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Modulated structures in the Ising model with competing interactions on the Cayley tree
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We introduce two analogs of the axial next-nearest-neighbor Ising (ANNNI) model on a Cayley tree.
Besides the competing interactions along the branches of the tree, we include a set of pair interactions on
the same generation to mimic the ferromagnetic layers of the ANNNI model. In the infinite-
coordination limit, the statistical problem is formulated as a discrete, nonlinear, two-dimensional map.
The phase diagrams display a Lifshitz multicritical point and many sequences of modulated structures
characterized by a principal wave number. At low temperatures, we perform numerical calculations to
show the existence of complete devil's staircases. At higher temperatures, the incommen-
surate structures occupy finite portions of the phase diagrams. We discuss the existence of pinned in-
commensurate phases. Also, we calculate the Lyapunov exponents of the map to show the presence of
chaotic structures, associated with a strange attractor. The main modulated phase of the long-range
model under consideration displays a transition between characteristic structures at low and high tem-
peratures.

I. INTRODUCTION

The axial next-nearest-neighbor Ising (ANNNI) model
is an Ising spin system on a cubic lattice, with ferromag-
netic ( Jo )0) interactions between nearest neighbors on
the x-y planes and competing ferromagnetic (J, )0) and
antiferromagnetic (J2 & 0) interactions between first and
second neighbors along the z direction. ' In terms of
the temperature T and the parameter p = —J2/J&, the
phase diagram of the ANNNI model displays many com-
plex features, including a variety of modulated structures
and some multicritical points, which have attracted the
attention of several investigators.

Some sophisticated techniques, such as high-
temperature and low-temperature series expansions,
and Monte Carlo simulations, ' have essentially confirmed
the mean-field picture of the phase diagram of the
ANNNI model. The minimization of a layer-by-layer
mean-field free energy gives the set of equations ' '

m = tanh[4PJom +PJ&(m . &+m +&)

+pJz(mj 2+m +2)],

for j=1,2, . . . , N, where P=(ksT) ', and m. is the
mean-field magnetization per spin on the jth x-y layer of
the lattice. At high temperatures a Fourier analysis of
this set of equations yields the paramagnetic lines and lo-
cation of a Lifshitz point. Along the second-order
paramagnetic-modulated border, there is a smoothly
varying critical wave number (which vanishes at the
Lifshitz point). At lower temperatures, however, inside
the more interesting region of modulated structures,
these equations are no longer amenable to analytical
treatments. We then perform a truncation and resort to

mj =tanh —mj i
——mj

p
t ' t

(1.2)

where t =(PzJ& ) ', p = —(z Jz)l(zJ& ), and m. is an
effective magnetization per spin associated with the jth
generation of the tree. Given the boundary conditions

numerical techniques to find the set of solutions that min-
imize the free energy. ' lt is not difficult to obtain the
main commensurate phases (which are characterized by a
principal wave number). However, it becomes disap-
pointingly difficult to investigate some details of the
phase diagrams, such as the existence of a succession of
modulated structures and the dimensionality of the
devil s staircases associated with the graphs of the princi-
pal wave number as a function of T and p. It should be
noted that the fourth-order mean-Geld difference equa-
tions can be written as a four-dimensional area-
preserving map. " This connection with dynamical sys-
tems, however, also leads to a quite difficult numerical
problem. The stable orbits of this map are usually unsta-
ble solutions of the thermodynamic problem.

Some analogs of the ANNNI model on a Cayley tree,
although associated with much simpler mathematical
problems, have been shown to display phase diagrams as
rich and complex as their counterparts on a Bravais lat-
tice. ' ' For example, Yokoi, de Oliveira, and Salinas'
considered the infinite-coordination limit of an Ising
model on a Cayley tree with competing ferromagnetic
(J, )0) and antiferromagnetic (J2 & 0) interactions be-
tween first and second neighbors, restricted to the radial
direction, along the branches of the tree. For a tree of
coordination z, in the infinite-coordination limit z~ ~,
J& ~0 J2 0, with zJ, and z J2 fixed, this basic problem
can be formulated in terms of the recursion relations
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(which are usually taken as m& =m2=1), the attractors
of the map correspond to solutions on the Bethe lattice,
deep inside the Cayley tree. As this two-dimensional
Inap is nonconservative, it becomes relatively easy to per-
form detailed numerical calculations to study many
subtleties of the phase diagram. '

