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Normal vibrational modes of all possible quasi-one-dimensional systems and polymers are classified

according to the line-group symmetry. The results are used to discuss the vibronic instabilities for such

systems and to establish the Jahn-Teller theorem. A general, but simple method, involving only one

monomer, is developed to construct the normal displacements for the concrete polymers. As an illustra-

tion, it is verified that the symmetry arguments confirm the Jahn-Teller effect in trans-polyacetylene, re-

sulting in dimerization with alternating bond lengths.

I. INTRODUCTION

Normal vibrational modes are used in many physical
calculations. Symmetry considerations yield standard
method of their classification. For small molecules the
point groups often suftice while for three-dimensional
(3D) crystals space groups may be required. A complete
classification of the normal modes of molecules is avail-
able many results are known for 3D crystals as well.
On the contrary, similar calculations for the systems
periodical in one dimension are far from complete,
despite the extensive interest for quasi-1D systems and
polymers during the past decade. One of the intentions
of this paper is to fill in the gap, and to classify the nor-
mal modes of such systems. Since a 3D crystal also
possesses line-group symmetry as a part of its space
group, these results are also applicable in crystal physics.

Jahn and Teller in their classical paper' demonstrated
that the vibronic coupling would induce configurational
instability of the molecule with an electronic orbital de-
generacy in the ground state (with the exception of linear
molecules). There is no general proof for 3D crystals, al-
though it has been verified for a number of special cases.
The solution of this problem for the systems with one-
dimensional periodicity (again, only particular examples
have been available ), based on a classification of all pos-
sible vibrational modes, is the second objective of the
present paper.

Geometrical symmetries of a system periodic in one
direction form one of the line groups. There are infinitely
many different line groups, gathered into 13 families.
Among results on the theory of line groups, their factori-
zations, irreducible representations, and symmetrized
Kronecker squares of real representations will be used
here.

To determine the normal vibrational modes of the sys-
tem S (e.g. , molecule, polymer, crystal) of ~$~ points with
the symmetry group 6, the usual signer's method is ap-
plied. Its main part is the reduction of the dynamical
representation S (G) to the irreducible components. To
construct S (G), a basis [e„',e', e,'j is associated with

each point s of S; the action of the group in this space of
the displacements gives the matrix 3 ~S ~-dimensional rep-
resentation S (G)=S(G)S V(G), where S(G) is the per-
mutational ~$~-dimensional representation of G, manifest-
ing the action of G on S, while V(G) is the polar-vector
three-dimensional representation of G. The irreducible
components of this representation give normal vibration-
al, translational, and rotational modes. An important
property of the representation S(G) is that it is automati-
cally in the partially reduced form if the system contains
several orbits (disjoint union of sets will be denoted as a
sum): S =+1 &S,. implies S(G)=, &S;(G). Then

f
S (G)=e, ,S, (G},

refiecting the independence of S ( G) on the relative posi-
tion of the orbits in S. Hence, the problem of the
classification of the normal modes includes (i) the
classification of the orbits of G and (ii) the reduction of
S; (G) to the irreducible components for each orbit S;.
In Secs. II and III these tasks are systematically per-
formed for systems with the line-group symmetry. The
outcomes enable one to generalize the classical Jahn-
Teller theorem to the line groups (Sec IV). Some applica-
tions of the results and calculation of normal displace-
ments are discussed in Sec. V.

II. ORBITS OF THE LINK GROUPS

A derivation of the different types of orbits of the line
groups starts with an analysis of the structure of the or-
bits. In what follows any system periodic in one direc-
tion, i.e., a set of points in R having line-group symme-
try, will be called a polymer, independently of its physical
properties. Let S be such a system, with the symmetry
group L (one of the line groups), containing only one or-
bit. This means that S= [s„s2, . . . , j is the denumer-
able set with the property that for each point s from S the
set Ls=[ls~l CL} is equal to S. The subset of the ele-
ments of I for which s is a fixed point is a subgroup of L,
called the stabilizer of that point, L, . It is well known
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L, =P, ,

L, =P,++zAP,+,
(2a)

(2b)

with A =Bp+. Stabilizers of type (2a) are the stabilizers
of the axial point group P, which are known, while the
second case can arise only for the 9 families of the line
groups with the elements reversing the z axis. Even in
this case, all the subgroups P,+ are the stabilizers of the
point group P+, and what remains to be done is to calcu-
late possible combinations zA. Since L, is a subgroup,
the conditions (i) (z A ) H P, (reduces to A H P,+ if Z is

that all the points of S (being a single orbit) have conju-
gated stabilizers, and therefore orbits with nonconjugated
stabilizers are nonequivalent. Also, if L=g;l;L, (coset
decomposition, I, =e, which is the identity of L), then
S= Il&s, lzs, . . . I, implying that the conjugate stabilizers
are associated with orbits of the same type, i.e., with the
equivalent permutational representation of L. Therefore,
the classification of the nonconjugated stabilizers of L is
being sought. For the point groups, this classification is
known. ' This can be combined with specific structural
features of the line groups, to produce an easy solution of
the present problem.

The most important fact is that each line group is fac-
torizable: L=ZP, where Z is an infinitely denumerable
cyclic group acting freely on E (only the identity of Z is
contained in the stabilizers), while P is an axial point
group (a point group whose elements leave the z axis in-
variant). Both are subgroups of L having only the identi-
ty in common. There are two types of the axial point
groups: those without elements reversing the z axis, P+,
and those containing such elements, P . In the latter
case there is an index-2 subgroup of the P+ type while all
the transformations reversing the z axis form the coset:
P =P++BP+. The generator of Z is the Seitz operator
z=(Z~g), translating points for /&0 along the z axis
after the orthogonal transformation Z, which leaves the
direction of z (the identity, a rotation around z or the
reliection in a vertical plane).

Since L, is a subgroup of the factorizable group L, and
L, 8Z =

I e j, its most general form is given by the coset
decomposition with respect to the subgroup P, =P 0 L, :
L, =g;z'p;P„where z' and p; are from Z and P, respec-
tively (z =po=e). Two cases can be distinguished: (a)

L, =P, and (b) there are cosets of P, in L, .
In the latter case, p; must reverse the z axis, since oth-

erwise z'p, . has no fixed points for z'We, and cannot be in
the stabilizer: L, =g;z'Bp;+P„where p;+ are from P+,
and P, is a subgroup of P+, precisely P, =P,+ =L, A P+.
For any two coset representatives z'Bp; and
z~BpJ.+(i,j&1), the product (z'Bp, +) 'zJBp+ must be in

L„while a simple calculation gives that this composite
transformation diminishes the z coordinate of s for
g

—g;, implying z'=zJ. But in this case also p,+=p+.
Therefore, there is at most one coset:
L, =P,++z Bp+P,+. Conjugation by z' easily verifies
that L, is conjugated to a subgroup of type (a) for k even,
and otherwise to a subgroup of type (b) but with k = 1.

To summarize, there are two types of stabilizers:

an invariant subgroup) and (ii) A P+ =P+ A (or,
equivalently, A belongs to the normalizer of P,+ in P)
must be fulfilled.

