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Path-integral Monte Carlo study of a model adsorbate with internal quantum states
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An adsorbate in the strong-binding and small-corrugation limit is studied. The resulting two-
dimensional Quid is treated in the adiabatic approximation: the translations of the particles are
treated classically, whereas the internal quantum degrees of freedom are modeled by interacting
two-state tunneling systems. The temperature-coverage phase diagram is obtained to a high degree
of precision by combining finite-size-scaling ideas with path-integral Monte Carlo techniques. Even
this simplified adsorbate model possesses a surprisingly complex phase diagram including first- and
second-order transitions as well as a tricritical and a triple point. We identify gas, liquid, fluid,
and square-lattice solid phases combined with a preferred internal quantum state depending on
temperature and coverage, We determine the order of the transitions and localize the different
phase boundaries of this many-body quantum system reliably. Mean-field approximations and low-
density expansions are compared to the simulations. A possible extension of the block analysis
method to determine triple points and solid coexistence densities is discussed.

I. INTRODUCTION AND MOTIVATION

Two-dimensional (2D) layers of molecules adsorbed
on surfaces have become an active field of researchi
during the last decade. Experimental ' as well as
theoretical" investigations show the need to take the
translations into account quantum mechanically in or-
der to describe light adsorbates appropriately. An-
other class of molecules having internal degrees of free-
dom, as, for example, rotational motion ' or magnetic
moments, calls for a quantum treatment of these in-
ternal coordinates even if the translations can still be
treated classically. The first step is to investigate one
particle with such an internal quantum degree of free-
dom coupled to a classical bath of surrounding particles,
as, e.g. , considered recently in Refs. 14 and 20. A more
realistic model consists of a classical Quid where each
molecule is supplemented by a two-level system, which
in turn is represented as a quantum spin. These models
have a long history, as documented in the certainly in-
complete list in Refs. 15—18. Some recent work in this
direction, i.e. , fluids with internal quantum states, and
more references to earlier work can be found in Ref. 19.
A very challenging aspect of these many-body quantum
systems is the calculation of cooperative effects, i.e. , equi-
librium phase diagrams, based on microscopic knowledge
of the corresponding intermolecular potentials only. But
such calculations, necessarily using computer simulation
methods, have remained of outstanding interest since the
introduction of these techniques even for use in classi-
cal systems. Despite very impressive progress along
these lines, it still is a difficult problem (even for a sim-
ple classical fiuid) to study the region near the critical
point of the gas-liquid transition, and to precisely esti-
mate the location of the gas-liquid coexistence curve. Al-
though this problem has been considered extensively and
various well-documented approaches exist with which to

deal with first-order transitions (see Refs. 24 and 25
for the recently introduced Gibbs method for fluids be-
ing successful away from the critical region, and Ref. 26
for a very extensive grand-canonical finite-size study of
the critical 2D Lennard-Jones fluid), there still is need
for additional and complementary approaches, even in
the case of simple classical Quids.

In this paper, we demonstrate that the successful
combination of well-known path-integral Monte Carlo
(PIMC) simulation methods for quantum systems with
finite-size-scaling block analysis techniques is a very
promising way of calculating involved phase diagrams of
model systems with internal quantum degrees of freedom
to a yet unknown accuracy. The emphasis is to establish
reliable methods for dealing with the effects of strong in-
teractions on the internal structure of the admolecules.
At the present stage, our model system is fairly simple,
but nevertheless computationally demanding. It con-
sists of hard disks, each bearing a quantum Ising spin.
The spin interaction is mediated via a distance depen-
dent coupling of the square well type. Notwithstand-
ing the simplicity of the model, the phase diagram of
this model adsorbate already includes many challenging
features, such as a tricritical and a triple point, various
phase coexistences and second-order magnetic transitions
in the internal quantum states. 27 We consider the present
study as a prototype example of a phase diagram calcu-
lation of combined classical-quantum systems in 2D, and
not as a model designed to describe a given real system
as closely as possible.

Now we give a short outline of the structure of the pa-
per. In Sec. II we introduce the model, discuss different
facetes of the underlying Hamiltonian, and make con-
nection to real adsorbates. Section III is devoted to the
methods used. In Sec. III A we explain the block analysis
method as generalized to off-lattice systems and the gas-
solid coexistence, we give the details of how to extract the
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quantities of interest, and we illuminate the methodolog-
ical limitations. In Sec. III B, the formulas necessary to
set up the PIMC simulation are presented together with
technical details of the simulation. This section closes in
C with a short digression of the mean-field (MF) theory
and the low-density expansions for the Hamiltonian. We
present and discuss our results in Sec. IV, where we start
in Sec. IVA with the central quantity, the density dis-
tribution. The phase diagram is presented in Sec. IVB
and Sec. IV C deals with the determination of the special
points and the solid phases. A small part of these results
has been communicated in a preceding letter. z7 We close
in Sec. V with a summary.

II. DESCRIPTION OF THE MODEL

H =K+V, (2)

where p; and r, are momentum and position in 2D of
particle i (r;~ = ~r; —r~ ~), o* and o' are the usual Pauli
spin-1/2 matrices. K and V represent the kinetic and
potential energies, respectively. The potential energy V
consists of a one-particle (two-level) part up/2 and two
pair interaction terms U(r) and J(r), where U is a hard
disk potential for particles with diameter R and J(r) = J
for R & r & 1.5R and zero elsewhere. Concerning the
thermodynamic treatment of the translational and spin
degrees of freedom, two distinct averaging procedures are
possible. In this study we only do annealed averages, i.e. ,
the classical positions and internal quantum states are
treated on the same footing. For other examples of sys-
tems which can be modeled to a greater or lesser extent
in this way, see Refs. 15—18. A quenched average can be
realized, if the positions of the molecules are kept frozen

We study a model adsorbate of N molecules on a fiat
surface, i.e., the surface has the only eEect of forcing the
molecules to move strictly in 2D without introducing any
corrugation effect. s Thus we consider the case of an ad-
sorbate in the strong binding but small corrugation limit.
Our methods are by no means restricted to this limit: in

principle nothing mould prevent us from including corru-
gations via a suitable periodic potential. Including the
third dimension perpendicular to the substrate, allow-

ing for accommodation of possibly growing multilayers,
would be computationally somewhat more demanding.
The relevant internal quantum states, the two-state tun-
neling systems, are represented as quantum Ising spins
with distance dependent couplings. We assume the mass

p, of the molecules to be sufficiently large to justify an
adiabatic approximation and treat the translational de-

grees of freedom classically. The molecular center of mass
can take continuous values in a monolayer of dimension
8 x S. The resulting combined classical-quantum N
particle Hamiltonian of the system reads

in a given configuration and the spin degrees evolve in
this surrounding; for disordered configurations, a disor-
der average has to be performed additionally. The special
case of an underlying regular pinning of the spins is the
genuine model of statistical mechanics of lattice models.

