|2(¢n—l+¢n+1)+|¢n—l|2¢n—l+|¢n+1|2¢n +1]
(1= [@H(d2 1+ 82 )+, 12+ 16, 4118,1} (31)

where we have introduced the new coupling constant
A=glo . (32)

In the two limiting cases ¢ =0 or ¢ =1, Eq. (31) can be
essentially simplified. Note that the case ¢=1 corre-

sponds to the original Davydov model.

In the continuum limit (n —x ), Eq. (31) admits soliton
solutions. For simplicity of notations, in the following we
consider only the two special cases with ¢ =1 and ¢ =0,
respectively.

Substituting the expression
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¢, (T)=@, expli(nk—&T)], (33)

with the real functions ¢, (7) and the (dimensionless) en-
ergy 6 (to be determined), into Eq. (31) we find for ¢ =1
the two equations

de,/dT=D sink(@, _1—@,+1) (34)
and
—D cosk(@, +1—2¢,t@,—1)

—(A/4) @} 1295 + @5 4 1)@,

=[6—4Dsin*(k /2)]p, , (35)

which, in the continuum limit, are transformed into

@,=—2Dsinkg, , (36
and

—D coskg,, —Ap*=¢e@ . (37

The energy shift is e=& —4D sin®(k /2). For waves with
a stationary profile (§=x —s7) Eq. (36) gives the relation

s=2D sink , (38)

between the (group) velocity s and the wave number k.
On the other, Eq. (37) admits the well-known bell-shaped
solution,

@(&)=(un/2)%sech(ué) , (39)

for the envelope, normalized by the condition (6). In the
continuum limit the latter can be rewritten as

[ &rdg=1. (40)
The inverse half-width u of the soliton is given by
pu=u(k)=A/4D cosk . 41)

The value of the spectral parameter € [of the nonlinear ei-
genvalue problem (37)], which corresponds to the soliton
level (39), is represented by

e(k)=—D cosky2= —A2/16D cosk . (42)

Due to the relation (38) the parameters (41) and (42) de-
pend on the soliton velocity s. We have
D cosk =(1/2)(s3—s2)!/2, where s,=2D is the max-
imum value of the group velocity s [see (38)] of the propa-
gation of the exciton waves with the linear dispersion law

6(k,@y)=4D sin’(k /2) , (43)

which describes the exciton band with the width 4D. The
parameters €(k ) and u(k) can be rewritten as

e=e(s)=—(A2/8)(s3—s%) 12

and (44)
p=uls)=(A/2)s3—s?) 712,
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It follows from these expressions that the spectrum of ad-
missible soliton velocities s is 0 =<5 <s,.

Having the soliton profile for the envelope (39), from
the relation (30) the profile for the relative displacement
field »=u, can be immediately found. Using (39) and
(44) we obtain

r(€)=—rqsech?(ug) , (45)
with the amplitude
ro=(A32/4)(s3—s%) 172 . (46)

Now we compare the soliton solution given by (39) and
(44)—(46) with the exact soliton solution when the inertia
term in Eq. (28) is kept. Again, we still consider the sim-
plest case with ¢=1. Substituting the ansatz (33) into
Egs. (27) and (28) (for ¢ =1 in the continuum limit) we ar-
rive at (36) and the equations

—D coskg,, +gro=c¢p , (47)
Frr ™ Fxx =g(‘pz)xx . (48)

The soliton solutions of these equations are well known
and are given by the same formulas (39) and (45). How-
ever, the parameters €, u, and ry now contain the addi-
tional factor (1—s2)71, i.e., [cf. (44) and (46)],

e=—(A2/8)(sd—s2)" (15?72,
pu=A/2)s3—sH) 1 (1—sH)7!, (49)
ro=(A3"2/4)(s3—s?) X1 -5,

Therefore, the soliton velocity spectrum is reduced if
so>1. But as well shall see below, realistic parameter
values lead to s;<1. It can be seen from (49) that the
influence of the factor (1—s2)~! is not so large if s, <1,
especially for small velocities s. Thus, the stronger condi-
tion s,<<1 (as used, for example, in Ref. 22) for the
neglect of the inertia of the chain molecules is not so im-
portant; it is sufficient to assume sy < 1. In fact, we can-
not be close to the characteristic velocity s, since in this
case the inequality 7, >1 will hold. From the physical
point of view this inequality is forbidden because neigh-
boring molecules cannot pass through each other when
the soliton compression of the chain appears. Therefore,
the inequality r; <1 must be always fulfilled and the ve-
locity spectrum 0 <s <s, will be more shortened.