The classifying algorithm for the L-orbits becomes
quite straightforward at this instant. If P=P+, each or-
bit type of P generates exactly one orbit type of L, giving
the complete set of L-orbits. It turns out that this
correspondence is bijective, except in the case of the
group L(2n )„mc (n even), when the point group orbits b
and c generate the same orbit type of the line group (sta-
bilizers are conjugated by the generator of Z). In the case
P =P, orbit types of P with the stabilizers reversing the
z axis bijectively correspond to a part of L-orbit types.
However, P-orbit type with the stabilizer from P+ (only
orthogonal transformations are considered) is in general
split when Z is introduced: (a) there are points in E for
which P,+ remains the stabilizer in L, and they give one
L-orbit type (again, the correspondence is bijective, ex-
cept that for the groups L(2n )„/mcm, where point group
orbits b and c generate the same orbit type of the line
group); (b) for other points stabilizer in Z is doubled. In
this case all the subgroups of the type (2b) would be
found [using conditions (i) and (ii) above], and among
them only those for which P,+ and the coset had the same
fixed points would be retained. Finally, nonconjugated
subgroups obtained in this manner generate bijectively
the rest of the L-orbit types. The results of this pro-
cedure (being much more simple to apply than to explain}
are given in Table I. In this table the following factoriza-
tions of the line groups are used:

1. q„C„=Lqp,
2. TS2„=L(2n ),Ln,
3. TC„& =Ln / mL( n2),
4. (2n},C„h =L(2n )„/m,
5. q„D„=Lq 22, Lq 2,
6. TC„,=Lnmm, Lnm,
7. T,C„=Lncc, Lnc,
8. (2n), C„,=L(2n )„mc,
9. TD„d =L(2n )2m, Lnm,
10. T,S2„=L(2n )2c,Lnc,
11. TD„h =Ln /mmm, L(2n )2m,
12. T,C„h =Ln /mcc, L(2n )2c,
13. (2n) &D„& =L(2n )„/mcm .

For families 1 and 5, the cases when q„ is T and (2n)
&

are
separately considered in the table for the purposes of the
next section.

After this discussion on the stabilizers, a brief con-
sideration of the corresponding orbits will be made. The
whole polymer must be disjoint union of the orbits of Z.
Each Z orbit has ~Z~ points, since the action of Z is free.
This enables us to form the monomer Y, the set contain-
ing a point from each of these orbits. Then the polymer
S is generated from Y by the action of Z in the form of
disjoint union: S=gt" „z'Y, with ~S~ =~ Y~ ~Z~.

If Sis an L-orbit of type (2a) there is no pin P and z in
Z such that ps=z's, otherwise z 'p belongs to L, . In
other words S is factorized into orbits of P and orbits of
Z, giving the simple form of the monomer:
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TABLE I. Orbit types of the line groups. For each line group L=ZP its orbit types are given in the intersection of row P and
column Z. At some places Z and P do not combine into a group, or the resulting group is treated within another factorization. For
the orbits with the stabilizer P, +zAP„P, is presented in the fourth column and A under the corresponding Z factor (hence, if the
stabilizer is P, only, "None" is under Z). For Z equal to T, (2n)„q„and T„ the generators z are (E~O), (C2„~—'), (C~ ~n/q), and

(o, ~

—), respectively (the unit of the translational part is the translational period). Symbols a, b, . . . , for orbits are as in Ref. 1, with

indices to distinguish different L-orbit types generated from the same P-orbit type. The number in the third column is the order of
the monomer. Note that oh is the reAection in xy plane, while o.„and U are along the x axis, except in D„d where only o.„ is along
the x axis. In the fifth column the maximal axial point group leaving the monomer invariant is given.

P

C„
Orbit

a
bg

Cg
C„

Axial
group

a

None
None

(2n),
None
None

q„
None None
None None

S2„
n ocici

Qy

Q2

bg

b2

Cy

2n
n
2
1
1

D

C„

Cg

l
None

D~h None

S2„D a None

(2n)t C„g Not None
group C2„era

None
C2 ~h
None

C~a

cI
C2

ay

Q2

n = 4';+2 a3
bg

2n CI D a

2
1
1

None
~1.

Cq h D„h None NoneC„D~a None None
Dooh &h &h

C„h D h None None

None Not None
group cTa

None
None

None

n even

ay

Cy

2n Cg Dh None
n Cg„D„h None

ln C~„D„h
I C„, D None

Not (2n) i C„„
group TC„,

D„

n even

n even

ay

Q2

Q3

bg

Cy

dl
d2

ey

Dg
Dg
C„

D„h

h

Dn D

2n C~ D„
n

None
U
UC„
None
None
None
U
None

None
U
UC„
None
None
None
U
None

None
U
UC„
None
None
None
U
None

TcS2„
T.C a

D„d Qy

Q2

bg

Gg

d2

eI

4n Cg
2n
2n Cg
2n Dg
2 C„
1
1 D„g

D„d None
U

D„g None
D2„h None
D h None

U
D a None

(2n) t D„s Not TD„d
group

n even
n even

n even

Qy

Q2

b~

b2

Cy

C2

Gl

e~

ft
gy

g2
hg

D a

4n Cg Dnh
2n
2n Cg, D h

n
2n Cg„D„a
2n Cgh
n Dga
n D]h
2 C„
1
1 D„a D~

None

None
Oh

None
~a
None
None
None
None

None

None
U
None

None
None
None
None

None

Not TD„a
group (2n)q D„l,

TCDAd
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Y=Ps= Ips~p HP], i.e., one monomer is the orbit of P
with s, and ~S~=~Z~ ~P~/~P, ~. In the case when S is of
type (2b), z 's=ds, and clearly Ps=P+s+zP+s (to
show this in detail, note that zP+ =P z and
AP+=P+A). Hence, the role of monomer is taken by
Y=P+s, and the order of the orbit is ~S~ = ~Z~ ~P~/2~P, ~.

TABLE II. Vibrational representations of the orbits of the
line groups Lq q=1,2, . . . ; p=0, . . . , q

—1. n is the greatest
common divisor of q and p. Translational period is q/n units.
Summation is performed over k H( vr—, n], m H( —n/2, n/2].
Minimal sets: 2a.