Our two-state molecules have an internal Hamiltonian
ap—Fr /2 and interact via a pair potential depending on

their actual internal state, the hard disk part is the only
remnant of the core-core interactions of the molecules.
The important feature of the Hamiltonian (1) is that the
interaction term will tend to lift particles out of their in-
ternal ground state, corresponding to a change of their
preferred internal state. Due to the distance dependence
of the interaction term J(r), the quantum and classi-
cal dynamics are nontrivially coupled. Thus a cover-
age induced change of the preferred internal quantum
state of the molecules is expected. For a given density,
there are three classical limits possible: the usual high-
temperature limit, but also the limits wp/J —+ 0 and
cup/J ~ oo, where only commuting operators are left in
the Hamiltonian (1). At infinite temperature, only the
hard core repulsion remains, similar to the up/J -+ oo
limit, which produces a one-component classical system
with only hard disk U(r) interactions. The opposite limit
corresponds to a two-component classical system with at-
tractive interactions J(r) between particles of the same
species. The ratio wp/J can be considered as the quan-
tum strength parameter of our problem. is We study the
Hamiltonian as a function of temperature and number
density (coverage) mainly by PIMC methods (see Refs.
29—35 for a general overview) for a tunneling frequency
~p fixed to settle the system down in the quantum regime
0 « cup/J « oo.

A real system with similar properties are 02 mono-
layers on graphite: Og possesses a magnetic moment
(our two-level internal quantum state) which couples to
the translations. 13 Since the relevant transitions oc-
cur above 10 K, the 02 translations (large mass) may
be treated in the adiabatic approximation. In addi-
tion, these 02 films have quasi-2D propertiesis and
show only incommensurate structures. is The only effect
the substrate potential has is to confine the particles
to 2D without introducing a commensurate superstruc-
ture. Thus we consider a model adsorbate in the limit of
strong physisorption but nevertheless small corrugation
and take into account only the predominant admolecule-
admolecule interactions. Of course, we do not aim at a
realistic model of Oz monolayers, which would require
more complicated potentials and a quantum Heisenberg
spin with antiferromagnetic coupling rather than a fer-
romagnetic Ising spin model in a transverse field. In the
present work, we are only attempting to develop the nec-
essary methodology, while the realistic modeling of actual
adsorbates is deferred to future work, see Sec. V.

III. METHODOLOGY

A. Density distribution function and its cumulant

We apply the approach of the cumulant method for
off-lattice systemsM s" to a 2D fiuid with internal quan-
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turn states defined by the partition function (18). Our
method is an extension of finite-size-sealing block anal-
ysis techniques, which are a standard tool for the anal-
ysis of phase transitionsss of lattice models. m 40 While
for a Monte Carlo simulation in the NVT ensemble of a
fluid (N being the particle number, V the total volume
of the box, and T the temperature) the average density
p = N/V of the total system is strictly constant, we can
observe fluctuations of the density in subsystems. For
a liquid-gas phase transition, the density difference be-
tween the liquid and the gas phases is the order param-
eter of the phase transition, and hence studying density
fluctuations is of key importance for the understanding of
this phase transition. The change in the properties of the
density distribution function of subsystem cells contains
fairly complete information on the liquid-gas transition.
We shall show that the densities of coexisting phases can
be estimated reliably from the density distribution func-
tion. We also present here for the first time a discussion
of the implications of a systematic study of the density
distribution functions for the gas-solid transition and the
tHpte point. The behavior of the compressibility and the
location of the critical point can also be extracted from
the information contained in these distribution functions.

While the spirit of our approach is related to the idea
underlying the Gibbs-NV T ensemble, 24 2s namely study-
ing phase coexistence between two system cells directly
(one cell being in the fluid state, the other in the gas
state, and the cells are able to exchange atoms at con-
stant total volume and temperature) the distinguishing
feature of our approach is the introduction of finite-size-
scaling concepts4i which thus allow a systematic study of
size eKects.

In the following, we outline the block analysis method
suited for the phase diagram of interest in this study.
The subdivision of a total system into cells or btocks of
finite dimension L and studying properties on the footing
of these blocks is a familiar concept4 43 in the statistical
mechanics of many-body systems. Defining the particle
number in the ith block as N, , with P, N, = N, the
density p, in this block becomes

N,.
pi =

L

where

S
L = and Mb integer,

Mb

S being the linear dimension of the total system with vol-
ume V = S~; for the sake of generality, we consider here
a d-dimensional system. Thus (S/L)" = Mb subsystems
are studied simultaneously and improve the statistics. In
Fig. 1, we partition the simulation box containing an ac-
tual snapshot configuration from a simulation near the
tricritical point into 16 subsystems, i.e., Mb = 4. In or-
der to visualize the fluctuations in density and internal
quantum states, we represent particles with down (up)
average magnetic moments by small (large) circles [we
define the average magnetic moment of the ith particle as
(1/P) P i S;„,the total magnetization itself is defined
in Sec. I I B, but we show only coarse grained average

moments in the snapshot pictures, i.e., the ith particle is
represented by a small (large) circle if its average mag-
netic moment is less (larger) than zero]. Note also that
we use the same particle configurations to investigate a
whole set of different subsystem sizes in one simulation
run, and thus the study of a single (but large enough) sys-
tem already allows some estimation of finite-size effects.
Besides, one simulation run in the coexistence region also
yields useful information on gas and liquid phases.

We focus attention on the density distribution function
PL, (p) where PL, (p) is defined as the average of the density
distributions Pr, (p;) for a given length I of the blocks and
i = 1, . . . , M&, i.e. , all subsystems of the corresponding
block size are considered to behave independently and
are averaged together. Consequently thermal averages

( )I, are understood to be taken with a given block size
L, but we use that subscript only in this subsection. The
different moments of PI„
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FIG. 1. Blocking of the simulation box containing a
configuration near the tricritlcal point (N = 200, T*
0.52, p* = 0.42, uo/J = 4, J = 1, T*P 40). The total
system of boxlength S is divided into subsystems of linear
dimension L = S/Mb, we present the case Mb = 4. To visu-
alize in addition to the density Auctuations also the magnetic
fluctuations in the internal quantum states, we distinguish
particles with di8'erent average magnetic moments, see text,
with large (up) and small (down) circles.

(p )g = f p pl, (p)dp

are of key importance in the following digression. Note
that the zeroth moment is fixed by normalization of the
distribution and the first moment (p) L, = p = N/V is the
same on all length scales since N and V are fixed.

For a state within the one-phase region, the distribu-
tion PI, (p) is approximately Gaussian if L exceeds by far
the correlation length ( of the order parameter fluctua-
tions (i.e. , density fluctuations), L &) (,
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and it is centered around the density of the overall sys-
tem p. The second moment of this unimodal Gaussian
can be related by standard Huctuation relations to the
isothermal compressibility K(~),

= ((p —p)')
where P = (k~T), and our notation emphasizes that

K( l is the standard isothermal compressibility only in
the thermodynamic limit, while for small I we expect sys-
tematic deviations due to Rnite-size efI'ects, which shall
be discussed later.

The situation is different for a state in a two-phase
region where (5) has to be replaced by (again assuming
L»g)

plig p 1
Pg (p) oc

Pliq Pgas Pgas(&gas )i&Z

P(p pgas) L P pgas 1

2P& ~ as Pliq Pgas Pl;q(+. )i~z
P(p —pi q)'L"

exp —
( )

2p),. Ki,.