Now we consider the other case, when ¢ =0. In the
same way as before, from Eq. (31) (with ¢ =0) we find

de,/dT=sink(@, _—@,+)
X[D+(A/2)coskp, (@, 1+ @,+1)] (50)
—D cosk(@, +1—2¢, t@, 1)
—(A/2) cos’k(@? _+@% ), =¢€@, . (51

Eq. (50) is much more complicated than the previous
equation (34) because of the additional term in the square
brackets. However, due to the normalization condition
(40), for broad solitons, spreading over many sites of the
chain, the inequality @, <<1 must be satisfied. Therefore,
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if the coupling constant A is not large the second term in
the square brackets of Eq. (50) may be dropped and
therefore the relation (38) between s and k may be con-
sidered still valid, probably slightly modified due to this
nonlinear term. In the continuum limit the other equa-
tion (51) is transformed into

—D cosk@,, —Acos*kp’=¢eg@ . (52)

This equation has the same form as Eq. (37) and therefore
admits the same soliton solution given by (39), (41), (42),
and (44)—(46), where instead of A the parameter A cos’k
should be substituted. In the general case 0 <c¢ <1 more
nonlinear terms of the same type appear in Eq. (50). Us-
ing the same arguments as before we adopt the relation
(38) also in the general case. The second equation con-
tains many nonlinear terms (we do not write them here),
but in the continuum limit the form which generalizes
Eqgs. (37) and (52) is

—D coskg,, —Alc+(1—c)cosk ’g*=¢egp . (53)

Therefore, again all the previous formulas for the
Davydov soliton may be used, but the coupling A should
be replaced by A[c+(1—c)cosk]>. With the same sub-
stitution (A—A[c+(1—c)cosk ]*) in (42) the nonlinear
dispersion law is also obtained in the general case.

B. Optical mode

In the case of the coupling of an excess quantum quasi-
particle with only the optical mode (in a diatomic subsys-
tem) the basic equations of motion (14) and (16) describe
the well-known Holstein model. From these equations,
with the assumptions ¥; =Xz =X;=0 and a, =0, we ob-
tain [see also (3)]

ifih, =Eoh, —J (Y, _ 1+ 1) T XuBo ¥y 5 (54)
and

Bn=—0}B,—(xu /M), . (55)
Similarly, using the dimensionless time

T=wyt , (56)
the functions (25), and

yu(1)=B,(t) /1, (57)
[cf. (24) and (26)], we obtain the dimensionless equations
i(d¢,/dT)=—D(¢,+1—2¢, ¢, 1) +8V,, > (58)
and

%=—yn —gaole,|?. (59)

The parameters D, g, and o are given now by [cf. (29)]

171 Ixu _ &
p=dl GtH 7 (60)
iy’ & Awy’ T IPMyw,

Contrary to the case of the Davydov solitons, we are not

able to solve the continuum limit of Egs. (58) and (59) ex-
actly in the presence of the inertia term on the left-hand
side of Eq. (59). On the other hand, the coupled equa-
tions (58) and (59) can be solved by using an appropriate
set of trial functions, and their dynamical stability is easi-
ly established by using numerical techniques.?> For
sufficiently small soliton velocities we write

y.=—gol¢,|*, (61)

and arrive at the following NLS equation in the most
simple discretization:

i(d¢n/d7-)=_D(¢n+1_2¢n+¢n—1)_k|¢nlz¢n ’ (62)

where the nonlinearity parameter A is given by the rela-
tion (32). Similarly to the Davydov model, the in-
tramolecular potential V(y, ) may be considered to be of
a general form.? In this case the nonlinear term in Eq.
(62) will be generalized to Af(|¢,|*)$, with some mono-
tonically increasing function f.

Substituting (33) into Eq. (62), in the continuum limit
we get Egs. (36) and (37), whose soliton solutions have
been already analyzed and are given by (39) and
(44)—-(46). But the parameters for this solution are given
now by (60) [see also (32)].

Thus, we have illustrated in this section that the prob-
lem of the interaction of an excess quantum quasiparticle
(an excess electron in the conduction band or a quantum
of the intramolecular exciton amide-I) can be reduced to
discrete NLS equations. The discrete forms of the non-
linear terms in these equations depend on the types of the
displacement fields with which the quasiparticle interacts.
The resulting discrete NLS equations cannot be solved
analytically, but in the continuum limit they are
transformed to the well-known integrable cubic NLS
equation. It should be also emphasized here that the case
of the discrete NLS equation with the Ablowitz-Ladik
discretization®* cannot be reached in this (acoustic or op-
tical polaron) problem.