In the present paper, we introduce two analogs of the
ANNNI model on a Cayley tree. In addition to the com-
peting interactions along the branches of the tree, which
are already present in the basic model, we consider a
selected number of ferromagnetic (Jo & 0) interactions be-
tween pairs of spins belonging to the same generation and
associated with a common ancestor along the tree. With
a convenient choice of the interactions, which are meant
to mimic the ferromagnetic x-y planes of the ANNNI
model on the cubic lattice, the problem can still be for-
mulated as a nonlinear discrete map. In the short-range
(SR) model, we choose short-range ferromagnetic interac-
tions along a chain of spins. In the infinite-coordination
limit, the map is two dimensional, and the results are not
far from the findings for the basic model. The long-range
(LR) model includes ferromagnetic interactions of equal
strength between all pairs of spins. These models are
identical for a tree of coordination z =3. As the coordi-
nation increases, however, they become quite distinct. In
the infinite-coordination limit, the discrete nonlinear map
associated with the LR model is still two dimensional,
but much harder to analyze.

The layout of this paper is as follows: In Sec. II we
define the analogs of the ANNNI model on a Cayley tree
of coordination z. The solutions of this general problem
are written as a discrete nonlinear map (which becomes
two dimensional, and quite simple, in the infinite-
coordination limit). Some analytical results for the tp-
phase diagrams are obtained in Sec. III. In particular, we
obtain expressions for the second-order paramagnetic
lines and the location of the Lifshitz multicritical point.
In Sec. IV we present some numerical calculations for the
two-dimensional map associated with the SR model. We
show the existence of complete devil's staircases at low
temperatures. At higher temperatures we present numer-
ical evidence to suggest that the incommensurate struc-
tures occupy finite portions of the t-p phase diagram.
Also, for a certain range of the parameters, we show the
existence of chaotic structures associated with a strange
attractor of the map. In Sec. V we present some numeri-
cal calculations for the LR model. The qualitative results
are not far from the SR model in the limit of infinite
coordination. A more detailed analysis of the —,

' corn-
mensurate phase indicates some structural changes with
temperature in close connection with recent findings for
the ANN NI model. Finally, some conclusions are
presented in Sec. VI.

II. FORMULATION OF THE PROBLEM

FIG. 1. Three generations of a Cayjey tree of coordination
z =4. The parameters J& and J2 indicate some interactions be-
tween first and second neighbors along the branches of the tree.

&=—g J;)S;SJ—h Q S;, (2.1) .

Z =Tr exp( —P&), (2.2)

where the trace is a sum over spin configurations. Taking
advantage of the structure of the tree, we can perform
separate sums over spins belonging to successive genera-
tions. ' Considering Fig. 2, we can write the partial trace

f($&,S& ) = g exp (K&$&+K2$&+XI) g S,
I s,. I i=1

where h is an external field, the first sum is over pairs of
sites of the tree, and 5; =+ I for all values of i. In this pa-
per we consider ferromagnetic interactions (J, &0) be-
tween first neighbors and antiferromagnetic interactions
(J2 (0) between second neighbors, along the branches of
the tree, in the radial direction (as indicated in Fig. 1).
To simulate the in-plane interactions of the ANNNI
model, we also consider ferromagnetic couplings (Jo &0)
between spins belonging to groups of sites of the same
generation connected to a common ancestor site of the
tree. We study two types of models: (i) the SR model,
with nearest-neighbor Jo ferromagnetic interactions, as
illustrated in Fig. 2(a): (ii) the LR model, with long-range
Jo ferromagnetic interactions between spins on all sites
belonging to the same generation and connected to a
common ancestor, as illustrated in Fig 2(b). .

The partition function of these Ising models is given by

+Ko QS;S) -, (2.3)
A Cayley tree is a cycle-free structure as shown in Fig.

1 for coordination z =4. The dashed lines indicate the
successive generations of this tree. The Ising madel on
the Cayley tree is given by the Hamiltonian

where Ko=pJO, K, =pJ„Kz=pJ2, and H=ph. The
sum over the sites i,j depends on the particular model
(SR or LR) under consideration. This function can also
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and

Y =K&+W(Y
& K2 X

& Ko) (2.6b)

where X„ is the effective field associated with the nth gen-
eration and Y„ is the efFective interaction between spins
belonging to generations n and n +1.