(7)

the derivation of which can be found in Ref 36.. In (7), we
have approximated a general bimodal distribution func-
tion as a superposition of two Gaussians centered around
the densities pgas and pl;q of the coexisting gas and liquid
phases. The relative weights of the two phases are fixed
according to the lever rule of statistical mechanics. The
relation (7) is not exact even within the limit I » g,
since interfacial free energy contributions are neglected.
However, this relation is a reasonawe approximation not
too close to the critical point, and especially at the outer
wings of the Pl, peaks. Using the coexistence densities
of the high- and low-density phases, we define the order
parameter as

and Ur, is zero for the Gaussian distribution (5) as is well
known. Of course, there are corrections to this result,
since ((Ap)4)L, difFers from 3((ZP)2)12by a connected
part of a four-particle correlation function. Thus we can
write for this case

(4)
L—(g

3(K(~1)z ' (10)

where yL tends to a finite nonzero const;ant as L + oo(4)

and obviously vanishes for infinite block size. Below the
critical point, in the regime of the bimodal distribution,
the cumulant no longer vanishes due to the distinctly
non-Gaussian character of Pl, .

In the vicinity of the critical point (T„p,), i.e. , for
L ( $, the above presented formulas based on the
Gaussian approximation are no longer valid. There the
distribution function is already distinctly non-Gaussian
in the one-phase region and interfacial contributions near
the critical point play a non-negligible role. The analogy
between ofI'-lattice Quids and lattice gas models suggests
one postulates a scaling form for the density distribution

where we include the temperature dependence explicitly
in the notation.

The quantity helping to locate the critical point in
the phase diagram is the reduced fourth-order density
cumulant, 3 ' 0 which we denote as UL,„,

(( P)')L,
3((~ )')'

(,) 6x&') —]. —6x(') '
(12)

PL, . We will not discuss this aspect in detail, but rather
refer the reader to Refs. 36 and 39, and concerning the
special features of the cumulant method for ofI'-lattice
fluids to Ref. 37. However, it should be noted here that
interfacial contributions inside the blocks on any length
scale are completely neglected in deriving the correspond-
ing formulas. With the above assumptions, a scaling form
for the cumulant

UL, = f ((p p.)le—
l

P Llel )
can be written down; f„ is a scaling function, e = 1—
T/T„( lel, and P and v are the critical exponents
of the order parameter and correlation length, respec-
tively. Similar relations can be derived for the moments
of the density distribution and the compressibility. ss

Of particular interest for us is the case p = p„where
the scaling function f„has only the single argument
Llel . In the well-known case of lattice systemsss 4o at
the critical point, the cumulants Ul. must intersect in
a common intersection point U*(T„p,) = fa(0, 0) inde-
pendent of the block length L. Locating such an inter-
section point can be used as a criterion to And T,. In
case of the fiuid models, a similar procedure also seems
to work: as shown in some cases, 3 3" the cumulants
merge together near the (tri)critical point. In the present
model, the situation of having to locate the critical point
of the gas-liquid coexistence line is facilitated by the fact
that this point is a common tricritical point of a second-
and erst-order transition. This second-order transition,
which ends at the tricritical point, is the magnetic tran-
sition from the paramagnetic to the ferromagnetic fiuid
phases at a density p, (T & T,). In case of a usual criti-
cal point for off-lattice fluids, more elaborate methodss7
have to be devised to locate simultaneously critical den-
sity and temperature.

In principle, the density cumulants can also be used
to locate the triple point, as will be introduced in this
paragraph. Note that in the limit N ~ oo, L —+ oo
such that N/L" —+ oo, where interfacial contributions to
the cumulants in two-phase regions are negligible, sr the
cumulant U is simply expressed in terms of the volume
fraction x (or x') of the gas phasess



7792 D. MARX, P. NIELABA, AND K. BINDER 47

in the gas-liquid (gas-solid) coexistence region. We define
the volume fraction of the gas phase above the triple
temperature as

p = piiq + (pges piiq) +

and below the triple temperature as

P = p-i+(pg- —p-i)~',

(13)

(14)

T
x'

I

FIG. 2. Schematic phase diagram of the Quid system. For
symbols and explanations see text.

see Fig. 2 for a geometrical definition of these quantities.
Formula (12) is obtained by replacing the two normalized
Gaussians in (7) by two 6 functions centered around the
coexisting densities and using the definition (9) of the
cumulant. The rectilinear diameter is obtained for z =
1/2. The same argument leading to the Gaussian approx-
imation (7) to describe the gas-liquid coexistence above
a triple temperature goes through for the coexistence of
a gas with a solid below this triple temperature, and the
same ideas apply for considering its cumulant. The only
difference is that the solid has in general a different den-
sity than the liquid does, i.e. , pi;q has to be replaced
by p,» = pi;q + 6p in (7), with the density jump Ap,
see Fig. 2. As a consequence, a discontinuity due to the
difFerent liquid and solid coexistence densities (the gas
density practically does not change in the tiny temper-
ature interval considered around the triple temperature)
occurs at the triple temperature T~. Since we can, in the
above-defined limits, give a closed expression (12) for the
cumulants U~(z&'~) as a function of the rectilinear diam-
eter in the gas-liquid and gas-solid coexistence regions,
and since just this quantity changes discontinuously at
Tq, the cumulants themselves have to possess a kind of
discontinuity at Tq. Exactly at the triple point, three
Gaussians have to be combined according to the lever
rule. In the case of finite systems, the sharp behavior
of U will be smeared out. We expect a sign change of
the cumulants' curvatures occurring at a common point
for all I., and that this circumstance can be exploited to
obtain an estimate for the triple temperature. Thus by
extension of the known gas-liquid density block analysis
technique to the gas-solid transition, one can in principle
extract the triple point temperature and the solid phase
coexistence densities in a canonical simulation without
possibly imposing boundary constraints on the system.

Having devised techniques to locate the (tri)critical
and triple points in a phase diagram using the density dis-
tribution in subblocks, we now outline the extraction of

the isothermal compressibility K in the thermodynamic
limit. SuKciently far away from the critical point, i.e. ,

L )) (, where (5) and 7) are supposed to hold, the egec-
tive compressibility K ~& defined from either the second
moment of the density fluctuations in the subblocks (6),
or from the half width of the distribution (5), will dif-
fer from the physical compressibility K, resulting in the
thermodynamic limit. In leading order, we expectss that
K and K~~& differ by a boundary correction

Thus a quantity closely related to particle fluctuations
can be estimated reliably also in the usual canonical en-
semble where the total number of particles is fixed, if only
the fluctuations are studied in subsystems. The justifica-
tion of (15) is presented in Ref. 36 and will not be given
here.

There are, as usual, several limitations and drawbacks
of the proposed method which we do want to discuss.
In practice, the simulations consider rather small block
sizes L, where many of the relations written down here
are not yet strictly valid. The relation (11) is valid only
in the limit L ~ oo, ( —+ oo, I/( finite, and disregards
corrections to Finite-size scaling, see Ref. 39. And even
far from the critical regime, the Gaussian approxima-
tion suffers from boundary effects, ss i.e. , contributions
depending on a surface to volume ratio oc (/L as in (15).
In addition, there are interfaces inside the subsystems,
which are neglected in our approach. These limitations
are investigated and discussed in Ref. 37, where an ex-
tensive study of the 2D Tennard-Jones fluid with 4096
particles is provided.

Finally, we want to draw attention to some technical
aspects, i.e. , how to implement the presented method if
only very small systems (as in the present study) can be
simulated. First of all, the "useful" size I of the blocks
is limited from below and above: the usual requirement
( « L has to be met and in addition the blocks have
to represent quasi-grand-canonical ensembles to allow for
independent density fluctuations, i.e. , L « S also has to
be satisfied. It does not make any sense to use very small
blocks having the size of the hard disk diameter or large
blocks with Mb = 2, since in this case the periodic bound-
ary conditions couple the four blocks and the resulting
density fluctuations are by no means uncorrelated. Thus
the window of useful block sizes has to be determined be-
forehand, making compromises betiveen pragmatism and
pu7Mm.