III. DYNAMICAL REPRESENTATIONS
Orbit Orbit

point Vibrational representation

The character o (l) of the element I =z'p in the repre-
sentation S(L) is exactly the number of the fixed points of
l in S, and can be found by use of the induction method. '

In fact, the action of L on S is induced from the action on
the monomers. In cases (2a) and (2b) the maximal sub-
groups of L leaving Y invariant are P and
P'=P++zAP+, respectively (Yis the orbit of these sub-
groups). If Y(P) and Y(P') is their action on the corre-
sponding monomers (with character y), then the action of
L on S is the induced representation: S(L)=Y(P)TL,
for case (2a), and S(L)= Y(P*)fL, case (2b). In the both
cases Z is a transversal of L with respect to monomer.
Then a straightforward calculation gives (p is an element
from P+)

b1

for the representations S (L) are easily found using the
known characters of the polar-vector representations of
the line groups. " Indeed, if v(l) denotes the character of
V(l) [which is real as well as S (L)], the pth irreducible
representation of L, (y("' is its character) occurs in the
decomposition of S (L) exactly'

00

a„= g g y(~'(z'p )o.(z'p)v(z'p )

—k k)
k= —oo

(3) times. Using (3), the last equation reduces to the decom-
position on the monomer

and, for the elements reversing the z axis in cases (2a) and
(2b):

0, t odd,
o(z'Ap)= '

y(z'"Wpz'"), r even,

(
(t+1)I2g z(t —1)I2)

cr(z'Ap) = 'O

(3a)

(3b)

Combining these considerations with the results from
Table I the characters of the representations S(L) for
each orbit S can be calculated. After that, the characters

where the summation is performed over the symmetry
group of the monomer, i.e., l is from P and P' in cases
(2a) and (2b), respectively. This equation provides a sim-
ple way to decompose the representations S for all the
orbits of the line groups. The results are presented in
Tables II—XIV. Note that the irreducible representa-
tions of the line groups Lq and Lq 2, Lq 22 (Tables II
and VI) differ from the standard ones; a more appropri-
ate form for these purposes is derived in the Appendix.

TABLE III. Vibrational representations of the orbits of the line groups L(2n) and Ln; n =1,2, . . . ;
translational period is 1 unit. Summation is performed over kE(O, vr), m C( n/2, n/2]. Mi—nimal
sets: 2a.

Orbit '. ', Vibrational representation

aq (z, y, z) 3+(,A +,A+ + A + A+)+ 6+& E
m k, rn

(0, 0, z) 3(.A.-+.A++ A. + A+)+6+„"E.; n = 1
k

,A, +,A++ A, + A++2(,A, +,A+, + A, + A+, )+Q(2~ "E, 4+„" g)E; n=2
o +o o +» o +~ o +o 1 +o 1 +o —1+o —I+1r 1 +& 1 +& —I+~ —1+

+2+(k "E,+q Eg+q "E g); n & 2
k

(0, 0, -') 3(,A, + A+)+3+~ "E,; n = 1
k

oAo + oAo+ + oA+, + A, + oA, +oA~ + p(„E +2k "oEy); n = 2

.A. + .A+ + .A+, + .A+, + A, + „A, + P(„"E.+ „"E,+ „"E,); n & 2

CI (0, 0, 0) 3(,A, + A, ) + 3+„E,; n = 1
k

oA, + A, +,A+, + A+, +oA, + A, + P(„"E,+2„"El)i n = 2

A + A + A& +oA+&+ A& + A+&+P(1, "E +& "Eoi+I, "E &); n & 2
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TABLE IV. Vibrational representations of the orbits of the line groups Ln /m and L(2n)
n = 1,2, . . . ; translational period is 1 unit. Summation is performed over k E'(0, m.), IE ( —n /2, n /2].
Minimal sets: 2a, 2b, or a+b.

CI

Orbi t
point

(0, 0, -')

(0, 0, 0)

Vibrational representation

3+(,A +,A+ + A + „A+)+6Q» "E
m k, m

Ef A + A++2(.A++ A )]+3K» E
m k, m

Q[.A= + .A= + 2(.A~+ + -A+ )] + 3 +."E-
m k»m

3(,A, +,A++ A, +„A+) y6+» E,; n= 1
k.A. +.A++.A.-+.A++2(.A, +.A+, +.A, +.A+, )+2+(;"E.+ 2„"E,); n = 2

k

oAo +oAo +&Ao +&Ao +oAI +oAI +oA ~+oA I+zAI +zAI +~A I+~A+I+
+2+(» "E,+» Eg + „E g); n & 2

k

2(,A++ A, )+,A, + A++3+» E, ; n= 1

A+ + 2(,A~+ + „A, ) + Q(» "E,+ 2» "E&); n = 2

~A0 + A~ +oAy +oA —g+xAy ++A —1+2(» E +» E&+» E ~)'

2(,A+ + ~A~+) +,Ag + ~Ay + 3+„"Eo,n= 1'
k

,A, + A, + 2(,A+, + „A+, ) + Q(» "E,+ 2» Ey); n = 2
k

eA, +~A, +oA,++oA+, +~Ay +nA+, +Q(» Eo+» "Eg+» "E g)i n & 2
k

IV. JAHN-TELLER THEOREM FOR POLYMERS

The Jahn-Teller theorem asserts that for any degen-
erate electronic state, some normal modes of the phonon
spectrum will be activated due to the vibronic coupling,
to produce nonsymmetrical distortion of the ions. The
exceptions are the linear ion configurations as well as the
electronic Kramers's degeneracy.

From the group theoretical point of view, electronic
orbital degeneracy means that the state ~E ) of the
polymer's electronic subsystem belongs to the multidi-
mensional real irreducible representation E(L). In the

linear vibronic coupling, the mean value, (E~H~iE), of
the Hermitian real operator, transforming according to
the irreducible component D (L) of the representation
S (L) (S is the ion configuration), multiplies the normal
mode Q associated to this representation. Hence, when
(E

~
H

~
E )%0 this mode is active. If it is not the totally

symmetric, translational, or rotational mode, the polymer
S will be distorted. The Jahn-Teller theorem points out
that such active modes always exist, i.e., that for each
E(L), its symmetrized square [E (L)] contains common
irreducible components with S (L) (here symmetrical,
translational, and rotational representations are not

TABLE V. Vibrational representations of the orbits of the line groups L(2n)„/m. Summation is performed over k E(O, m).
Translational period is 1 unit. In the primed sums m is from (0, n], otherwise from (

—n, n]. Minimal sets: 2a, 2b, or g +b.

CI

Orbi t
point

(* v ~)

(0, 0, 0)

Vibrational representation

3+(,A+ +,A ) + 6 Q» "E y 6Q' E~
m k, m m

P(.A- + 2.A+ ) + 3 Q, » E + 3+'.E -"
k, m m

3(,A, +,A++,A, +,A+)+6+(» "E, +» Eq)+6 Ef; n=1
k

oAo + oAo +oAl +oAI +oA I+oA y+oA~ I+ oArt I+ oA rt+I+ oA ~+I + oAr3 + oA~+
+2(~En, + ~ E, + „E )+ 2'(» E, +» "Ey +» "E

g +» En +» "En
g +» "E n+&); n & 1

k

3(,A~+ + .A. ) + 3+(„»E.+, »Eg) + 3„Ef; n = 1
k

oAo + oAI + oA I + oArt + oArt I + oA ~+I + maori I + &@I + ~@n+
+Q(» Eo+» El+» E-1+» En+» En —1+» E-n+1)i n

k

2(~A0+ + ~A& ) + ~A + 0A& + 3+(» E~ +» "Ey) + ~Ef; n = 1
k

+E(» E~+» E1+» E 1+» En+» En —1+» -E—n+1)i
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TABLE VI. Vibrational representations of the orbits of the line groups Lq~22 and Lq~2; q =1,2, . . . ; p =0, . . . , q
—1. Transla-

tional period is q /n units. n is the greatest common divisor of q and p. Summation is performed over k E(0,m). In the primed sums
m is from (0, n /2), otherwise from (—n /2, n /2). c =p cos(m/n) and s =p sin(m/n). Orbits c, and a, exist for n even, only. Minimal
sets: a for Ln2, Ln22 and L(2n )„22, and a, b, c otherwise.