IV. PARAMETER VALUES

In this section we discuss the parameter values which
should be chosen when the theory is applied to realistic
situations. We also need to know, for which parameter
ranges the soliton solutions presented in Sec. III are val-
id, in which cases the states are strongly localized, etc.

As was mentioned in Sec. I, the quantum energy of an
amide-I vibration is E,=1665 cm™!20.206 eV. As for
the lattice spacing / of the molecular chain, one should
notice that the three-dimensional structure of protein is
rather complex, but one can identify certain substruc-
tures within it. There are helical arrangements and pla-
nar structures. One of the most common helical struc-
tures is the a helix. For the reason of simplicity, we re-
strict ourselves in this paper only to the simplest one-
chain model; a more realistic model of the a helix con-
sists of three coupled regular chains. As previously,® '3
we take for the lattice spacing of the molecular chain the
value /=4.5 A which can be also adopted to the
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one-chain model of ACN crystals.!” The mass of a PG
is usually taken (see, for instance Ref. 8)
to be M,=114.2m,=1.91X10"% kg,  where
m,=1.6726 X 10"? kg is the proton mass. If we consid-
er only the symmetric mode of the a-helix vibration (i.e.,
¢, is the same for different chains of the helix) the
effective mass is M, =3M.'® For the reduced mass of in-
tramolecular low-frequency optical vibrations we may
choose the value My=m,,.

As in Refs. 8 and 9, for both the acoustic and optical
mode we use the value K, =K,=13N /m for the stretch-
ing force constant of the hydrogen bond which has been
determined experimentally by Itoh and Shimanouchi?
from the vibrational spectra of crystalline formanide.
For the same reason as above, the effective force for the a
helix is K,=3K, (see also Ref. 13). Then the velocity
of longitudinal sound in the chain is vy=
(K,/M,)""?1=3.715X10*® m/s. The characteristic fre-
quency of the low-frequency optical oscillations is given
by the value o,=(K,/M,)!"/?=88.16X10"? s~!
(Aiwy=46.9 cm™ 1),

The hopping term in the Hamiltonian (1) with the
coefficients J, represents the dipole-dipole coupling of an
amide-I quantum at any molecule of the chain to its
neighbors. The values for these coupling coefficients [in
our notations J, see (4)] have been calculated by
Nevskaya and Chirgadze.?® Therefore, the value J=7.8
cm ™ '=1.55X 1072 J has been chosen for the a helix®
and the value J =4 cm™! is usually taken for an ACN
molecule.!’

Finally, the nonlinear coupling coefficients Y p, X, and
Xg are allowed to be adjustable parameters.>!” With
their help we are able to control the soliton width, to
create strongly self-trapped states which appear to be im-
mobile, etc. Some rough estimates for the coefficient yp
are outlined in Ref. 8. They indicate that
Xp~2-6X10"1N. The coefficient X is usually smaller
than Yp, so it may be taken as XD~10_”N. Next, the
value for the parameter Yy has been approximately es-
timated in Ref. 17, and it is proved to be
Xy =6.2X10"'"'N. This value leads to the existence of
stationary, strongly localized states. In order to allow
mobile soliton states to exist some smaller values for y
should be also considered. The value y;=2.5X10"1'N
appea;‘s to be appropriate for the existence of mobile soli-
tons.

Now, all the parameter values considered above may
be transformed to the corresponding dimensionless values
according to the relations (29), (32), and (60). All these
dimensionless values are summarized in Tables I, II, and
III. The generally accepted fixed parameter values are
listed in Table I. Here, we also present the time units
(t.u.), I /v, for the acoustic model [see (24)], and w, ! for
the optical model [see (56)], as well as the dimensionless
values for the amide-I quantum energy E, which appear
in our dimensionless description to be different:
€o=IEy/#fivy and ey=E /fiw,, respectively. In Tables II
and III we have listed the dimensionless nonlinear cou-
pling constants g and A [see (32)] for both the models as
well as the corresponding values for the half inverse

TABLE I. Fixed parameter values for the acoustic (Davydov)
and optical (Holstein) models.

Davydov Holstein
Dimensionless model, model,
quantities see Eq. (29) see Eq. (60)
tu. (107 5) 1/v,=12.10 o, '=1.13
€ 37.94 3.55
D 17.8X 1072 8.5%x1073
o 1.1x10™* 35.4X10*

width of the sech-soliton solution at rest. This quantity
Uo is given by (41) with k=0 (s =0). We should also
check the inequality ry <1 (discussed in Sec. III) for the
amplitude of the relative displacement field in Davydov’s
soliton. For very mnarrow solitons with py=1.25
(xp =5X10"!11N) the amplitude r, does not exceed 0.6.
This amplitude decreases with enlarging the soliton width
and therefore the condition ry <1 is fulfilled. The analyt-
ical soliton solution (39) is valid if u <<1. It can be seen
from Tables II and III that this solution can be used for
sufficiently small values of the coupling constants Y, or
Xg (xp~1-2X10""N and yg~1—3X10"!1!N). Also
note that the maximum group velocity of exciton waves
(sp=2D=0.356) is smaller than the speed of longitudi-
nal sound in the chain.