Another aspect concerns the accurate extraction of the
positions and widths of the peaks of PI. yielding the co-
existence densities and compressibilities. The most reli-
able procedure consisted of fitting the simulation-PL, data
points by Gaussians with variable mean, width, and area.
In the bimodal regime, only the outer wings of the gas
and liquid PI. peak are fitted independently, thus min-
imizing the effect of interfacial contributions. It is not
advisable to do a simultaneous fit of the bimodal PI,
over the total density range, using two (even indepen-
dently) weighted Gaussians as suggested by (7), whereas
fitting all simulation points with (5) works well above



47 PATH-INTEGRAL MONTE CARLO STUDY OF A MODEL. . . 7793

(m")I, = m" Pi. (m) dm,

where Pr, (m) is the average of the magnetization dis-
tributions Pl. (m, ) for all blocks i = 1, . . . , Mb. This
procedure is visualized in Fig. 1 where a few "ferromag-
netic boxes" with mostly "spin-up" clusters and others
with "spin-down" regions can be identified in addition
to "paramagnetic subsystems" where the particles' mag-
netic moments annihilate. The analysis of the cumulants
on different length scales leads to a better estimate of

I

the (tri)critical point. Only the cumulants are calculated
from PI, using definition (9) directly. But despite the
mentioned delicacies, the results presented in Sec. IV are
encouraging and illustrate that 200 particles are already
enough to extract quite a lot of rather accurate thermo-
dynamic information, if conventionally generated simula-
tion data are evaluated by sophisticated methods. Espe-
cially in case of quantum simulations, where the system
sizes are necessarily restricted to rather small particle
numbers compared to state of the art classical simula-
tions, such a finite-size-scaling approach is quite useful.

To close this section, the second type of ordering in
our system, the transition from a paramagnetic Quid to a
ferromagnetic ffuid, is discussed in the light of the block
analysis. The distribution functions of the magnetization
in subsystems can be analyzed in analogy to correspond-
ing work on lattice models. Again, we divide the sys-
tem into blocks as for the density, but now we measure
the z magnetization m, (see Sec. IIIB) in the ith sub-
system to obtain the magnetization distribution function
Pl, (m) for a given length I of the blocks

the magnetic transition than just taking the maximum
of the susceptibility peak as done in the present study.
But note that, contrary to p, , now the basic variable mi
is the sum of all average magnetic moments of the par-
ticles in the ith block which can be positive or negative.
Thus near the magnetic transition, substantial cancel-
lations will lead to large statistical errors in the mea-
sured quantity PL, (m, ). From the experience with lattice
systems, 9 we feel that a 14x14 particle system like
ours with additional underlying density ffuctuations (i.e. ,

the magnetization in a block can change due to spin Qips
and due to diffusive motion of the particles) is not large
enough to allow for an honest finite-size study. Now we
shall proceed to describe how the PIMC simulations were
done.

B. Path-integral Monte Carlo simulation

Due to the adiabatic approximation, our classical-
quantum canonical distribution function is the product
of a trivial classical momentum part, which is integrated
out to yield the thermal de Broglie wavelength A, and
N-particle density matrix. is This density matrix is most
easily handled by considering the partition function in
the PIMC formalism

Z(p, 1V, V) = A, dri drivtr exp( —pU)

= hm Zp(P, X, V)P~oo

and for an introduction to PIMC methods we refer the
reader to Refs. 29—35. Following Suzuki, 4 we use the
Trotter formula to discretize the partition function in the
Trotter dimension P as19

gNP
Zp(P, N, V) dr1 drNe ~+'&~ ~""~ e ~ "~& &~

(S)

The temperature dependent efFective potential is defined as

N

KpS, pS, p+. i + —) J(r ~)S, „S~p, S, „=+1,
j=i+1

where

Ap = [2sinh(pu)c/P)]
1

Kp = ln[coth(pup j2P)] .
2

(20)

Cyclic boundary conditions due to the trace operation
S, P+1 ——8, 1 close the paths. The P-dependent proper-
ties of the system can now be obtained as thermal aver-
ages ( )p with the effective classical canonical distribu-
tion of the N x P particles

l
oc exp [

—P'Rp(P)] = exp i

—P) U(r;~) —PVp((S))
r

(21)

using the standard Metropolis Monte Carlo method
in the NVT ensemble; 8; & are classical Ising spin vari-

I

ables of particle number i at imaginary time slice p.
In analogy to the path integral in continuous Cartesian
space, the "kinetic part" of the Hamiltonian is identified
by the coupling ~ S, &S, „+1 of the classical spins of a
given particle i between two neighboring time slices p
and p + 1 suggesting the ring-polymer language, 9 3 *

whereas the potential contribution of two particles i and
j has to be evaluated at the same time slice ~ S, „S~„.
Again, the coupling constant Kp occuring in the "kinetic
part" is temperature dependent.

The next step consists of defining the estimators for
thermodynamical observables as energy, magnetization,
etc. , which can be obtained by the usual derivatives of the
partition function ZP for a given Trotter discretization.
The total energy estimator is defined as

where
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N P
4)p i /P&o) . i (P&o)(&~)p = ——N tanh

~ ~

—sinh
~ ~ ) ) ~i,p~i, p+1

2 &P) (23)

and

lV i P
(s )r = — & z(r..) —& s, ,s, ,)P=1 P

(24)

(C-) = (C.""") + (C:"),
where

(25)

a possible alternative energy estimator is the one based
on the virial. 4s We did not include the trivial classical
translations of the particles which only result in the ther-
mal de Broglie wavelength in the above-defined total en-
ergy and related quantities. Similarly, the corresponding
heat capacity estimator

(M). = (».,'-s, ,) (28)

aiid

(x). =s ( ».—,
'.s. ,') -(»--,'.s. ,)')

can be written down4s for an effective Hamiltonian 'Rp
being temperature dependent. The total magnetization
measured in the z direction is

and

(26) is the isothermal magnetic susceptibility. The total imag-
inary time correlation functions are defined as

(&:")r=S (& )xI s leer"~ I, I+~
2 ~ p ) I

(27)

(30)

N ) P
(C (r)) p = »— exp( 2SKe(5;r—Se+x + 'S

.er, ,i S,err+&)l)
i=1 p=l P

(31)

where ~ = Pt/P is the imaginary time. These correlation
functions give information s about the degree to which
the system is in "eigenstates" of o' or o. . In the following
parts, we study the properties (0)* = (0)/N normalized
per particle.

As obtained by a quite general analysis, 47 the errors of
these first-order approximant estimators for a Hermi-
tian breakup of the Hamiltonian behave in leading order
as

(r&corr (p)= (~)-+ (32)

for fixed temperature and system size. This Trotter scal-
ing relation was used to check the dependence of the cal-
culated observables on the special choice of P.