O b t orb
point Vibrational representation

n even

Q2

n even

, Cy

d2

(z, y, z) 3(.A+ + .A.—+ „A+ + .A.-) + 6+'(.E + .E ) + 6 P, «E™+
+3(oA+/z + oA~/z + wA+/z + wA~/z) + 6+«En/2

(z, 0, ~2),A++ A, +2(,A, + A+)+3+( E +,E )+3+« "E +
rn k, m

+,A+/~ + A„/ + 2(,A„/z+ A+/2) + 3/»E„/z

(c, s, q),A++,A„/z+ A, + A+/2+ 2(,A, + oA„+/z+ A++ ~A„/z) + 3+«E~/z+
+3+'( E + .E' ) + 3 P, "E

(z00),A++ A++2(A, + A) +3+(, E+,E )+3+«E +
f71 k, m

+oA+/z + ~A~/z + 2(0A~/2 + ~A /2) + 3E«En/2

(c, s, 0),A+ +,A„/2+ A++ A„/z+ 2(,A, +,A„+/z+ A, + A„+/2) + 3+yE /z+

+3+'(.E +.E )+3+,»E™
fA k, rn

(0, 0, z) 6+„"E,+3(,A++, A, + A++ A, ); n=1
Q(2« "E,+ 4» "Ey) +,A+ +,A, + A+ + A, + 2(,A+, +,A, +,A+, +,A, );

2Q(« "E,+» "Eg+ „"E g) +,A+ +,A, + A++ A, + 2(, Ey +,Eg); n ) 2

(01 0, z) 3+» E0+ 0A~+ + ~A + 2(~A + ~A+); n = 1

Q(« "E~ + 2» "E,) + 0A.—+ ~A.+ + .Ai + .A, + ~A+, + ~A, ; n = 2

Q(» "E,+ « "E&+„"E i)+,A;+ A++ ~E& +,E„»2

(0 0 0) 3+«E, +,A~ ++~A++2( A 0+~A ); n=1
k

Q(» "Ea+2» Eg)+,A, +~A, +,A~ +,A, + A~ + A, , n = 2

Q(» E, +» "Ey+«E s)+,A, +~A, +~Eg+,Eg, n)2

counted).
In general, the polymer S with the group of symmetry

L is a union of orbits S=S& + . +Sf, such that it is in-
variant under one supergroup of L. In other words L is

Orbit

n even

n even

Vibrational representationpoint

(z, v, z) 3+(»A, +»B.)+6+«E +
k k, m

+3+(«A„/z +»B„/z)

(z, 0, z) Q(2«A, +»B,) + 3 Q «E
k k, m

+Q(2«A„/z + «B„/z)

(c s z) 2[2(»A. +»B /z)+»B. +»A /z)]+3&»E, —
k k, m

(0, 0, z) Q(2»A, +»B,); n = 1
k

Q(»A, +»A, +»B, ); n=2
Q(»A, +»Eg g); n) 2

TABLE VII. Vibrational representations of the orbits of the
line groups Lnmm and Lnm; n =1,2, . . . ; translational period
is 1 unit. Summation is performed over k E ( m, vr], —
m H(0, n/2). c=pcos(m/n) and s=psin(~/n). Orbit c& exists
for n even, only. Minimal sets: 2a, 2b, 2c, a+b, a+c, a+d,
b+c, b+d, or c+d. TABLE VIII. Vibrational representations of the orbits of the

line groups Lncc and Lnc n =1,2, . . . ; translational period is 1

unit. Summation is performed over kH( —m, n], m H( nO/ ).2
Minimal sets: 2a.

Orbit

n even

bg

Orbit
point

(x, t/, z)

(0, 0, z)

Vibrational representation

3+(«A, +»B.)+6+»Z~ ~+
k, m

+3+(»A„/~ +»Bn/z)

3+(»A, +»B.); n = 1

Q[»A, +»B, + 2(»Ag + «Bg)]; r« = 2

g[»A, +»B, +2«K, , ]; n & 2

the maximal line group under which S is invariant. This
implies that S contains one of the minimal combinations'
of the orbits of L. Table I enables one to find these com-
binations. In fact, the monomer of S is the union
Y= Y&+ . + Yf of the monomers of the orbits con-
tained in S. If Y is invariant under some supergroup P'
of P, such that ZP' is a line group, being a supergroup of
L and leaving S invariant, obviously S is not a minimal
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Orbit

bg

Orbit
point

(z, y, z)

(z, o, z)

(0, 0, z)

Vibrational representation

3+(yA, + / B, + gA„+ / B„)+ 6 Q gE
k k, m

+[2(gA, + gA„) + /, B, + /, B„]+ 3 Q /, E
k k, m

+[2(gA, + pAg) + /, B, + /, Bg]; n = 1
k

Q(gAo + gA„+ /:E„g „+g + gEg g); n, & 1

set for L. Hence, given an orbit of L, the maximal axial
point group of the monomer, PM, can be easily found
(column 5 of Table I). Then, the symmetry of the orbit is
P'Z, where P' is the maximal subgroup of PM which can
be combined with Z (i.e., commutes with Z). This sub-
group is PM itself if Z= T,T„(2n)„because each point
group can be combined with them (no "Not group" labels
in the corresponding columns). Consequently, for these
groups the minimal combinations of the orbits are just as
for the point groups in the sense that if in the minimal set
for the point group (e.g., 2a +b + . ) any possible com-

TABLE IX. Vibrational representations of the orbits of the
line groups L(2n)„mc n =1,2, . . . ; translational period is 1

unit. Summation is performed over kH( —rr, m], m E(O, nl.

Minimal sets: 2a, 2b, a+b, a+d, or b+d.

bination of indices is inserted (a +a&+br+ . . ), the
minimal set for the line group is obtained. The same is
valid for the groups q„C„, but for q„D„[q„&T,(2n), ]
the mentioned compatibility condition provides the orbits
b and c are minimal, because D„/, (precisely o, ) is not
compatible with the screw axis. The minimal sets are
given in the captions of Tables II—XIV.

Since the irreducible components of the symmetrized
squares of the real representations of the line groups have
been published recently, it remains to construct the rep-
resentations S (L) of the minimal sets utilizing Tables
II—XIV. Then the translational and rotational modes
should be subtracted. The translational modes are con-
tained in the polar-vector representation. As for rota-
tions, it should be noticed that the stereoregular polymer
is infinite along the z axis, but finite in other dimensions.
This means that only rotations around the z axis are con-
sidered. ' Therefore, the vibrational representation is ob-
tained by the subtraction of the polar-vector and z com-
ponent of the axial-vector representation" (the results for
the groups Lq, Lq 2, Lq 22 are given in the Appendix)
from the dynamical representation. Finally, comparing
the vibrational representations of the minimal sets with
the known symmetrized squares of the real representa-
tions verifies the Jahn-Teller theorem for the polymers.