Equations (2.6a) and (2.6b) are a three-dimensional
nonlinear map. In the limit of infinite coordination
z —+ ~, J,~0, J2 —+0, with zJ& and z J2 fixed, this map
is considerably simplified. To take this limit, let us ex-
pand lnf (S~,S~ ) in powers of K, and Kz,

(b)

lnf (Sz,Sz ) = info+(K&Sz +K2S& )(z —1)m

+O(K, ,K~ ), (2.7)

AS

where fo is the function f(S„,S~) for K, =K2=0 and
(z —1)m ="dfoldH, where I =m(H) is an eff'ective mag-
netization per spin on a generation of the tree. Inserting
this expansion into Eqs. (2.5), in the infinite-coordination
limit, we obtain U=zK, m, V=zÃ2m, and 8'=0. As 8'
vanishes, the problem is reduced to the two-dimensional
map

X„=H+zK, m(X„&)+z K2m(X„z) . (2.8)

FIG. 2. (a) Spin interactions in the SR model on a tree of
coordination z =5. The ferromagnetic Jo interactions are along
a chain of spins belonging to the same generation and with the
common ancestor S&. (b) Ferromagnetic Jo interactions in the
LR model.

Introducing the dimensionless parameters

k, T
zJi

z J
zJ)

(2.9a)

(2.9b)

be written as

f(S~,S~ ) =C exp I US„+VS~ + WS„S~I,
where

C =f(1,1)j'(1,—1)f(—1, 1)f(—1, —1),
1 I(1,1)I(1,—1)
4 f( —1, 1)f( —1, —1)

1 f (1,1)f(—1, 1)V= V(K„K2,H, KO) = ln

(2.4)

(2.5a)

(2.5b)

and

b= h

zJi
(2.9c)

we can rewrite Eq. (2.8) in the simpler form

X„=—Im(X„, )
—pm(X„2)+b I .

1
(2.10)

The effective magnetization per spin associated with the
nth generation, m„=g(X„), is an odd function of the
effective field X„. Also, as it is bounded between —1 and
+ 1, it is convenient to write the map in the form

(2.5c)
m„=g —m

&

——m 2+—1 p b
(2.11)

W=WK K HK =—'1
4 f( —1, 1)f(1,—1)

(2.5d)

There are two efFective fields associated with spins Sz
and Sz and an effective interaction between spins on sites
2 and B. The application of this decimation scheme to
successive generations of the tree yields the recursion re-
lations

From the analysis of the attractors of these recursion
relations, we obtain the phase diagrams of the models.
The particular form of the function g (X) depends on the
special model under consideration. In this paper we re-
strict our analysis to b =0, which corresponds to a physi-
cal situation in the absence of an applied magnetic field.

III. ANALYTICAL RESULTS
FOR THE RECURSION RELATIONS

X„=H+U( Y„ i,K2,X„ i, KO)

+(z —1)V( Y„~,K2,X„2,KO) (2.6a)

In zero field, depending on the parameters of the mod-
el, the recursion relations are associated with the follow-
ing attractors: (i) a trivial paramagnetic fixed point
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m*=0; (ii) a ferromagnetic fixed point m*%0; (iii) a
periodic cycle m„+z =m&, for all n, corresponding to a
commensurate modulated phase with period L; (iv) a
one-dimensional orbit, corresponding to an incommensu-
rate phase. Because of the limitations of the numerical
calculations, however, it is dificult to distinguish an in-
commensurate from the commensurate phases with very
large values of the period L; (v) a strange attractor, with
sensitive dependence on the initial conditions, associated
with the possible existence of a chaotic phase.

In the linear approximation, the recursion relations
can be written as

X*=—(1 —p)m' .
1

(3.5b)

The analysis of the linear stability of the ferromagnetic
fixed point leads to the following conclusions.

(iii) For p &g'(X*)/4t and (1—p) & t/g'(X*), the fer-
romagnetic fixed point is stable with real eigenvalues.