V. ONE-QUANTUM DYNAMICS
IN A RANDOM MOLECULAR CHAIN

Here we study the discrete time-dependent NLS mod-
els presented by Egs. (31) and (62). As usual (see, for ex-
ample, Refs. 19, 29, and 30), a random potential V, can
be introduced on the right-hand sides of these equations.
From the physical point of view in the case of biological
molecules the origin of this potential can be motivated as
follows: Usually, any biomolecular chain can be found in
a random environment consisting of some molecules ran-
domly distributed around this chain (see empty circles in
Fig. 1). The interaction of the chain molecules with mol-
ecules of the environment naturally leads to some shift of
the energy levels E, which can be explained exactly in
the same way as the appearance of the energy shift [see
(3)] caused by the dynamical variables a, and 3,. There-
fore, the constant energy E,=1665 cm ! in the expan-
sion (3) may be substituted by a random field E; , cen-
tered around the value E,. This can be taken care of by
the random potential V.

The second natural randomness in biological molecules

TABLE II. Adjustable parameter values for the Davydov
model (xy;=0).

xp(1071N) g A Ko
1 10.32 0.04 0.05
2 20.65 0.14 0.20
3 30.97 0.32 0.45
4 41.29 0.57 0.80
5 86.03 0.89 1.25
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TABLE III. Adjustable parameter values for the Holstein
model.

X#(107''N) g AM107%) Ho
1 0.48 0.8 0.02
2 0.97 33 0.10
3 1.45 7.4 0.22
4 1.93 13.2 0.39
5 2.42 20.7 0.61
6 2.90 29.8 0.87
6.2 3.00 31.8 0.93
7 3.38 40.5 1.19

has to appear owing to the different masses of PG’s in-
cluding their side groups. Therefore, the mass M, in the
equations of motion for a realistic chain should be substi-
tuted by M, [31] and therefore the dimensionless parame-
ter o in (32) should be replaced by o, [see (29)]. The re-
duced mass M, and/or the frequency w, can be also dis-
torted randomly by the environment. Thus, in Egs. (31)
and (62) we may substitute the nonlinear coupling con-
stant A by A,,.

Finally, the third type of randomness which should be
included into the discrete NLS models originates from a
possible random distribution of the intermolecular dis-
tances or orientations of neighboring PG’s [31]. A ran-
dom distribution of the intersite coupling constants may
occur in addition to the constant J in (4). Therefore, in
Egs. (31) and (62) a random field D, should be incor-
porated. Thus, for instance in the case of the Holstein
model, one can write

i(d¢n/d7)+Dn(¢n+l_¢n)~Dn—1(¢n_~¢n—l)
T 16,1200 =V,ody . (63)

We come back to this equation, and similar models for
random molecular chains, in the next section. Before
presenting numerical simulations, some analytical esti-
mates are appropriate.

The nonlinear wave propagation described by Eq. (63)
can be modeled by a corresponding dynamical equation
for a particle moving in an effective force field. To estab-
lish such an equation, we consider the probability density
[, 12 (or I, |?) in the normalization condition (6) as the
mass density of an effective spatially extended particle.
Then the relation

S ¢, (n)*=1 (64)

n

means that the total mass of the particle is unity. Next,
we introduce the following two averaged quantities:

X(r)=3nl¢,*, (65)

i.e., the particle position, and

s(T)=i 3 D, [(¢r 1= In)b, — b0 (D, 11— ¢,)]
=i2Dn(¢:+l¢n—¢:¢n+l) ’ (66)

the particle velocity. Note that in the continuum limit
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the last relation transforms to (38). That is why we use
the same notation s. Using Eq. (63), it can be shown that

dX/dr=s and ds/dt=F, (67)
where the effective force F is given by

F(T): 2 {Dn[(Dn—l_Dn+l)

n

+(}‘n+11¢n+1|2_}“n|¢n|2)
+(Vn_Vn+l)](¢:+l¢n +¢:¢n+l)} .
(68)