TABLE X. Vibrational representations of the orbits of the line groups L(2n )2m, and Lnm, n = 1,2, . . . ; translational period is 1

unit. Summation is performed over k E(0,~), m E(0,n /2). c =p cos(m/2n) and s =p sin(m/2n). Minimal sets: a, b, or c.

n even

Q2 C&Sj 2

n even

n even

Cy (c, s, o)

n even

(0, 0, z)

Orbit
point

ag (z, y, z)

Vibrationa1 representation

3(,A++,A, +,B++,B, + A++ A, +„B++«B,)+
+6+(.E+ +.E +.E+ + E ) + 6+(,"EA. + „'EB.) + 12+„'G

m k k, m

+6(.E /2+ E /2)+6K(a EB„",", +a EA.",.)

,A+ +,B++ A, + B, + 2(,A, +,B, + A++ „Bo+)+
+3P(.E+ +.E- +.E' +.E- )+ 3+(„"EA.+ „"EB.)-+ 6+„"G, +

m

+3(,E„/2+ «E„/2) + 3+(a EB"/o + / E„ /o)

2( A++,A, + A++ A )+ B++ B, +,Bo++,B +
+3+(E+ +E + E+ +,E ) + P(4~ EA + 2„EB)+ 6 +„G, +

+3(.E„/, +.E„/,) + 3+3(„" "E,
"+ „"E„",")

,A++,B++ A+g B++2( A, +,B, + A, + B, )+
+3K(.E', +.E:, +.E', +-E:, )+ 3E—(."EA. +—."EB.)+ 6Z. "G-, -+-

m

+3(oEo/2 + «Efl/2) + 3Z(k EB„/o + k EA„/o )

2(,A++oA, + Ao++«A, )+,B++,Bo + B++ B, +Q(4~ "EA. +2/, "EB ); n=1
,A+ + oA + «A+ + «A, + 2Q(q EA + q EB' + /,

'E) A2(+g oEE+y); n = 2
k

,A++,A, + A++ A, +,E,+ &+,E, &+ E&+ &+ E»+2+(z "EA +& "G»); n & 2
k

d2 (0, 0, q~) 2(,A, + A+) +,B++ B, + Q(2q EA
k

k

oAo- + «Ao+ + oEy+, 1 + «Ey, y + Q(p "EA.
k

(0, 0, 0) 2(oA, + A, ) + oB+ + B+ + Q(2/, EA.
k

A. +-A. + E(~ "EA. + ~'EB,'+ ~ "EA,'
k

oA, + «A, + oE,+, +,E,+, + Q(p "EA.

EB); n=l
)+,E, +.E&,

+q "Gg y); n & 2

+~ "EB.); n=-1

)+ El+ El

+~ "Gg g); n &2
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TABLE XI. Vibrational representations of the orbits of the line groups L(2n )2c and Lnc; n =1,2, . . . ; translational period is 1

unit. Summation is performed over k E(O, m), IE(O, n/2). Orbit a& exists for n odd, only. Minimal sets: 2a for n even and a for n

Qdd.

Orbit

n even

bl

Orbit
point

(z, y, z)

(o, v, )

(0, 0, z)

(0, 0, A)

Vibrational representation

3(.A++.A.—+,B++.B. )+-6.E.+ 6+(.E+ +.E' +.E+ +.E )+
+6+(1"EA. + 1, "Ea.)+ i2+q "G~ ~+

k k, m

+ ( +j2+ ~j2+ +ji+ jp)+ ~ j2+ E(a e„„+1 A„„)
k.A++.B+ + 2(.B.—+.A.-) + 3.E.+ 3+(.E+ +.E + „E+ + .E )+

+3+(„' EA. + „"Ee.)+6+„'G
3(,A+ +,A, +,B++,B, ) + 6„E,+ 6+(1,"EA. + q "Ee.); ss = 1

k

,A++, A, +,B+ +,B, + 2(,E, +,A+, + „A, + B,++,B, )+ 4,E1+
++[ (a a, + a A~)+2(a "EA. +1 e.)]I "=

k

o+o + o+o + oBo + oBo + 2(oEo + oE1 —1 + oE1 —1 + o 1,—1 + oE1 —1)+
++[4„G1 1+ 2(„"EA.+ „EB)]; n & 2

k

oh++, Bo++2(,A, +,B, )+3oEo+3+(1 EAo+y EB )o
k

o~o + o&o + «&o + «A+, + «A, + «I3,+ + «B, + 2oE1+
+E(2(~ "Ea'+a "EA,')+a" A. +a" e-] "=

k

,A +,B + E + E1+ 1+ oE1 1+ „E1+ 1+ E1 o1+ Q(21 "G1 1+ &
"EA +1 "Ea ); n & 2

k

(0, 0, 0) 3(,A, + B+) + 3 E, + 3+(1, EA. + „"Ee.); n = i
k

oAo + oBo + «&o + «Ay + «Ay + By+ + «By + 2o&l+
+V[2(, "E",'+, "E.,')+."E..+ "E .]

k

oAo + B o+ oEo+o2 E1 o1 + E1+o1+ E1 o1+ Q(21 G1,—1+ 1 EAo + 1. EB, )I n & 2
k

V. DISCUSSIGN

The line-group factorization is used in order to find the
orbits of the stereoregular polymers. It has been shown
that the line- and point-group orbits are closely related.
Further, the minimal sets of orbits, which determine the
symmetry of the polymer, are given. The dynamical rep-
resentation for all orbits of the line groups is reduced to
its irreducible components, with the help of the induction
procedure, i.e., the symmetry classification of all possible
normal vibrations is found. Afterward, the Jahn-Teller
theorem for the polymers is proved. All the results are
checked numerically (a program dealing with the line

groups and applications in polymer physics is in prepara-
tion).

In order to determine the exact form of the normal dis-
placements of the concrete system, the group-projector
technique' ' should be used. As for the single orbit S
with the monomer Y, the induction method gives the gen-
eral expression; note that the group projector of the pth
irreducible (n„-dimensional) representation is an infinite
matrix, with 3

~
Y

~

-dimensional blocks:

n
[S"~'] = " yd'~'*(z'rz j)Y'(i) .

-
s ij

~Z
~

sl
I

Here, the summation is as in (4), over the symmetry
group of the monomer; block indices i and j essentially
denumerate monomers, s refers to the rows of the repre-
sentation 1M, while Y (1) is the dynamical representation

of the monomer. As usual, the group projector is ob-
tained for s = 1, and its eigenvectors for the eigenvalue 1

give the basis for the first row of the pth representation,
and the rest of the pth modes are obtained by acting on
this basis by the operators S,'"' for s =2, 3, . . . , n„.

According to (4), there are a normal modes corre-
sponding to pth representation, and for a„)1, the
group-projector technique gives only the subspace of
their linear combinations. The exact displacements can
be found only by the diagonalization of the vibrational
Hamiltonian in this subspace, i.e., the parameters of the
concrete system (configuration, force constants) are in-
volved. Analogously, if the polymer contains more than
one orbit S~+Sz+ - +Sk, the corresponding projec-
tors are S,v~v~=; &S„, '"'. If an irreducible representa-
tion occurs in di6'erent orbits, polymer normal displace-
ments for this representation are linear combinations of
the orbital ones, and cannot be determined by symmetry
arguments only.