(iv) For p )g'(X')/4t and p & t /g'(X*), the ferromag-
netic fixed point is stable with complex eigenvalues. The
values of m* are determined numerically. However, near
the paramagnetic border, m * is small, and as g (X) is an
odd function, we have the expansions

dm~
=R.

dm„

where the matrix R„ is given by

(3.1)
and

m ' =g'(0)X'+ —,'g"'(0)(X*) +

g'(X*)=g'(0) =
—,'g"'(0)(X') +

(3.6a)

(3.6b)

g (X„) —Eg (X„)
t

0 (3.2)

To analyze the linear stability of the solutions, we consid-
er the eigenvalues of the matrix

N
R =+R„,

n=1
(3.3)

where N=1 for the paramagnetic and ferromagnetic
fixed points and X =L for the cycles of period L,. To in-
vestigate the stability of one-dimensional orbits and
strange attractors, we take the limit X~ ~ . The
Lyapunov numbers are defined as

~gi(~)
~

1 /N (3.4)

where A,
' is the ith eigenvalue of the matrix R . The

periodic cycles are associated with a,. (1 for all i. For
the one-dimensional orbits, one of the Lyapunov numbers
is unity, but the other is smaller. The strange attractors
are characterized by a Lyapunov number larger than uni-
ty.

On the basis of the analysis of the linear stability of the
trivial paramagnetic fixed point m*=0, we come to the
following conclusions.

(i) For p &g'(0)/4t and 1 —p & t/g'(0), the paramag-
netic fixed point is stable, with real eigenvalues.

(ii) For p )g'(0)/4t and p & t /g'(0)„ the paramagnetic
fixed point is stable with complex eigenvalues.

The first conditions are associated with a
paramagnetic-ferromagnetic phase transition. The
second conditions indicate a transition to a modulated
phase. There is also a Lifshitz point, given by p =

—,
' and

t =g'(0)/2.
The ferromagnetic fixed point m "%0 comes from the

solution of the equation

Condition (iii) for the stability of the ferromagnetic fixed
point is then reduced to p &g'(0)/4t and tg'(0) &1—p.
Comparing with the conditions for the stability of the
paramagnetic fixed point, we show the continuous nature
of the paramagnetic-ferromagnetic phase transition.

In the modulated phase, very close to the paramagnetic
region, we can write the recursion relations in the linear
form

=1m„= —g'(0)[m„, —pm„2] . (3.7)

Using the representation

m„= g m exp(iqn), (3.8)

in terms of the wave number q, we see that the
paramagnetic-modulated transition, given by the condi-
tion p=t/g'(0), is also of second order. The critical
wave number, given by the relation cosq, = 1/2p, van-
ishes at the Lifshitz point.

In the basic model studied by Yokoi, de Oliveira, and
Salinas, ' with JD =0, we have g (X)= tanh(X). Our
analytical results agree with the calculations for this
model. Let us then consider the specific cases of the LR
and SR models.

A. SR model

In the Sr model, the short-range JQ)0 interactions
give rise to an Ising chain of spins [see Fig. 2(a)]. In the
infinite-coordination limit, the function g (X) is given by
the usual expression for the magnetization per spin of an
Ising chain:

g(X) = tanh(X) [ exp( —4%0)

+ [1—exp( —4%0)] tanh X] ' . (3.9)

with

m *=g(X*), (3.5a) The two-dimensional map associated with the SR model
is given by

1 p 4r 4r
m = tanh —m ——m exp — + 1 —expn n —1 t n —2 t

tanh —m„$ ——m„
1 p
t " ' t

—1 /2

(3.10)
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where r =J IzJ For p & —, the paramagnetic-
omagnetic transition is given by t exp( —2r It) —

1

p —,
' paramagnetic-modulated transition is given

by t exp( 2r—It ) ==p. The Lifshitz point is located at
~ ~

p =
—,
' with 2t exp( 2r —/t ) =1.

t.O

47

B. LR model

In the LR m
tions be

model, there are long-range J )0 '
interac-

'
ns etween all pairs of spins belonging to the group of

sites on the same generation with th e same ancestor site
'g. ', ». In the infinite-coordinationalong the tree [see Fi . 2(b)]

imit, we take Jp —+0, z —+ ~, with zJp fixed. The func-
ion g ) is then given by the well-known mean-field ex-

pression

0.5

g (X)= tanh(zKO m +X ) .