In order to study the features of the model described
by (18) quantitatively, we performed for different densi-
ties (coverages) and temperatures PIMC simulations for
a parameter set (J = 1, R = 1, uo/J = 4) fixed to
settle the system in the quantum regime; from now on
we shall use the dimensionless temperature T* = (PJ)
and density p* = pR2 and the overbar on p* defines as
before the density of the overall system. The number of
classical particles N was 200 and the Trotter dimension
P was chosen such that T*P 40 for each temperature;
the maximum P necessary was as large as 800. This
choice of P appeared to be sufBcient as tested by Trotter

scaling various observables: doubling of P changed these
observables only in the limits of the statistical error bars.
YVe have chosen representative state points out of the
two fluid phases, the coexistence region, and from near
the critical line to make sure that no P inHuence of the
phase behavior is present. As an additional independent
crosscheck, we compared the PIMC imaginary time 6'
correlation functions with these functions from a virial
expansion for low densities where this expansion is ex-
act, see Sec. III C. In Fig. 3 the C, (r) PIMC data points
for p = 0.1 fall nicely on the analytical curve demon-
strating that the asymptotic Trotter limit is reached with
T*P —40; please note that the statistical effort is not
high enough to extract smooth C (~) curves from the
simulation since these functions are related to the num-
ber of kinks along the imaginary time axis. In the fol-
lowing we will no longer distinguish between the averages
of the estimators and the observables, assuming that P
is large enough to assure the proper convergence of the
Trotter decompositions.

Since the spin-spin coupling constant KP stiffens with
increasing P for fixed P, care has to be taken in the al-
gorithm to allow for eKcient MC dynamics in the spin
space even at low temperatures. We solved this problem
by performing a whole cascade of local and global spin
moves after the usual displacement of a randomly cho-
sen particle in 2D Cartesian space. Each cascade con-
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C. Analytical methods

Mainly to check the PIMC results, we also performed
MF calculations of the model, which are shown as dotted
lines in some of the presented graphs as a function of
density. The Hamiltonian of the MF version of our model
is defined as in 3D (Ref. 19) and reads for 2D coordinates

N
~N ) +i

MF
i=1

I I I I I I I I I l I I I I I I I I I I I I I I I I I I I I t I I I I I I I I I I I I I I I I I

0-:—

0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Imaginary time correlation functions C" = C /N
as a function of w. Pull lines, low-density expansions. Circles,
PIMC results for C,"; squares, PIMC results for C". (N =
200, up/J = 4, J = 1, T*P 40, T* = 0.5, P* = 0.1.) No
error bars are shown.

sisted of the following sequence of four steps for all state
points, fiipping: (i) one single spin 8, &, (ii) a whole chain,
(iii) half of a chain, and (iv) a chain-segment where spin,
particle, starting time slice, and length of the segment
were chosen randomly. We eall these four steps (together
with the particle move in 2D) one MC step (MCS) per
particle. With this setup we observed unexpectedly fast
relaxation times at all the state points in the phase di-
agram presented in this paper. No more than 150000
MCS were necessary at any state point, whereas in sim-
ilar MC simulationsss of a classical Lennard-Jones fiuid
in 2D with 256 or 576 particles, more than 500000 MCS
were needed in the coexistence region to build up the
equilibrium two-peak structure of the density distribu-
tion, and 1 000 000 MCS had been used for thermaliza-
tion starting from a square lattice. The very thorough
study of the same fluid by Bruce and Wilding~ calls for
even longer equilibrations and simulations very near the
critical point, with on the average 400 particles. Our
equilibration time of —25000 MCS was estimated to be
sufBcient by monitoring the temporal behavior of the to-
tal energy and density cumulants.

Using standard Monte Carlo techniques, we com-
puted expectation values of internal and interaction ener-
gies, magnetization, and susceptibility. The heat capac-
ity is calculated directly from the energy estimator fluctu-
ations supplemented with the correct excess term [due to
the temperature dependence of the effective Hamiltonian
in (19)] using the formulas presented, as discussed in Ref.
46. The main point is the detailed study of the density
distribution functions Pl, (p) with which to determine the
coexistence boundaries, as well as the compressibilities
K~~~ via scaling. The second-order magnetic transition
is determined only roughly by considering the cusp in the
susceptibility for the given system size. Even with this
simplification, more than 400 CPU hours on a CRAY-
YMP were necessary to obtain the results presented in
this communication; a typical run with 100000 MCS took
about 4 h CPU time.

where the interaction between the internal degrees of
freedom of two particles (Jp/N)o, 'o' is now distance in-

dependent. Following Stratt, the value of the averaged
coupling constant Jp is chosen to be

Jp = p dr J(r)g(r) (34)

with the two-point correlation function g(r). In the 2D
case under consideration here, we have to approximate
the true g(r) and thus take for the homogeneous fiuid
system the Percus-Yeviek (PY) approximation for hard
disks. P We do not present further details of the MF the-
ory such as, e.g. , the corresponding free energy, but refer
the reader to Ref. 19.

Paramagnetic behavior is obtained only as long as P (
P„where P, is given by the solution of

p cp
Mp 2

which results from the self-consistency equation for the
magnetization. No transition to a ferromagnetic phase
takes Place if Jp & 4fp/2, whereas for Jp ) cup/2 and P )
P, a ferromagnetic phase exists. Contrary to classical
PY hard disks, the free energy in our MF model is not
a convex function of the density for all P. By taking
the convex envelope of the free energy, this implies an
additional first-order transition at low temperatures, i.e.,
liquid-gas coexistence in 2D.

The MF calculations were very useful in determining
the choice of the quantum parameter ~p/ J in order to set-
tle the expensive PIMC simulations in the genuine quan-
tum region. In Fig. 4 we show the MF phase diagram
for three choices of wp/J. This comparison prompted us
to fix (AJQ/ J = 4 for the extensive numerical study. As
is well known, strong statistical fluctuations in 2D lead
to considerable deviations from MF theory in all systems
with short range forces, and thus Fig. 4 can only provide
a qualitative picture.

As already mentioned, a virial expansion served us as a
check of the simulation for very low densities. The anal-

ogy between the 3D and 2D cases is even closer than for
the MF theory, so that we do not present any details but
refer to Ref. 19. We used the imaginary time correlation
functions obtained from a second-order low-density ex-
pansion and compared for very low densities (where the
expansion is asymptotically exact) to these correlation
functions obtained from PIMC, see Fig. 3 and Sec. III B.
Concerning the quantum nature of the fluid at low den-
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FIG. 4. Mean-field phase diagram (J = 1). Dotted line,

up/ J = 0; full line, wp/ J = 4; dashed line, wp/ J = 6.

sities, the advantage of the virial expansion is that it is
exact to all orders, which means that we can check low-
density PIMC data for their Trotter convergence.

IV. RESULTS AND DISCUSSION

phases, it turned out to be indispensable to perform two
simulations, one close to the gas and the other close to the
liquid side, to obtain reliable results for the coexistence
densities near the tricritical point. Naturally there crops
up the problem of metastability if the quench density is
located in between the spinodal and binodal lines. Out
of this region, the system evolves via heterophase fiuctu-
ations, i.e. , droplet formation is necessary. In case that
no critical droplet is built up (which is a slow process in
simulation) one can be misled to believe that the parame-
ters have settled the system in a stable one-phase region.
If the system is quenched out of a state in the instability
region in the phase diagram, the relaxation to the equi-
librium distribution occurs with homophase fiuctuations,
i.e., small amplitude and long wavelength instabilites, via
"uphill diffusion, " to the equilibrium composition. The
consequence for the simulation is to check configurations
and the temporal behavior of the Pg peak maxima, to
make sure that the system is really phase separated if
the quench density is situated near a coexistence density.