For instance, trans-polyacetylene (CH), with the sym-
metry group L2&/mcm, consists of two e&-type orbits,
one for each sort of atoms (Fig. l). Among its normal
coordinates there is one corresponding to the irreducible
representation rLt= OA, (also denoted by' B2s). The po-
lymer group projector is ei+'ee& j''. The stabilizer of
the orbit e& is D» = [e,o. „oh, U„] (Table I). The ma-
trices of the monomer dynamical representation of 0&&
are those of the polar-vector representation. Noticing
that the generator of Z is (C2 ~ —,'), (5) reads
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0 0 0
[e "~'] = o o o(

—l )'+'
Izl

0 0 1

Normal displacements, obtained with this projector are
x; =y; =0, and z, =( —1 )'zo, i.e., the mode is alternating,

distortive, and longitudinal. For each orbit (C and H),
there is such a mode, and polyacetylene normal modes
are combinations of them (Fig. l).

The possibility of the cooperative vibronic instability in
trans pol-yacetylene (uniform bond length) yielding the
distorted trans tran-soid isomer (alternating bond length)

TABLE XII. Vibrational representations of the orbits of the line groups Ln/mmm and L(2n)2m; n =1,2, . . . ; translational
period is 1 unit. Summation is performed over k E(0,sr), m C(0, n /2). c =p cos(sr/n) and s =p sin(1r/n). Orbits c, , c1, and f, exist
for n even, only. Minimal sets: a, b, c, d, e, or f.

'n even

lg, (z, )/, )

n even

i
(z, n, z)

n even

(z, o, ,-')

n even '

Cg (c, s, z)

dl (z o, o)

n even

(z, o, o)

,

n even

(c, s, O)

(o, o, z)

(o, o, o)

,

' Orbit
point

(z, 1/, z)

V ibratioaal representation

3(0A~++oA0 +080++~8, + «Ag++ «A0 + «8«++«8„)+6+(» Ex +» E11 )+
k

+6+(.E+ + ,E . +,E+ +.E„)+12+,"G
m k, tn

+ (~ e/s+ ~ «/s+ ~ e/s+ ~ n/s+ ««/z+ «n/s+ «n/s+ «a/s) +(» + ra+»
k

2( A++, 8++ A, + 8, )+,A, +,8, + A++ 8++3+(»»E& +»». Es1.)+
k

++f4( E +,E+ )+2( E +,E )]+6+, 'G +
rrt k,m

+2(,A+/ +,8«/ + A„/ +,8„/z) +,A„/1 + «8„/1 + A„+/s + «8„+/s + 3+(» E~„„+» E/s„„)
k

,
'2(, A++, A, ++«A++«A, ) +8++ 80, +«8++«8, +6+» G~, ~+

k, rrt

+Q(2, 'E&. +4„»E&.)+3+(,E+ +,E +,E+ +,E )

+- .1+V(» s.„+ » z.„)
k

,A++, A, +,A, +,A++, 8+ + 8, + Q(» EI + 2„Es, )+
k

++[ (2, E +,E+-)+,E+ +,E„]+3+„"G, +

+,A„/, +.A„/, + „/, +, +„/, +. „+/, + „/, +P(» Ea„„+2,'E~„„)
k

2(oAg + aAy + oBs/s + 08«/z + «8«/+s«8~/1 + «A«+ «A«) + oB«+ + oB~ + «A&/1+ oA~/s+
+,8+ +,8; +,A+/, +,A /s + +[2(„Ea +» Eg „)+ 4(» "Eg. +» Ez1„„)]+

k

+3+(«E~ ~+ «E~ ~ +,E~ ~ +,E~ ~) + 6 Q» Gs«

++[»E/1 + E „+2( E„.+;»Ea.„)]++[2(,E +.E+ )+. + +.E ]+.

+3+(»'Ez. +»'Ea. )+2[4(.E+ — +«E+ — )+2(.E — + Em-m)i+6K» G, — +
k, m

+ («a/1+«a/1+0 a/1+«n/1)+«a/1 «a/1+0 e/s+«a/1+ +(» z /&» + /')

.A++.A.-+.A++.A; .++8.++8P+(, »Ea+2, 'Ez.)+3+,'G, +

++[2(.E+ + .E+ ) + .E „+.E „]+
+oA /1 + 0sAs/1+ «As/z + «A„/1 + oBs/1 + «Bs/z+ Q(» Ezs ~~ + 2» Ez ~, )

k

oA, + «8„/q+ oB„/q + «8„/q + «8„/1 + «A,+ + «A, + 08,+ + oA„+ q /+ «8+ «A„+/q+ 3 Q» Gs«,
k, m

+P[„'Ea.+„'E~„„+2(,'E~. +, 'Es „„)]++[ (,E+, +.E+ )+.E„„+.E ]+.
k

2(,A+ +,A, + A«++ A, )+,8++,8, +,8++ «8, + Q(4» E~ + 2» "Ess, )& n = 1
k

0A0 + 0A0 + I'A0 + YA0 + OA$ + OA$ + xAy +xA$ + 0+$ + 0+$ + T~$ + %BED +
+2+(» Eg +» EQ~ +» Ejs()/ «1 2

k

yA«+ + pA0 + «A«+ + «A«+ «E1 1 + pE1 1 + «E1+ 1 + «E1 1 + 2p(» Eg +» G1,—'J)) n 0 2
k

,A0++, A, + A«++, A, +,8+ +,8, + Q(2» Ez +» Es1 ); «.1 = 1.
k

oA, +«A,++oA1 +«A, +o81 +«81 +p(» Es,.+» Ez, +» EB); «»=2
k.A, +.A++.E1+, +,E, , + Q(, "Ez.+„'G, , ); n & 2

k

,A++, A, +,A++.A, +,8++ 8++ +(2, Ez. +, Ezs. ); «1 =1
k

,A, +,A, +,A1 + A1+,81++ 8,+++(» "Ew. +» "Ex, +» Ezs, ); n=2
k

A + A +oE1,-1+ E1,—1+2(» E4, +» G1,—1)
k

A+
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is frequently discussed in the literature. ' ' The follow-
ing symmetry analysis confirms such claims. At first,
from the table of the representations of the group
L2&/mcm it is obvious that there can be at most four
types of the ~-electron energy bands: &E~, kE~, kE~,
and &Ez . Compatibility relations' ' at k =~ stick to-

gether the bands kE~ and kE~, as well as the bands
0 1

«E/i and «E/1 (Fig. 2). There is one electron per mono-
0 1

mer, i.e., two electrons per translational unit cell, and the
Fermi radius equals m.

On the other side, the Huckel's ~-electron theory, us-
ing the p„atomic orbitals, gives the B, representation of
the point group 02& for the bonding ~„orbital in the C-
C bond. ' Hence, the corresponding polymer orbital

transforms according to the representation

e, (L2, /mcm )Q, + (L2, /mcm )

=Do++Pi +«Ea, +«E/i, +A'// .

This implies that the relevant electronic state at the Fer-
mi level is +~, connecting the bands «E~ and «EI/ (Fig.