Thus we have the map

(3.11)
OO

0.5 0.75 i.o

m„= tanh —m„+—m
s 1

t " t n—& mn —2 (3.12)

where s =zJp/zJ&. For p (—'

ferromagnetic transition is given

p )—,
' the paramagnetic-modulated

t =p +s. The Lifshitz condition
t =

—,'+s.

the paramagnetic-
by t =1—p+s. For
transition is given by
becomes p =—' with

2

IV. NUMERICAL CALCULATIONS
FOR THE SR MODEL

Taking advantage of the simple structure of th
given b E .y q. (3.10), we have performed some detailed nu-

e o emap,

merical calculations for the SR d 1 G
~ ~

mo e. iven the initial
conditions (which are usually b ty, u not necessarily, taken
as m, =m 2

= 1) and the parameters t, p and r
lot rap graphs of m„& Xm„2, for n =3,4, 5, . . . . After

discarding some initial data th 6 he ows in these plots con-
verge to a certain type of attractor. For the commensu-p, we define a principal wave num-rate modulated hases we d
ber, given by q = (l + 1)I2L in units of 2n. , where l is the
number of times ths e e-ective magnetization per spin
changes sign during the period L.

In Fi . 3 we shg. show the t-p phase diagram of the SR
model with r =0.1.
other

. Similar diagrams can be obtai d f
positive values of the parameter r. Only the main

commensurate phases are ind' t d
'

ica e 111 this pictur e. It
s ou d be understood that in between these ha
are man othemany other commensurate phases with lar er
periods. As in the basic model ' th
do not meet sm

e, e paramagnetic lines
o not meet smoothly at the Lifshitz point. At the multi-

infinite slope, as in the ANNNI model on a cubic latt'cu ic attice.

roma neti
region indicates the presence of t bl f

g tic and modulated attractors h' h
sa e er-

reached de
s, w ic can be

e depending on the particular set of '
e o initial condi-

s ere is no expression for the free energy of
a e to etermine the

modulated h
-or er oun ary between the ferromagnetic and

tions, we resentp some numerical evidence to support the

FIG. 3. General featureres of the t-p phase diagram of the SR
model with r =0.1. PL iis a Lsfshitz point. In the modulated re-
gion, we show a few corncommensurate phases, indicated by the cor-
responding principal wave numbers. In the dark re ion
a coexistence be
of the map.

ce etween ferromagnetic and modulatedu a e attractors

existence of a strange attractor 'th, wi a positive Lyapunov
exponent y = inn )0. In Table I f
t =0.25, we list t

a e, or r =0. 1 and
, we ist the modulated phases in a small range of

p within the region of coexisting solutions.
In Fig. 4, for r =0.1, t =0.25, and p =0.776 h

a stran ege attractor, with Lyapunov
, wes ow

an y2= —1.0598, obtained by using an algo-
rithm proposed by Eckmann and Ruelle ' F hue e. rom the

p - orke conjecture, we estimate the L a un
07, which indicates the fractal charac-

ter of this strange attractor. It h ld bs ou e pointed out,
owever, that recent calculation f h bs or t e asic model

s ow t at the yapunov dimension is sli htl d'fF

e ox-counting Hausdor6' dimension. ' The
strange attractor comes from a sequence of bifnce o i urcations

a modulated phase. For example in Tabl I
that the —' hase co

, in a e we see
a e —„4 p ase comes from a three-duplication of the

3 p ase. For intermediate values of fi d
4 hase

p, we n t e —„and
—„phases. This same pattern occurs for the —,'„phase, as
we note the existence of the —' h 1 1—„p ase ocalized in a win-

or e simi ar strange at-dow inside the chaotic region. F th
tractor in the basic model, Yokoi de Oli
nas' have calnas ave calculated a route to chaos according to the
scenario of Feigenbaum.

In the modulat
the —' comm

ated region, for large enough fi d

o tetye++ ——mmensurate phase, corresponding to a sequence

yp
——,of two positive followed by two

negative values of the eA'ective magnetizatiza ion per spin
a ong t e generations of the tree. For p = 1 f
multi hase'p point up to the paramagnetic border, we find
the —,

' modulated structure (+++———.
—, an 4 phases, we obtain many combinations of these
structures. Our numerical calculations, however, do not
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indicate the existence of a well-defined branching pro-
cess. 10

In Fig. 5, for r =0. 1 and t =0.1, we show the
L a unov number as a function of p in e

'
the interior of theya

phase. At the borders of this phase, the Lyapunov
number goes to unity. This shows that, even at low tem-
peratures, there is room for the existence of incommensu-
rate phases. For p) 1 the —' phase is present up to
p =1.01899. At p =1.01900 we find the, '," phase
( h' h means that a structure of the type ++ appears 6
times during a period of 2160 generations). or p
near the —, p ase, ere