Each of the three terms in the square bracket of (68)
represents local forces in the chain, and that is why they
are represented by differences. The total force F is obvi-
ously the weighted sum, but the measure is
L(@¥ 16, +d%d, +1) instead of |¢,|>. This difference is
caused by the degree of intersite coupling in the chain.
For example, in the case of strongly localized states,
when the excitation is mainly located at one site (mole-
cule), the measure 1(¢; 4, +d,d,.,) tends to zero
everywhere in the chain, and therefore the effective force
(68) disappears. Indeed, if the excitation is trapped local-
ly by some site, there is no force to move it from there. It
is important to note that this is a discreteness effect, and
in the continuum limit this measure is transformed to
|¢(x,7)|%. Therefore, in the discrete case the force (68)
contains more information than in its continuum limit.
In the latter case D, —D(x), A,—A(x), V,—V(x), and
the expression (68) takes the form

F=—2_[D 53;(2D—M¢|2+V) |¢|%dx . (69)

In the particular case, when the randomness in the chain
is given only by the function V(x), i.e., D(x)=const and
A(x )=const, the expression (69) is reduced to the corre-
sponding formula in Ref. 19 [note that ¢(£o0,7)=0]. In
a similar way, we can represent the motion of a single
particle under the force (69) in an equivalent potential.
Let us introduce new functions W, (x) and W,(x) ac-
cording to the equations

W,=DM\' and W),=DV"', (70)

where the prime denotes the differentiation with respect
to x. Assuming the field intensity |$|? to be a function of
7 only through x —X(7), after integration of (69) by parts
we find that F[X(7)]=—0W(X)/3X, with the effective
potential

W(X)=2 [ [(4DA—W)|$|2+D2+W,]lp|%dx . (71)

This expression may be considered as a generalization of
the corresponding formula of Ref. 19 when other types of
randomness are included into the model.

VI. NUMERICAL SIMULATIONS

The model equations derived in the previous sections
form the basis for evaluating transport of vibrational en-
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ergy in molecular chains. Here we report on some simu-
lations (a complete scenario of the various effects will be
presented in a subsequent paper) which demonstrate the
importance of nonlinearities, and in particular soliton
solutions, for the transport. Without randomness, it is
well known that modulational instability can lead in the
continuous NLS equation to soliton solutions. The
modulational instability in discrete molecular chains is
discussed in Appendix A. There are many interesting
phenomena due to discreteness (especially when the solu-
tions become narrow). Important for the present investi-
gation is that for Eq. (31) (e.g., for ¢c=1) and Eq. (62)
modulational instability and subsequent soliton formation
can take place in the region of parameter values under
consideration. In addition, randomness will not forbid
soliton formation. We do not want to discuss all the nu-
merical details associated with soliton generation in ran-
dom media since the main emphasis is on the models and
their validities in random molecular chains. But we want
to supplement the analytical models by some numerical
simulations which show the new effect caused by solitons.
As a paradigm for nonlinear effects in a random molecu-
lar chain we take the equation

l(d¢n /dT)+(‘pn +l~2¢n +‘p)n ~1+}“|‘pn '2¢n = Vn¢n ’
(72)

which corresponds to the Holstein model in random po-
tential V,.

When propagation of vibrational energy in a linear
random molecular chain is investigated, localization can
occur which leads to an exponential decay of the
transmission coefficient. Following the pioneering work
of Anderson'® there exists a huge literature, including nu-
merical work, on the localization. We show in Fig. 2 a

0.6 T T T ™ ™

10|

05t

00 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
n

FIG. 2. Decay of vibrational excitation in a linear random
molecular chain. Equation (63) is solved for D, =D, _;=1 and
A, =0. V, is a random potential with the mean value —9 and a
mean standard derivation of 8. The chain is driven by an oscil-
lation (with frequency w=4) at n =0. Note that the first and
last 400 points simulate open ends with strong damping of the
reflected and transmitted waves, respectively.

typical result of Anderson localization in a linear random
molecular chain for two reasons. First, we want to
demonstrate that our numerical code is able to produce
all the interesting aspects. We have tested with various
lengths of the chain and different discretizations. All
these tests are in agreement with the literature; they also
enable us to demonstrate Anderson localization in finite,
discrete, and linear random molecular chains. Second
and most important in the present context, we have refer-
ence states for comparison with results for nonlinear ran-
dom molecular chains.