0 1

2). So, the band is half-filled and in the ground state
trans-polyacetylene is an intrinsic metal with degenerate
ground state. This is the classical situation of the
cooperative Jahn-Teller vibronic instability. The candi-
dates for the symmetry of the soft mode are the irreduc-
ible components of the symmetrized square
[~~ ]=6 A 6+ +6 A,+ +6 A, , which are all contained in
the dynamical representation for the orbit of C-ions

e~=oAo+ +oAo +oA+, +oA ) +pa 6 +oB) +2+g++o+g [k EBo+k EB, +2(k EAo+k EA,
1 0 0 0 0 0 1 0 1 0 1

k

TABLE XIII. Vibrational representations of the orbits of the line groups Ln /mcc and L(2n )2c; n = 1,2, . . . ; translational period
is 1 unit. Summation is performed over k E(0,~), m E(0,n /2). Orbit a3 exists for n =4p+2, (p =0, 1, . . . ) only. Minimal sets: 2g,
2b, or a+b.

n even

ag (z, o, -', )

n even '

n even

G (o, o, z)

Cp

(o, o, o)

~ Orbi~ point

o& (z, t/, z)

] Vibrational representation

3(.A++.A, +.B++,B;)+6.E, +6+(, kz„. + »zn )+
k

+6+(~z+ + E +,E+ +,E )+12+» G
k, m

+ (0 a/2+0 a/2+0 a/z+~ n/z)+ &E&/&+6K(k E& gs +k En g&)
k

2(o A, + o B+) + DA, + o B, + 3~ Eo + 3+(k Ea. + k "En.) + 6 Q „0
+3+(.E+ + .E„+.E+ +.E )+

+2(oA„/z+ oB„/z)+ aA„/z+ aB„/z+ 3~Em/z+ 3+(k Ex„„+k En.„)
k

2(.A, +.B„/, +.B++.A+/, )+.A++.B+/, +oB, +.A, /, +3( Eo+ E~/z)+6+» G,— +
k, m

+3+(k E .+„Ea„„+„En+„.„)+3+(E + E + E+ + E )
k

2(,A++, B+)+,A, +,B, +3,E, +3+(k "Ea.+ k En )+
k

++[3(.E+ +„)+ 4, Z+ + 2,E ]+6+, 'a „+
+2(,A„+/., +,B+/ ,)+,A„/z. +,B,/z+ 3 E„/z+ 3+(» Ea.„+k En.„)

k

3(,A+ +,A, +,B++,B, ) + 6 z, + 6+(k En. +k E~.); rk = 1
k

+2[2(k "En. + k'Ea. )+ 4(k'Ea, +, kzn, )]; n = 2

,A+ +,A, +,B~+ +,B, + 2(~E, +,E,+, +,E, , + ~z,+, + ~z, ,)+
+P[2( Zn. +„'Z„.)+4, 'G, ,]; n & 2

k

2(.A.—+,B+) +,A+ + .B; + 3 E, + 3+(, ' E&. +, E„);n = 1.
k

+ oBa + &A1 + oA1 + oB1 + 0B1 + &Eo + 2&z& + 2[k E& + k E4 + 2(k E&& + k E&I)]'

g +OBy +& 0+ozl 1+0 1 —1+r 1,—1+& 1,—1++(k EB +k 4 + k 1,—1)»
k

2(,A++,B+)+,A, +,B, +3 E, +3+(k En. +k Eg.); n = 1
k

oA0 + oB, + 2(0Ay + oB» ) + «Eo + 2~El + p[k EB.+ k Ea, + 2(k Eai + k Enx)]i rk = 2
k

OAo + oBo +&ED +2&zl, —k+ &El, —1+ & 1,—1+ Z(k no + k &a + k
k
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TABLE XIV. Vibrational representations of the orbits of the line groups L(2n )„/mom; n = 1,2, . . . ; translational period is 1 unit.
Summation is performed over k E(O, m). In the primed sums m is from (O, n /2), otherwise from (O, n). c =p cos(~/n), s =p sin(m/n),
c'=pcos(m/2n), ands =psin(lrl2n). Orbit f, exists for n even, only. Minimal sets: a, b, d, e, or f.

Orbit

'n even

n evea

'n even

n even

, gz

hg

I

Orbit
point

(x, y, z)

I (C, 1/, -)

(s, o, s)

,

(s, o, o)

(c, », 0)

(o, o, 4)

(o, o, o)

Vibrationa1 representation

3(,Ao++, A, +,Bo++,8, +,Aa++, A„+,Ba++,8„)+12+«G '" +12+» G~
fl1 k, re

+6( E4+,En)+6+(, E+ +,E )+6+(» "E4. +»»E~. +»»E4. +„»E/». )+
+ (r a/2, —a/r + r a/», -a/2)

,A++,8++,8, +,A„+2(,A, +,8++,8„+,A+)+3(,E4+ E~+,E+/, „/, +,E„/, „/,)+
+3+(» E4. +» E»1. +» "E4„+»'Es„)+3+(,E+ +,E )+6+' G "" +6+» G

k t7L t1L k, re

2(.A++,A; +.A+ +.A„- +.El») +,8+ +,8; +,8++,8„- + 4.E„+3+(.E+ +,E „)-+

++[ 2(,
' E +, E .)+4(, E4 +, E .)]+6+',G "' +6+»G +

k k, rr3

+'(-E"/. ./ +.E./—, »/ )-
2(.A++.8++,A++.8+)+.A. +.B. +.A„-+.8„+3(.E4+.E»l)+6+, 'G,

k, ra

+3+(» E4 +» E»l +» E4 +» E~ )+ Q(4oE«a oa+ 2, E«a aL)+ 6Q Goa
"'" +

+'(-E'/. -/ +-E:-/, -/ )-
.A++.A;+.A++.A„-+,8++.8++2,E4+.E&+3+'.G "" +

+P[, 'E&. +, ' &„+2(,»E4. +, 'E4„)]++(2.E+ +,E „)+3+,»G, +
++ ~ a/2, -a/2 + ~ a/2, -a/2

,A++, A, +,A++,8++,8++,A„+2( E4+,E+/» „/»)+ E/»+, E„/» „/, +3+» G +

++[» E41. +» E»1. +2(, "E4. +» E4„)]++(2,E+ +,E )+3+' G

2(oA,++ oA, + oA,+ +oA1 + rE/») + oB,++ o8, + o81++o81 +4«E4+
++[4(,'E4. +, 'E4, )+ 2(, 'E»1. +, »E»1, )]; n = 1

k

oAo + oAo + oA1+ + oA1 + 2(«E4+ «El 1 + rE1,—1 + oE1, 1 + oE1 1)+
++[2(» "E4.+» E4, )+ 4» Gl 1]; «1 = 2

k

o + ~ o +.Aa+oAa +2(«E4+ «G, , )+oE, , +oE, , +.E„,, „+,E„,, „y
+22(» E4. +» E4 +» Ga-.l, l-a +» Gl, -l)i rl & 2

k

.A.'+.A. +.A;+.A, +.8++.8, +.Ea+2.E4+P[2( E4. + E4, )+-'E, +-'E, ] n=1
k

o + o '» + «E4+ «El, —1 + «'El, —1 + oE1,—1 +oE1,-1++(» E4 +» E4q + 2» Gl, —1)q «1 = 2
k

o a r 4+o 1,—'1+o a —11-a+«G1,—1 +Z(» E4 +» E4 +» Ga —ll —a+» Gl, —1)i «1)

o o +oA +oA1 +oAl +oBo++o81++«E&+2«E4+E[2(» E4 +» E4 )+» Er}.+» Eg, ];n=1
k

1,—1+r 1,—1+2«E1,—1+2(» E4 +» E4o +2» Gl, —1)
k

a + r 4 + o 1,—1 + oEa-l, l-a + «Gl, -l + Q(» E4 +» E4„+» Ga —1,1 —a +» Gl, —1);
k