In the fluid phase, see Fig. 5(a), the major influence of
the system size is to alter the width of the Gaussian and
thus the effective compressibility K&+) To de.monstrate

A. Density distributions and coxnpressibilities 2.0--

The very essential data of the present investigation are
the density distribution functions PI, for different length
scales. In Fig. 5 we present such raw data for two tem-
peratures and the five difFerent length scales we used; the
lines are linear connections of the simulation data. One
can clearly distinguish the supertricritical region in (a)
where the density distribution shows the expected uni-
modal behavior and the coexistence region in (b) with the
bimodal PL, . At lowest (highest) temperatures, the shape
of the distribution can be well approximated with two
(one) Gaussians centered at the liquid and gas (overall)
densities, as suggested by relation (7) [(5)]. As expected,
the regime around the tricritical point is distinctly non-
Gaussian due to large interfacial contributions. These
effects are size dependent as clearly seen in Fig. 5(b): the
peaks become better separated on large subsystem sizes
(Ms small), and the features of the distribution vanish
with decreasing block length. This behavior of the or-
der parameter distribution function is characateristic4s
for first order transitio-ns, whereas for second-order tran-
sitions, one peak is built up at the expense of the other
for increasing system size. Note that the positions of the
peak maxima, corresponding to the gas and liquid coexis-
tence densities, are nearly size independent not too close
to the tricritical point; the widths of the peaks however
are strongly dependent on Mb

In order to extract the gas (liquid) coexistence density
in the case of bimodal distribution, we Btted only the low-

(high-) density wing of PL, up to the maximum by a sin-
gle Gaussian on the five length scales shown in Fig. 5. In
view of the irregular dependence of the extrema on L, we
simply took the mean value to estimate the coexistence
densities. Despite the fact that in principle one simula-
tion run is sufflcient to extract data on both coexisting
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FIG. 5. Normalized block density distributions Il. as a
function of p*/p" for different subsystem sizes Mq = (4, cir-
cles; 5, diamonds; 6, triangles; 7, stars; 8, crosses). (up/ J =
4, J = 1, N = 200, T"P 40.) (a) Supertricritical region at
T* = 0.7 and p* = 0.45. (b) Subtricritical region at T* = 0.4
and p* = 0.45. Connecting lines are for visual help only.
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zero in the magnetically ordered phase. This coupling
between density correlations and spin correlations is not
predicted by MF theory. In Fig. 8(b) we show the slowly
decreasing compressibility with increasing temperature
at the fixed density p = 0.55. Of course, with a total
number of 200 particles and much smaller particle num-
bers in our subsystems, we cannot make a real attempt
to see the critical divergence of the compressibility as T
approaches the tricritical point.

B. Phase transitions and phase diagram

In Fig. 9(a) we present the magnetization as a func-
tion of the density at the fixed temperature T* = 1.0; we
measure the magnetization in the z direction, see (28).
This behavior is typica142 4s for a second order -magnetic
transition from a paramagnetic to a ferromagnetic phase
(which is in our ease a fluid phase) at higher densities.
By increasing the density, the particles only start to ef-
fectively feel the distance dependent spin-spin coupling
oc J(r,~)cr,'o' at densities exceeding a temperature de-
pendent threshold. The decay of the magnetization with
increasing thermal fluctuations can be seen in Fig. 9(b)
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FIG. 9. Magnetization M* = M/N in the Quid phase
(uo/ J = 4, J = 1). Dotted line, MF prediction; circles, PIMC
results. (N = 200, T*P 40.) (a) As a function of p* for
T* = 1.0. (b) As a function of T* for p* = 0.55. Error bars
are smaller than the size of the symbols.

for fixed p = 0.55. The physical picture is that the
molecules acquire a dipole moment due to the interactions
with other molecules as a cooperative egj'ect. A similar
coupling of the density to an internal (magnetic) state is
experimentally observed in Oz layers on graphite. i2 is

The trend seen in the magnetization is also manifest in
the imaginary time correlation functions for low densities
in Fig. 3. Along the z axis, the correlations decay rapidly
for T* = 0.5, indicating that the short range J coupling,
aligning the spins in the z direction, is not eKcient at
that temperature; the correlations along the x axis are
much stronger. With decreasing temperature, i.e., with
increasing relative strength PJ of the spin-spin interac-
tion, the correlation along the imaginary z direction in-
creases. The buildup of z magnetization is a consequence
of liRing the particles out of their internal o. ground
state into a hybrid state by mixing with IT' eigenstates.
Thus the magnetic phase transition is the product of the
competition of internal and collective properties in this
many-body quantum system. Very roughly, the critical
density p, (T) where long range magnetic order appears
can be estimated from the inflection point of the curve in
Fig. 9(a) as p, (T* = 1.0) 0.56 + 0.01. Again a small
shift of this estimate due to finite-size effects is possible,
One could try to refine such estimates by a subsystem
analysis of the magnetization, as discussed at the end of
Sec. III A, but with 200 particles only; we did not expect
much more accuracy and thus did not undertake any at-
tempts along these lines.

The heat capacity is also sensitive to the transition in
the internal quantum states as illustrated in Fig. 10, in

(a) as a function of the density for T* = 1.0 and in (b)
for fixed p = 0.55; for experimental magnetocaloric ef-
fects of Oz on graphite see Refs. 12 and 13. The scatter
in the PIMC data is quite large, which has to do with
the peculiar way this quantity has to be calculated using
(25); further technical details are presented in Ref. 46.
The peak in (a) separates the paramagnetic fluid with
large energy fluctuations and correspondingly high heat
capacity from the ferromagnetic fluid, where energy fluc-
tuations are suppressed by the additional ordering effect
in the internal degrees of freedom; a similar trend was
already observed in the compressibility. From the uni-
versality principle, one might expect that this transition
should fall in the same class as the 2D Ising model, and
then the heat capacity should have a logarithmic diver-
gence as N ~ oo. In this spirit, the peak in Fig. 10(a)
could be interpreted as the finite-size rounding of this sin-
gularity. At T* = 1.0, the heat capacity of the ferromag-
netic fluid vanishes asymptotically for large p, whereas
the paramagnetic fluid has a nonzero, nearly constant
heat capacity; please remember that we do not include
the classical translational part of the heat capacity in
our definition. Again the PIMC results in Fig. 10(a) are
in good agreement with MF predictions far away from
phase transitions. In part (b) of this figure, the behavior
of the heat capacity with increasing temperature can be
followed. Again we see the signature of the second-order
magnetic transition as a damped kink around T* —1.2.

The isothermal magnetic susceptibility is presented in
Fig. 11 as a function of temperature for p = 0.55. A
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crude estimate for the critical line of the magnetic tran-
sition can be obtained by taking the maximum of the sus-
ceptibility in the finite system. By scanning the density
at T* = 1.0 we obtain p —0.53+0.01. The small difFer-
ence with the above estimate from the inflection point of
the magnetization reflects the 6nite-size effects: shifts of
the critical point due to finite size are obviously rather
small in our case. A more careful finite-size analysis of
the magnetic transition, as discussed in Sec. III A, did not
seem warranted in view of the required computer time.
That is the way we determined the whole critical line,
starting from the tricritical point and up to T* = 2.0.
As shown by very recent density functional calculationssi
on the same model, this critical line bends over at high
temperatures to hit the fluid-solid coexistence region.