'h,' h there is a —' phase, where a structure
of the type ++++ appears only once during a period
of 517 generations. A more detailed analysis of the inter-
val between these phases supports the existence of addi-
tional commensurate phases characterized by intermedi-

0.7734
0.7735
0.7736
0.7737
0.7738
0.7739
0.7740
0.7741
0.7742
0.7743
0.7744
0.7745
0.7746
0.7747
0.7748
0.7749
0.7750
0.7751
0.7752
0.7753
0.7754
0.7755
0.7756
0.7757
0.7758
0.7759
0.7760
0.7761
0.7762
0.7763
0.7764
0.7765
0.7766
0.7767
0.7768

ferromagnetic
chaotic

3
44

1

15

chaotic
chaotic

1

16

chaotic
chaotic
chaotic
chaotic
chaotic
chaotic

1

13
8

104

chaotic
chaotic
chaotic
chaotic
chaotic
chaotic

3
42
4.

56
1

14
1

14
1

14

chaotic
chaotic
chaotic
chaotic
chaotic
chaotic
chaotic
chaotic

1

12

—0.0999
0.1747

—0.0164
—0.2223

0.1336
0.1501

—0.8831
0.1001
0.1106
0.1087
0.0305
0.1150
0.0999

—0.1459
—0.1554

0.0913
0.0467
0.1027
0.1045
0.1185
0.1084

—0.0033
—0.0063
—0.2172
—0.0352
—0.4118

0.1153
0.0965
0.0985
0.0881
0.0776
0.0764
0.0755
0.0580

—0.0999

TABLE I. Sequence of phases for the SR model with r =0.1,
t= . , an=0 25 d the initial conditions m1=m2=1.=m =1. The ran e of

s
' fer-values of p correspon sds to a narrow region of coexisting

romagnetic an mo ua ed d l ted attractors. The modulated struc-
tures are indicated by the principal wave number. The t ir
column gives the largest Lyapunov exponent.

Phase

/
l

t

l
I

I
j

I

-1.0—
-1.0

rnn 2

FIG. 4. Plot of a strange attractor or of the SR model for
t =0.25, p =0. , an r —. .=0.776 d r =0.1. The associated Lyapunov di-

mension is DL = 1.107.

E
0.5-

)
O

CL
o

I.oo I.O2

FIG. 5. Graph of the largest Lyapunov nv number of the SR
model as a function of the parameter p insid 6 pe the —' hase (for

t =0. 1 and r =0.1).

ate rational numbers.
At hi h temperatures the incommensurate phases areig

associated with densily closed orbits in the m„
~ ~ ~

plots. At lower temperatures, however, there are incom-
mensurate phases associated with "dashed" attractors, as

6

40000 points. The inset shows a densily populated dash
of the attractor. Both types of incommensurate phases
are characterized by at least one Lyapunov number
a, =1. The closed orbits are associated with unpinned in-
commensurate p ases.h The dashed attractors correspond
to a pinned incommensurate phase. '

At fixed t the principal wave number of the mhe modulated
phases as a function of p displays a devil's staircase

h
'

Fig 7 for r =0.1. At low tempera-
..e ftures the commensurate steps occupy t ee full ran e og
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0.85

TABLE II. Hausdorff dimensionalities as a function of tem-
perature. DF(SR) is associated with the SR model for r =0.1.
DF(LR) is associated with the LR model for s =0.2 (See Figs. 7
and 12). The parentheses indicate the errors from the best
fitting to a straight line.

-1 0-~
-1.0

0.45

fYln-2

I

1.0

0.1

0.125
0.15
0.175
0.2
0.225
0.25

DF(SR)

0.82(1)
0.84(1)
0.88(1)
0.91(1)
0.93(1)
0.954(7)
0.969(6)

DF(LR)

0.40(2)
0.46(3)
0.71(3)
0.957(6)
0.970(5)

FIG. 6. Plot of the attractor associated with a pinned incom-
mensurate phase of the SR model (for t =0.2, r =0.1, and

p = 1.050073). In this graph we plot 40000 iterations after dis-
carding a small transient. The inset shows a densily populated
dash of the attractor.