(a) (b)
(a)

i)E
(b)

.E„
kE„

kkE„~~TTA~~„AO

X
(c)

-k: 'Q.E,'
0

FICx. 1. (a) trans-polyacetylene configuration; (b) Jahn-Teller
active mode corresponding to OA, irreducible representation;
(c) another type of the OA, mode (not active).

FIG. 2. Band structure at the end of the Brillouin zone (re-
duced representation is used) of (a) trans-polyacetylene and (b)
"dimerized" trans-polyacetylene.
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(Table XIV). After neglecting the totally symmetrical
representation and x component of the translations, it
remains OA, (Fig. 1), satisfying all the requirements for
the Jahn-Teller effect.

If one takes into account both e &-type orbits the situa-
tion is a little bit different. The dynamical representation
now becomes 2e

&
and contains oA &

twice. The vibra-
tions of the polymer are described by the linear combina-
tions of the independent normal displacements (Fig. 1):
atoms from different orbits can oscillate with opposite
phase (C-H bending) and in the phase (C-C stretching).
For the phase transition the candidate is only the last
mode (C-H) bonds are tighter and H ions follow C ions),
and the Peierls dimerization occurs. oA, is the represen-
tation of the order parameter (soft mode) of the equi-
translational structural phase transition. The symmetry
predicts' L1m for the symmetry group of new
configuration. The reAection o.

& is the representative of
the "lost" symmetry coset (L2, /mcm =Llm+(7kLlm),
thus restoring the initial symmetry via two possible
domains with the soliton' in the role of the Goldstone
mode.

Both representations & Ez and & E~ of L2, /mcm
0 1

subduce into k& Ez of L1m, without any requirement on
their connection in k =~; moreover, in k =m this repre-
sentation reduces into +o+++0. Hence, the energy
gains a gap at Fermi level, and the distorted isomer is an
intrinsic insulator, with nondegenerate ground state.

In the previous example the order parameter was one
dimensional, which is the simplest case. Two- or four-
dimensional active modes are possible also (e.g. , the rep-
resentation „62 occurs in the orbit e, of the group
L

168/mmmm,

as well as in the symmetrized square
[ &26, ]), giving rise to more complicated, and possibly
physically richer phenomena.

Finally, it should be noted again that the above discus-
sion refers to infinite polymers. Finite chains require a
somewhat different approach, including considerations
imposed by topologically nontrivial Born —von Karman
condition.

some alternative sets of the representations of the families
Lq and Lq&2, Lq 22 are much more convenient for the
purposes of this paper. Therefore these will be derived
here, together with some necessary properties. Note that
the sets of the irreducible representations for the given
group is unique up to equivalence, implying that the al-
ternative sets are essentially the same, but the notation is
different due to the different meaning of the quantum
numbers involved.

The groups Lq are the direct products q, C„, where n
is the greatest common divisor of q and p, while r is the
unique solution of the equation rp/q=n (mod q) being
less than q and coprime relatively to q. Both factors in
this product are cyclic groups, generated by (C"~g) and
(C„'~0), respectively, yielding the set of the irreducible
representations (a =2m /n):

(CrtCs
~

t )
ei(ktg+msa) k ~ ( ~ tr]

n —1 n —1

2 ' ''
2

n odd,

[(kA, kA ) ]=„A„+,A„.+ AO,o
with t(=' —2k, x'='2k, p=' —2m, and p'='2m (here
denotes the equality modulo the range of k and m, re-
spectively). The polar- and axial-vector representations
reduce as follows:

o~o+ ~o+ —~o
V= 3 'ohio+ A i+ — A& n =2

o~o+ ~i+ —~ —
~

n)
(AI)

n —2 n
n even ~

2

Complex conjugated representations are & A * =
giving rise to the following set of the real irreducible rep-
resentations: OAO, Ao, (k A, „A )=„A
+ &3 ~, and only for n even, oA«2, ~A«2. Sym-
metrized squares of the two-dimensional representations
can be reduced in the form
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APPENDIX

The irreducible representations of the line groups have
been published earlier. Nevertheless, it turns out that

where t( is equal to 2mr/q for 2r ~q .and 2~(r/q —1) in
the opposite case. ohio corresponds to the z components
of translations or rotations, while the remaining irreduc-
ible representations belong to the standard linear com-
binations of the x and y components. "

For the groups Lq 2, Lq 22, being the semidirect prod-
uct q„D„of the cyclic invariant subgroup and the
dihedral point groups D„, the induction procedure gives
the irreducible representations:

0 1~—m(CrtUiCs
~

& )—
m q n 1 0

I
lP7lSA

0
0 n

e
—imsa

—k~ —
m( C rt U iCs

( r )—
q n 1 0

i(ktg+ msa) 0 n n
—I ) kE(0 w) m 'E
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A —(C"'U'C„'it ) =(+1)'(—1)',

0 l e lmsa

(Cq'U'C„'
i t ) = ( —1 )'

0
e

—imsa ~ m +
2

and only for n even

o A „—q2 ( C"'U'C„'
~
t ) = (+ 1 )'( —1 )',

A„—)2(C"'U'C„'~ t ) =(+1)'(—1)'( —1)' .

All these representations are real, and the symmetrized squares of the two-dimensional representations reduce as fol-
lows:

[
—kE —m2)

0 0 2k p
A+ + —2kE —P k H 0,—,p='2m'2

OAO +2--2kEP p k E —,n, p=2m2'

A++~ —2m —n nk=— mH
2 2 ' 4

OA 0 +A —2m
7T nk= —,mE. ——,0
2 4

A+ +~—2m 7T nk= —,mE 0, —
2 '

oAo++A'—2 +.
'7T n nk= —,mG2'4'2

OAO +„Ap + Ap
7T nk= —,m =0,—2' '2

p A p + m. A n y2 + m. A n /2
nk= —,m=+—

2 ' 4

loE™)=
t:
A'™)= + ++ 2I7l 7T nk= —,mE. 0, —

2
' 4

OA 0 +& —2m+n
7T n nk= —,mE
2 ' 4'2

OA 0 +OA„+~2+OA„~2

The reduction of the polar- and axial-vector representations gives

oAo +. Eoo

V=A = 'pAp + E] n =2

OAO +, "E& ' n)2,

7T nk= — m=+ —.
4

with n given in (Al). z components of the translations and rotations transform according to the oAo, while the other
representations correspond to the standard combinations of the x and y components.
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