The liquid-gas coexistence boundaries were determined
using the peak maxima of the density distributions as de-
scribed in the previous section. The resulting phase di-
agram, the central highlight of this investigation, is pre-
sented in Fig. 12 together with the corresponding MF
prediction. For temperatures above the tricritical point,
there is only a fluid phase. However, the fluid may be
paramagnetic or ferromagnetic, dependent on the den-
sity. Upon lowering the temperature, a gas phase can
coexist with a liquid phase in a certain density window.
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FIG. 11. Isothermal magnetic susceptibility g* = y/PN
as a function of T* for p* = 0.55 in the fluid phase (up/J =
4, J = 1). Circles, PIMC results. (N = 200, T P = 40.)

Since the preferred internal state at high (low) density is
the (non-) magnetized fluid, these attributes are carried
over to the coexisting phases: a paramagnetic gas coex-
ists with a ferromagnetic liquid resulting in a tricritical
point.

The qualitative dependence of the location of the tri-
critical point on the "quantum strength parameter" uo/ J
can be inferred from Fig. 4. One clearly sees that the
phase diagram does not change qualitatively with in-
creasing quantum character of the interactions. In gen-
eral the only effect consists in a shift of transition tem-
peratures and densities towards lower temperatures and
higher densities; this is also true for the square lattice
solid boundaries, see Ref. 51. Such a behavior is expected
for a wide class of adsorbates, as, e.g. , for orientational
transitions of linear molecules on graphite. ii ss In such
a case of rotational motion, the moment of inertia (or the
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FIG. 10. Heat capacity C„" = C„/N in the fluid phase
(~p/ J = 4, J = 1). Dotted line, MF prediction; circles, PIMC
results. (N = 200, T*P = 40.) (a) As a function of p* for
T* = 1.0. (b) As a function of T* for p* = 0.55.

FIG. 12. Phase diagram (up/ j= 4, J = 1). Dotted lines,
MF prediction; circles, PIMC results (N = 200, T*P 40).
Error bars are shown only when they exceed the size of the
symbols. We believe that systematic errors do not exceed the
size of statistical errors, except possibly in the close vicinity
of the tricritical point. For further details see the text.
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rotational constant) can serve as the quantum strength
parameter of the problem. In the low-temperature limit,
only the two lowest rotational states are occupied. This
situation may be modeled using a kind of "few-level"
approximation similarly to the present study, which
immediately leads to the identification of uo with the
level splitting (given by the rotational constant of the
molecule) of the two lowest energy levels; the degeneracy
of the excited levels has be considered. With increasing
level splitting, quantum fluctuations become more im-
portant and drive the transitions (with other parameters
kept fixed) to lower temperatures. As qualitatively ev-
ident in Fig. 4, our simplified model Hamiltonian also
shows these features. We determined the phase bound-
aries shifted due to quantum effects over a wide density
range quantitatively for a given quantum strength, see
Fig. 12.

Comparison of the phase diagram with the same
Hamiltonian in three dimensions (3D), which is known
mainly due to extensive analytical investigations, is is in-
structive. The Hamiltonian reveals the same topology
of the phase diagram in 2D and 3D, i.e. , a fluid phase,
which can occur in a para- and a ferromagnetic internal
structure, and paramagnetic gas and ferromagnetic liquid
phases. The only eKect of the decrease in the dimension-
ality is to shift the tricritical point towards lower temper-
atures and higher densities due to the larger fluctuations
in 2D. Thus, all the phases "survive" upon lowering the
dimensionality of the Hamiltonian, which is a nontrivial
result. This means that the present model can be ex-
ploited, as shown in this investigation, to study general
behavior of adsorbed layerszz of molecules with internal
quantum states. A wealth of experimental data5 support
the occurrence of similar phases in 2D physisorbed films
as in the corresponding 3D bulk phases; however, solid
phases in 3D are often replaced by registered phases in
2D. Thus incorporating an underlying corrugation po-
tential acting on the classical coordinates (r,) would be
another interesting step towards the investigation of re-
alistic systems based on the present Hamiltonian.

At this point, we want to stress that in the MF approx-
imation, the spin correlations are factorized by hand
and their feedback effect on the fluid structure is ne-
glected. This is the reason why no signature of the mag-
netic transition is seen in the MF result for the compress-
ibility (Fig. 8). In 2D phase transitions there are always
much stronger thermal fluctuations than in 3D, and
nontrivial correlations arise. Consequently, the MF ap-
proximation is accurate far from transitions only and the
transition point cannot be estimated reliably by construc-
tion. In addition, it contains MF tricritical exponents
which are correct in 3D (apart from logarithmic correc-
tions to power laws), while rather difFerent exponentss2
occur in 2D. As a result of these approximations, the MF
tricritical temperature is oK by a factor of 2 as compared
to PIMC in 2D. In 3D, there are too few PIMC data
to judge how well the MF approximation does. But it is
clear from the comparison of the performance of the MF
approximation in 2D and 3D on quantities like magneti-
zation or susceptibility, that the MF theory is much more
accurate in 3D as expected. In the case of adsorbed lay-

ers of molecules, we do not think that MF calculations
can serve as a quantitative comparison to experimental
transition temperatures, even using realistic Hamiltoni-
ans.

But it should not be overseen that the MF predic-
tions are a valuable tool with which to predict the gen-
eral topology of phase diagrams even in 2D. Also in the
present study, the MF calculation provides a qualitatively
correct phase diagram; but this is not necessarily the case
for repulsive forces of longer range, see Ref. 22. They
serve in addition as an independent test of the PIMC
results in certain limits. For quantities such as magneti-
zation [Fig. 9(a)] and the response function susceptibility,
heat capacity [Fig. 10(a)] and compressibility [Fig. 8(a)],
we found close agreement between PIMC and MF in re-
gions were the MF theory is supposed to work quantita-
tively, i.e., far away from any phase transitions.

C. Tricritical and triple point

An estimate of the tricritical temperature and den-
sity can be gained from the phase diagram, but we are
also able to locate the tricritical point using properties
of the density cumulants. In general, e.g. , for a classical
Lennard-Jones fluid, the critical density is unknown and
has to be determined simultaneously '3 '3 together
with the temperature; in lattice gas models with pair in-
teractions, the critical density is known by symmetry. 22

In our model, however, the tricritical density can be ob-
tained by lowering the temperature and following the
critical line until it merges into the gas-liquid coexistence
curve. We estimated the tricritical point to be located at
p~„= 0.45 + 0.01. Now we are in the position to perform
a temperature scan at p~„and to record Ul, (T*,P~„.) as
done in Fig. 13(a). The block sizes corresponding to Mb( 4 and Mb ) 8 do not satisfy the introduced consistency
requirement ( (( L (( S on L and are not used for eval-
uation. At first sight, one can see in (a) the clustering of
the cumulants on all length scales L at T„;= 0.6. Above
this temperature, the cumulants vanish asymptotically
with increasing subsystem size, as expected from relation
(10). In the blowup Fig. 13(b) it seems that we can lo-
cate the tricritical temperature by fitting the cumulants
yielding a tricritical temperature of T„, = 0.57 + 0.02;
please note that the small system size does not allow a
final conclusion concerning a universal fixed point of U.
Upon lowering the temperature, the cumulants increase
rapidly to reach a maximum value, and then fall oK again.