I/8

I/6

I/5

(4)

(c)

(b)

(4)
(a)

(c)

(b)

(a)

0.825
I

I. O

P

l.27

FIG. 7. Graphs of the principal wave number as a function
of the competition parameter p for SR model with r =0.1 and
di8'erent values of the temperature: (a) t =0.125, (b) t =0.15,
(c) t =0.175, and (d) t =0.2. We show all steps with

hp) 3X10 . The Hausdorff dimensionalities of the devil' s

staircases are given in Table II.

values of p. At high temperatures, however, the width of
the steps is reduced, and the incommensurate phases oc-
cupy a range of finite measure. It is easy to calculate the
fractal Hausdorff dimension D~ of the set of points be-
tween the steps. ' ' Using the scale c, suppose the steps
occupy a total length S(E) between two given values of p.
The set of points between the steps has the length
L(E)=C —S(e), where C is the total length of the inter-
val under consideration. The fractal dimension is given
by the slope of the graphs 1n[L(E )/E] X 1n(1/e), for small
values of the length scale c. Table II presents some re-
sults for several temperatures. For Dz&1 the incom-
mensurate phases have zero measure and the devil's stair-
cases are complete. For increasing temperatures, DF~1.
Thus there is numerical evidence to show that, at high
temperatures, the incommensurate phases occupy finite
portions of the phase diagram and the devil's staircases
become incomplete.

V. NUMERICAL CALCULATIONS
FOR THE LR MODEL

The numerical analysis of the LR model, based on the
map given by Eq. (3.12), is more difficult, as m„shows up
in the argument of the hyperbolic tangent. At each step
of the iteration, given m„, and m„2, the value of m„
comes from the solution of a transcendental equation.
The computational time is thus considerably increased,
and we have not tried to perform an analysis as detailed
as in the case of SR model. However, in general we ob-
tain very similar results. The ferromagnetic-modulated
transition is still of first order, with the coexistence of
modulated (or chaotic) and ferromagnetic solutions in a
narrow region of the phase diagram. At high tempera-
tures, the incommensurate structures predominate. At
low temperatures, in addition to the commensurate
phases, there is also numerical evidence to support the
existence of pinned incommensurate phases.

As there are long-range interactions between pairs of
spins belonging to the same generation, in the infinite-
coordination limit the LR model displays a novel mean-
field ordering within each generation. This long-range
effect is responsible for the main differences between the
LR and both the SR and basic models. From this point
of view, the LR model is much closer to the mean-field
ANNNI model on a Bravais lattice. ' To illustrate the
differences among these models, consider the —,

' phase for

p =1. At low temperatures, for m„,=m„2, from Eq.
(2.10) we obtain X„=O. In this case, for both the basic
and SR models, we have m„=0, and the —,

' phase is given

by the sequence ++0——0. For the LR model, howev-
er, we may have m„&0 even with X„=O. In Fig. g we

consider the —,
' phase of the LR model, with p = 1 and for

three different values of the parameter s. The graphs
display the effective magnetization per spin along three
successive generations of the tree as a function of temper-
ature. For s =0.2 and t &0. 14, all three magnetizations
are different from zero. In this case we have a structure
of the type +++———,with equal magnetizations in
the first and third generations. For t & 0.2 we obtain the
same structure as in the SR and basic models, with the
existence of many generations with a vanishing magneti-
zation. For 0. 14& t &0.2, we obtain another structure
where all magnetizations are different, the first magneti-
zation going to zero at t =0.2. Similar features occur for
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FIG. 8. Plots of the effective magnetization per spin the —'

phase of the LR model along three successive generations of the
tree, I, II, and III, for p =1, and different values of the parame-
ter s =J0/J&. In (a) and (b), for s =0.2 and s =0.6, respective-
ly, the effective magnetization ml vanishes above a certain tern-
perature (while m» and m»& are still positive). For s =1.0 a11

three successive magnetizations vanish at the same (paramag-
netic) critical temperature. (d) A detail of the bifurcation in (a).

s =0.6, the structures with zero magnetization showing
up for t )0.8. For s =0.1, however, there is no longer a
structure with zero magnetization. The ANNNI model
also shows this kind of behavior. The 3, 8, and C phases
found by Yokoi are directly related to our phases for
t &0. 14, t) 0.20, and 0. 14&t &0.20, with s =0.2, re-
spectively.