Let us explain a little bit more in detail how the numer-
ical code works. A ‘“‘plane wave” is penetrating from the
left into a random potential. By ‘“‘plane wave” we mean
the boundary condition of a prescribed oscillation at
n=0. In the results shown in Fig. 2, the oscillation is
transformed out and, because of numerical reasons, the
chain is extended further to the left (first 400 points) to
establish an adiabatic onset of the oscillations and to
suppress reflections from the left. On the average (with
different realizations of the random potential), an ex-
ponential decay can be found. Again, beyond the finite
random molecular chain, we also have at the right side
some extension of the chain (last 400 points) in order to
avoid reflections from the right. (Details and more re-
sults will be published in a forthcoming paper.)

Now the interesting point: We have allowed nonlinear
contributions besides the random potential. The simula-
tions shown in Fig. 3 are for Eq. (72) [Eq. (63) when
D, =D =const, A, =A=const, but ¥, random]. The ini-
tial energy of the excitation is such that classical motion
above the potential maxima is not forbidden. In the
linear case we know that due to phase interferences an
exponential decay can occur. [Note that in Fig. 3(a) we
have used the same boundary conditions as in Fig. 2.]
However, because of nonlinearity, solitons can be formed;
they can easily override the potential fluctuations and
contribute to an enhanced transport. This is demonstrat-
ed also in Fig. 3(b), where a special section of the chain is
shown, and a peak is identified as a soliton. When the
sign of A is reversed, this effect disappears. When we an-
alyze the results shown in Fig. 3(a), especially with a
greater spatial resolution [see Fig. 3(b)], we clearly can
identify the several peaks as soliton solutions. From here
we conclude that in a nonlinear random molecular chain
transport of vibrational energy can take place via soli-
tons. That means that the transmission coefficient will
not decay exponentially (with length of the chain) as pre-
dicted by linear theory. Note that this is an important
new effect. Although expected from the theory of non-
random chains, it adds a very interesting aspect to the
importance of solitons in molecular chains. In nonran-
dom chains solitons are important for stable pulse propa-
gation, overcoming the dispersive spreading of linear
wave packets. But in nonrandom chains they do not
affect the net transmission coefficient. In random molec-
ular chains, solitons are responsible for stable pulse prop-
agation and an enhancement of the transmission
coefficient, compared to the linear case.

There are many more interesting results which evolve
from our detailed numerics. We cannot present them all



7836

here. They will be shown in a subsequent paper. Here,
let us only mention one additional point. Besides
enhancement of transport, also a reduction can occur
when pinned (nonlinear) solutions appear. The latter
occur due to discreteness and more attention should be
given to them.

VII. SUMMARY AND OUTLOOK

In this paper we have investigated the transport of vi-
brational energy in a random molecular chain. A gen-
eralized model is proposed which does not assume a rigid
sublattice. On the contrary, a soft sublattice is allowed,
and both the optical and the acoustic modes of the lattice
are included. The description reduces in simplified situa-
tions to the Davydov model and the Holstein model, re-

I,

n " . " " " n
0 200 400 600 800 1000 1200 1400 1600 1800 2000
n

?{)00 1050 1100 1150 1200
n

FIG. 3. (a) Transport of vibrational excitation in a nonlinear
random molecular chain. Again Eq. (63) is solved for
D,=D,_,;=1, but A,=A=1. The other parameters are o=1
for the frequency of the driven molecule at » =0, mean value O,
and mean standard derivation 0.25 for the random potential.
Again the first and last 400 points are used to suppress
reflections from both ends. (b) Same as Fig. 3(a). Only a section
of the chain is shown. The peak appearing around n=1500 is
identified as a soliton. The solid line depicts the numerical
simulation, whereas the dotted line represents a fit by the
analytical soliton formula.
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spectively. We have further discussed the randomness
caused by different physical mechanisms: (i) randomly
distributed molecules around the chain, (ii) different
masses of the side groups, and (iii) random distributions
of the inter-molecular distances. In order to demonstrate
a new physical effect, we have simplified further by reduc-
ing to discrete nonlinear Schrodinger equations, with ran-
dom potentials as caused by randomly distributed mole-
cules around the chain. Besides Anderson localization in
the (nearly) linear regime, this leads to an anomalous
nonlinear convective transport of vibrational energy.

The presentation of numerical results is not complete.
Here we have shown a general effect of nonlinearity in
discrete random systems. We did not discuss in detail the
effects of the different forms of discretization which
should be expected because of the different predictions by
modulational instability. Also, the influence of very nar-
row (strongly localized) collective excitations on the non-
linear transport is not worked out here in detail. This
will be done in a forthcoming publication where special
attention is given to the so-called pinned solitons.
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APPENDIX A: MODULATIONAL INSTABILITY
IN DISCRETE SYSTEMS

In this appendix we discuss the process of generation
of solitons in a molecular chain. The effects of discrete-
ness are especially emphasized; randomness is absent.