It is instructive to follow the "flow of the cumulants"
along the 1/L axis depending on the temperature with
fixed tricritical density in Fig. 14. As seen by following
the (least-squares-) fitted linear curves in the graph, the
cumulants are approximately independent of the length
scale around a temperature T~"„, whereas they seem to
have a block dependence above and below this tem-
perature. This behavior is well known for Ising lattice
models and has been verified to a much higher accu-
racy. However, with only five different (and rather small)
block sizes, a definite answer concerning the systematic
L dependence of the cumulants in the vicinity of the tri-
critical point in this fluid system cannot be given. Of
course, experiencea supports that one should carefully
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ties including triple points, without having the problem
of possibly biasing the lattice structure by the bound-
ary conditions. Note that in the Gibbs ensemble ' the
study of coexistences including solid phases is hampered
by the particle insertion problem. s4

The order parameter C as defined in (8) is shown as
a function of the temperature in Fig. 16. The circles are
data points where both coexisting densities are available.
For the few data marked with diamonds, no gas den-
sity was determined at the corresponding temperature,
and we just interpolated linearly between the neighbor-
ing gas densities; a quick inspection of the phase diagram
in Fig. 12 justifies this treatment in the respective tem-
perature range. In the same figure, we indicate with a
dashed (dotted) line the tricritical (triple) temperature
as already determined. One can see the continuously van
ishing order parameter clearly upon approaching the tri-
critical temperature from below, as well as the jump in
CI at the triple temperature. Above T* = 0.56 we could
no longer resolve any density differences.

As presented in Sec. III A, the density cumulants can
also be used to locate the triple point. Inspection of our
data clearly shows the statistics far from being sufficient
for this purpose; and disorder averages over many realiza-
tions of the partly frozen system are probably necessary.
However, the general trend is verified by the simulation.
These observations may be useful in simulations of phase
transitions of adsorbates involving coexistence of regis-
tered and nonregistered phases with different densities.
In our 2D phase diagram we have an additional prob-
lem in that the coexistence curve is rather flat due to
the exponent of the order parameter. This leads to a
narrow region in the Ur, (T*,p~„) diagram Fig. 13, where
the cumulants have to decay from a maximum value and
then even change the sign of their curvature around the
triple temperature. The Lennard-Jones fluid in 3D has
a much larger temperature range ' where gas and liq-
uid coexist, as compared to the same model in 2D; and
the cumulant method approach to the gas-solid coexis-
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FIG. 16. Order parameter C* = CR as a function of
T". (N = 200, ceo/J = 4, J = 1, T*P —40.) Dashed line,
tricritical temperature; dotted line, triple temperature; circles
are obtained using directly the definition of C, diamonds as
discussed in the text. No error bars are shown.

tence line and the triple point could be useful for directly
estimating these quantities from simulation.

A very recent density functional calculation of freezing
in our system supports the occurrence of a thermody-
namicalty stable square lattice solid phase at low tem-
peratures, and the corresponding triple temperature of
T,"„ i, = 0.1 is in reasonable agreement with the PIMC
simulation; please note that this density functional ap-
proach is based on a perturbation expansion for the solid
phase starting from the liquid. This supports our con-
clusion that we observe no artifact of the simulation or
metastable states. M However, the density functional the-
ory predicts (using values for the parameters as in the
PIMC simulation) a gas-hexagonat solid transition in be-
tween the gas-liquid and gss-square solid transitions, and
thus two triple points associated with each of these co-
existences. Since the MF tricritical temperature is off by
a factor of 2, but is very sensitive to the actual value
of the quantum parameter uo/J, see Fig. 4, one can
squeeze the gas-hexagonal solid phase to lower tempera-
tures by choosing an effective quantum parameter, which
at the same time brings the MF tricritical point into bet-
ter agreement with the PIMC data. On the other hand,
we cannot strictly rule out the possibility that we also ac-
tually have a gas-hexagonal solid coexistence in the sim-
ulation, which was simply not monitored. Since a careful
examination of this point is very intricate, we must leave
this question open for the time being and leave it for
future study.

V. SUMMARY, CONCLUSIONS, AND OUTLOOK

The present investigation shows that ideas familiar
from the computer simulation study of phase transitions
and critical phenomena, such as subblock analysis and
the finite-size scaling recently generalized from classical
lattice models to fluids, can be carried over to flu-
ids with internal quantum states as well. Using a simple
model for molecules adsorbed on a substrate, we have
demonstrated that such a program can indeed be car-
ried out explicitly. In many respects, this study cannot
be as sophisticated as that of the classical fluids, which
in turn is already considerably more demanding in com-
putational resources and data analysis than the lattice
gas case. We do feel, however, that the methods devel-
oped in the present paper are a useful approach with
which to study phase coexistence in fluids and adsor-
bates, including the vicinity of the critical point. As in
the case of the lattice gas model, rather small subsystems
of medium-size total systems can yield good estimates of
the densities of coexisting phases. Note that a single, but
statistically strong, simulation run yields information on
both coexisting phases, simultaneously on many subsys-
tem sizes and already allows some estimation of finite-
size effects. Without these features, it would be out of
range to map a phase diagram as the one presented here
with such an accuracy. A meaningful study of properties
such as critical exponents and amplitudes still seems to
be out of range, at least for fluids with quantum degrees
of freedom.

More precisely, in the present investigation we mapped
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with satisfactory accuracy the phase diagram of a two-
dimensional hard core fluid with internal quantum states
represented as interacting two-level systems. To do so,
we used a combination of path-integral Monte Carlo sim-
ulations and finite-size block analysis techniques. We can
supply reliable estimates for central quantities of interest
such as the tricritical and triple point and the binodal line
of the coexisting phases. This allows one to determine
shifts of the phase boundaries due to quantum fluctua-
tions and thus to quantify the influence of quantum ef-
fects for a particular model system. The compressibilities
extrapolated to the infinite system can also be obtained,
though larger systems than studied here are clearly re-
quired if the compressibilities of the coexisting phases are
of interest. In addition to the interesting phase diagram
and fluctuations, we found a square lattice solid phase in
coexistence with a gas phase at low temperatures. We
also discussed an extension of the density block analysis
method, which up to now has been used to determine the
gas-liquid properties, to the location of gas-solid coexis-
tence densities and thus triple points.

The issue raised by the occurrence of the gas-hexagonal
solid coexistence remains open at the moment, and ap-
propriately defined order parameters (e.g. , monitoring
bond orientational orderM or Voronoi constructionsss)
to distinguish the difFerent solid phases have to be
evaluated. Still more challenging and at the same
time more realistic would be to look carefully at this
special point with an underlying corrugation potential
modeling the substrate. This would also allow one
to study commensurate-incommensurate competitive ef-

fects in conjunction with the influence of the internal
quantum structure. We feel that such a very interesting
investigation should be done in a diff'erent ensemble than
the canonical one, and can be done only if considerable
computational resources are supplied. As a next step in
our aim to understand better the phase transitions of 2D
adsorbed layers with internal quantum states, we plan to
study the present or a similar Hamiltonian in the Gibbs
ensemble. 57 In addition, we follow another route to incor-
porate continuous internal quantum degrees of freedom
such as rotations ' instead of the two-level approxima-
tion and to use more realistic potentials. It is hoped that
the resulting Hamiltonians can be studied with similar
techniques like the ones developed in the present paper,
allowing one to quantitatively determine the quantum
shifts of phase transitions. In view of the large devi-
ations of the mean-field results from simulation in two
dimensions, we feel that the techniques presented here
will have a widespread application also in the investiga-
tion of cooperative phenomena in more general adsorbate
models.
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