As we have remarked in the last paragraph, the param-
eter s changes important features of the behavior of the
LR model. In Figs. 9 and 10, we show t-p phase dia-
grams for s =0.2 and 1.0. The main qualitative
di6'erence between these phase diagrams is illustrated in
Fig. 11 for s =0.2. The —,

' region displays a bottleneck
with a pronounced narrowing at t=0. 16. The dashed
line indicate the transitions between the characteristic 3,
C, and B structures of the —,

' phase rcompare with Figs.

FIG. 10. General features of the t-p phase diagram of the LR
model for s =1.0. The shaded region indicates the coexistence
of ferromagnetic and modulated attractors.

8(a) and 8(d) for p =1]. At higher temperatures the B
structure ++0——0 predominates and the —,

' region
broadens again.

In Fig. 12 we show some devil's staircases for s =0.2.
At the characteristic temperature t =0.15, we see a large
number of small steps associated with the presence of
long-period modulated phases. At high temperatures
many small steps disappear, and the short-period modu-
lated phases begin to predominate. The values of the
fractal dimensionalities in Table II illustrate these
features of the LR model.

I.Q,

0.2

I o5
0.1

0.95 '1.0 't.05

0.5
I

0.75 I.O

p ~
I

(.25

FIG. 9. General features of the t-p phase diagram of the LR
model for s =0.2. The region of the 6 phase shows a typical

bottleneck at t =0.2.

FIG. 11. Detail of the t-p phase diagram of the LR model for
s =0.2 (see Fig. 9). There is a pronounced narrowing of the 6

region for t =0.16. The dashed lines indicate the transitions be-

tween the characteristic structures of the —' phase [see Figs. 8(a)

and 8(d), for p =1]. At higher temperatures the B structure
predominates and the 6 region broadens again.
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FIG. 12. Graphs of the principal wave number as a function
ofp for the LR model with s =0.2 and (a) t =0.125, (b) t =0.15,
(c) t =0. 175, and (d) t =0.2. We draw all steps with
5p &3X10

VI. CONCLUSIONS

We have introduced two analogs of the ANNNI model
on a Cayley tree. Besides the competing interactions be-
tween first and second neighbors along the branches of
the tree, we have included some ferromagnetic interac-
tions between pairs of spins belonging to the same gen-
erations. These extra ferromagnetic interactions were in-
troduced to mimic the x-y planes of the ANNNI model
on a cubic lattice.

Depending on the nature of the in-generation fer-
romagnetic interactions, we define short- and long-range
models. Although identical for a tree of coordination
z =3, some features of these models become quite distinct
as the coordination increases. The statistical problem on
a Cayley tree can be formulated as a discrete nonlinear
map. Given the boundary conditions and the model pa-
rameters, the phases of the system are defined by the at-
tractors of the map, which correspond to solutions on the

Bethe lattice, deep inside a large Cayley tree. In the
infinite-coordination limit, the maps become two dimen-
sional and the problem is considerably simplified. We
have taken advantage of this simplification to perform
some analytical as well as detailed numerical calculations.

We have obtained expressions for the paramagnetic
lines and the location of a Lifshitz and a multiphase point
in the t-p phase diagrams. Besides the paramagnetic and
ferromagnetic regions, there are large portions of the
phase diagrams occupied by sequences of modulated
structures, characterized by a principal wave number q.
At low temperatures the graphs of q against the competi-
tion parameter p display the typical shape of a devil' s
staircase. We have performed numerical calculations to
show that these staircases are complete, with HausdorfF
dimensionalities increasing with temperature. At high
temperatures the incommensurate phases are expected to
occupy finite portions of the modulated region of the
phases diagrams.

We have investigated several additional details of the
phase diagram of the SR model. For example, near to
the ferromagnetic border, we have performed numerical
calculations of the Lyapunov exponents to support the
existence of a region of chaotic phases, associated with a
strange attractor of the map, with Lyapunov dimension
DL ) 1. The main features of the incommensurate phases
have also been investigated. At high temperatures they
are associated with densily populated closed orbits, with
a vanishing Lyapunov exponent. At low temperatures,
although still associated with a vanishing Lyapunov ex-
ponent, there are pinned incommensurate structures,
characterized by dashed attractors.

In the LR model, for small in-generation ferromagnetic
interactions, the main modulated phases undergo a tran-
sition from characteristic structures at low and high tem-
peratures. This same kind of phenomenon, which is asso-
ciated with weak in-plane ferromagnetic interactions, has
also been found in the mean-field calculations for the
ANNNI model on a cubic lattice.
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