In the continuum limit, the modulational instability of
plane waves is well known. When inserting into

ig+be,, +|pl’e=0 (A1)
a solution

@ (x,0)=e"**9) with o=bk’>—1, (A2)
and subsequently perturbing it in the form

p=[1+a(x,1)]e/xentpxn (A3)

we find linearized equations for the amplitude @ and the
phase p. Making the ansatz

(a,p)=(ag,pyle’ &~ , (A4)
unstable solutions are possible for b >0 and
Q%*<2/b . (A5)

The maximum growth rate ¥, =1 follows from the

imaginary part of (2,
y=V'bQ*2—-b0?) , (A6)

at Q2. =1/b. Here we compare these results with those
of the three discrete model equations
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i@, +b(@y11=2@0 +@n_1)+ @, 20, =0, (A7) ed here for the reason of completeness. For (A7) and
" " e mn (A8) we have the nonlinear dispersion relation
ip, +b —2¢,t@, )
“Pn b Pn 20 T P w=4b sin*(k /2)—1, (A10)
+Hlen 12 +2l@, P+, -1 1)@, =0, (AB)
. and for (A9) we have
i@, +b(@y 41— 2@, 1)
+ilen@p i1t e, —)=0; (A9) @=4b sin*(k /2)—cosk , (A11)
the first two of them arose within the context of molecu-

lar chain [Eq. (62) and Eq. (31) for ¢ =1, respectively]
whereas the last one (Ablowitz-Ladik equation) is includ-

|

instead of (A2). Here, k €(—m,7]. A similar ansatz as

in (A3) and (A4) leads to three different dispersion rela-
tions

(Q—2b sinQ sink )*=4b sin*(Q /2) cosk [4b sin*(Q /2) cosk —2] ,

(Q—2b sinQ sink )>=4b sin*(Q /2) cosk[4b sin*(Q /2) cosk —2 cos¥(Q /2)] ,
[Q—2b sinQ sink (b +1)]*=45in*(Q /2)cos’*k (b +1)[4b sin*(Q /2)—2 cos*(Q /2)]

for (A7)-(A9), respectively. From Egs. (A12)-(A14) the
conditions b >0 and

(A12)
(A13)
(A14)

Wy (2))=(QnH~""?

where the probability amplitude 1,[7,,1, o

ny,

t il
p) . Yn,,.n()BY . B} 10)

(B1)

,,,Q(t ) is supposed

to be symmetric with respect to any permutation of
Ry, ...,ng. Itis normalized as

. 2| Q 1

sin > < b oosk and cosk >0, (A15)
.2 | Q 1
sin > < T 2b cosk and cosk >0, (A16)
.2 | Q 1
sin > < 1535 (A17)

follow for instability, respectively. They show that
discreteness has significant effects on the existence of
modulational instability. In the unstable regions, the cor-
responding growth rates can be obtained from Egs.
(A12)-(A14). Typical results are shown in Fig. 4 for
b=1 and k=0.01.

We have also tested our numerical code by performing
numerical simulations. Starting with plane-wave solu-
tions we disturbed these solutions by waves with a certain
wave number Q. The growth rates of the perturbations
were measured. Typical results are shown in Fig. 4 by
marked points. The agreement with the theoretical pre-
dictions is excellent. This shows that modulational insta-

bility is effective in random molecular chains and that we
can trust our numerical code.

APPENDIX B: MULTIPARTICLE GENERALIZATION

So far we have considered the molecular chain in the

(Wo()|Wo(2))=

ie.,

3

Ryseeeshg

Yy, gOP=1, (B2

so that for all times there are Q quanta in the state (B1),

(Wo(1)| S BIB,|¥,(1))=0 .

presence of one quantum of the amide-I excitation. In
this appendix we present a NLS equation for the case
when Q quanta (or Q excess noninteracting electrons™?)
can be found in the system. In this case the wave func-
tion appears to be Q-dimensional in space.?” 33

To describe the quantum evolution of an arbitrary con-

served number Q of amide-I excitation quanta, one can
use the generalized Davydov ansatz?”33
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FIG. 4. Growth rates y vs modulational wave number Q for
the three models Eq. (A7), solid line; (A8), broken line; and
(A9), dotted line, respectively. The parameter values b=1 and

k=0.01 are chosen. For each model, numerical simulations

have been performed which are shown as marked points
(0, +,0, respectively).
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Equations of motion for Q quanta, interacting with the
acoustic and/or optical mode, which generalize Eqgs.
(14)—(16) can be derived in the same way as before by us-
ing the Lagrangian (8)—(11). For simplicity of notations
we restrict ourselves here only to the case of the coupling
with an optical mode. As a result, we obtain the follow-
ing Euler-Lagrange equations [cf. Egs. (54) and (55)]:

iﬁd}nl,...,nngEO')bnl,...,nQ

Q
—J 2 (Il}nl,...,nj—l,...,ng

j=1

+¢nl,...,nj+1,...,nQ)

+Xn

Q
(B4)
2 an }¢nl,...,nQ ’

j=1

and
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B,=—}B,—Qxnx 3 2. (B5)

O ERERRL ]

.

SRy 1

Similar to the particular case Q =1 (see Sec. IIIB), these
equations can also be written in the dimensionless (canon-
ical) form if we introduce the notations (56) and (57) as
well as the new (Q-dimensional) wave function

Q n.
bnyoing =T (V9 (0)

i=1 ¢
X exp [%[Q(Eo_zubt] ] . (B6)

As a result, we obtain the following pair of coupled
discrete nonlinear field equations. The symmetric wave
function {d),,lw.,,,Q(T)} is coupled with the one-

dimensional displacement field {y,(7)} [cf. Egs. (58) and
(59)]:%

. d 2 Q
1E¢"1""'"Q:_D[ 2 (¢n1 ..... nj—l,...,nQ+¢n1 ,,,,, nj+l,...,nQ)_2Q¢nl,...,nQ +g 2 Yn ¢n1 ,,,,, nQ ’ (B7)
j=1 j=1
and
? 2
dTZy":_y"*an 2 ‘¢"1""’"Q—1’" d (B8)

nl,...,nQ_l

Here, the parameters are given by (60).

The corresponding discrete NLS equation, which follows from Egs. (B7) and (B8) when the inertia term on the left-

hand-side of Eq. (B8) is omitted, has the form
Q

S (b, ..

j=1

. d
1:17¢n1,...,nQ+D ,nj-l,.u,nQ+¢n1,..

.,nj+l,...

ng)"2Q%nn,
2 2

2> S $anp’ (a0, =0, (B
j=1n1,..‘,ﬁj,...,nQ

where 7i; denotes the absence of the summation with respect to this index. Note that the corresponding generalization
of the Ablowitz-Ladik equation, which admits the exact soliton solution in the discrete case, can be written as

. d Q
l;¢nl,...,nQ+D j§1(¢”1’""”j’l""’”Q+¢"1’"""j+1""’"Q)—2Q¢"1""’"Q
1 2 2 -
+5o4 3 p B0yl | B =1mg T a1, ng ) =0 . (B1O)
j=1 ny, ..,ﬁj,...,nQ
The soliton solution of this equation has the following factorized form:
o (2p 172
$nyongM=1I |55 |  sinbu; sech(p;(n;—s;m)] exp{i[k;n;—2D (1~ cosk; coshu,)7]} , (B11)
j=1
[
where the velocities s; and the wave numbers k; are relat- the condition
ed through , oA ,
sech’[u;(n —s;7)]=-"=_"sinh™ “u; . (B13)
s;=2D sink;(sinhu; /u;) . (B12) g’ (k) 571 2D Hi

The Q-particle wave function ¢,,l, o Y,,Q(T) is assumed to

be normalized [see (B2)]. Therefore, from (B11) we get

This condition is sufficient for (B11) to be a solution to
Eq. (B10) in the case Q =2. It may be considered as an
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equation to find ;. In the continuum limit (for small u;)
one can easily find

u;~QA/4D . (B14)

In the case Q =1 the soliton solution is well known, and
there is no such constraint as (B13). We have

é,(7)=(2d /A)"/?sinhu sech[u(n —s7)]

Xexp{i[kn —2D(1— cosk coshu)r]} , (B15)

with the free parameter u as the inverse half-width of the
soliton. However, we may still require the normalization
condition to be fulfilled. In this case the soliton width be-

7839

comes fixed and therefore u=~A/4D, i.e., it depends on
only the ratio of the nonlinear coupling A to the disper-
sive term D.

Thus the form of the corresponding NLS equation
describing the multiquanta dynamics of the intramolecu-
lar excitation is not the same as for one quantum. Since
the energy 0.422 eV released during the ATP hydrolysis
is a little more than twice the energy of an amide-I vibra-
tional quantum (0.206 eV), the most interesting case for
the multiquanta dynamical studies is Q =2. The two-
quanta amide-I dynamics in a regular chain modeling
crystalline acetanilide ACN has been numerically studied
in Ref. 27. The results discussed there concern the two-
soliton scattering and the formation of bisolitons.
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