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A theory of electronic-structure calculations for amorphous alloys is presented on the basis of a
geometrical-mean model for amorphous structures and transfer integrals. It greatly simplifies the nu-

Inerical calculations by constructing the electronic structures of amorphous alloys from those of constit-
uent amorphous pure metals, and describes the local environment effects by introducing the average
coordination numbers z * and atomic short-range-order parameters ~ for each type of atom a. It is

demonstrated, by comparing the numerical results with those obtained from first-principles, that the

theory reasonably describes the electronic structure of amorphous transition-metal alloys. In particular,
it is shown that the difference in z, which is caused by constituent atoms with different atomic sizes,
stabilizes the ferromagnetism in amorphous Fe65zx35 and CozY alloys since it builds up a high-energy

peak around the Fermi level.

I. INTRODUCTION

Amorphous transition-metal alloys often show a dras-
tic change of magnetism because of their structural and
configurationa1 disorders. For example, Fe-rich amor-
phous alloys show a rapid decrease of magnetization with
increasing Fe concentration, and fall into the spin-glass
state after complete disappearance of ferromagnetism. '

The magnetic moments and Curie temperatures in Co-
rich Co-Y amorphous alloys are well known to be
enhanced as compared with those in their Laves-phase
crystalline counterparts. Some Heusler alloys such as
the CuzMnA1 alloy show a remarkable change from the
strong ferrornagnet to the spin glass with the formation
of amorphous structure.

The electronic-structure calculations of amorphous al-
loys provide us with a base to understand the physics for
drastic changes of magnetisrn mentioned above. The pur-
pose of this paper is to propose a geometrical-mean (GM)
model for a semiquantitative calculation of the electronic
structure in amorphous transition-metal alloys and to de-
velop an analytical theory that drastically simplifies the
numerical calculations of densities of states (DOS's) and
Green's functions for amorphous alloys.

Needless to say, theories of electronic-structure calcu-
lations for amorphous aBoys have been developed exten-
sively in the last decade. ' In particular, Fujiwara'
developed a first-principles method by combining the
tight-binding linear-mufin-tin-orbital (LMTO) method'
with the recursion method for electronic-structure cal-
culations. The supercell approach, "' ' ' in which an
amorphous alloy is simulated by an amorphous "com-
pound" with a large number of atoms in a unit cell, also
became reliable with the development of supercomputers.

Although these methods provide us with accurate elec-
tronic structures for amorphous alloys, they have some
disadvantages in the actual applications. First, the calcu-
lations based on the first-principles methods are too la-
borious, so that they are not suitable for the systematic
investigations for a large number of amorphous alloys
and for the applications to more complicated problems
such as the finite-temperature magnetisrn, in which we
have to calculate one-electron Green's functions in vari-
ous random-exchange fields 2i —24

Second, the amorphous structures used in the first-
principles electronic-structure calculations are generated
on computers usually by means of the relaxed dense ran-
dom packing of hard spheres (DRPHS) model' ' so that
the calculated pair-distribution functions agree with the
experimental data. The data, however, are often missing
in the literature, so that it is not easy to perform the sys-
tematic investigations.

Third, the first-principles methods are nonanalytic and
treat all the information on amorphous structures as the
input data. Thus, it is not easy to find from the nurneri-
cal results the basic parameters controlling the electronic
structure of amorphous alloys. The present theory com-
plements these disadvantages of the first-principles
methods and leads to qualitative or semiquantitative un-
derstanding of the e1eetronie structures in amorphous al-
loys.

In the following section, we introduce the GM model,
which reduces the o8'-diagonal configurationa1 disorder in
a tight-binding Hamiltonian into a diagonal disorder.
The validity of the model will be discussed there. In Sec.
III, we develop a single-site theory on the basis of the
GM model. Numerical examples will be presented for
Cu35Zr65 and Fe65Zr35 amorphous alloys. The theory is
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improved using a Bethe-type approximation in Sec. IV to
take into account the local environment effects (LEE's)
on the electronic structures in amorphous alloys. We in-
troduced there average coordination numbers z * for
atom a as well as atomic short-range order (ASRO) pa-
rameters ~ . The parameters z* describe the atomic-size
effects, which are characteristic of amorphous 3d-4d,
3d-5d, and 3d-rare-earth alloys. We will demonstrate in
Sec. V that the parameters z*, as well as r, change the
shape of the DOS drastically. In particular, we point out
an important role of the atomic-size difference on the sta-
bility of ferromagnetism in amorphous Fe65Zr35 and
CozY alloys. The last section, VI, is devoted to a sum-
mary and discussions on possible applications.

II. GEOMETRICAL-MEAN MODEL
FOR ELECTRONIC-STRUCTURE CALCULATIONS

Here e; and t,.
' are the atomic level on site i and the

transfer integral between sites i and j, respectively.
a; (a; ) denotes the creation (annihilation) operator for
an electron with spin o. on site i, and n,- =a; a; denotes
the electron number operator.

The electronic structure for the Hamiltonian (1) is cal-
culated from a one-electron Careen's function defined by

6; =[(co+i5 e t'—) '—], (2)

Here the matrices are defined by ( e ),"=E, 5," and
(t');J =t~, respectively. The spin index o. is omitted for
brevity. 5 in Eq. (2) is an infinitesimal positive number.

The amorphous alloys possess the configurational and
structural disorders; atomic levels Ie;] and transfer in-
tegrals [ t,j ] change randomly according to the atomic
configuration [y;] and the interatomic distance [R; ],
where y; denotes a type of atom on site i and R, is the
interatomic distance between sites i and j.

It should be noted that the theoretical treatment of the
off-diagonal disorder associated with t,'- is more diScult
than that of the diagonal disorder in e;. To simplify the
calculations for the former, we introduce a geometrical-
mean (CxM) model with the following properties. (1) The
transfer integral t,'. =t r(R;J) is given by a geometrical
mean: t r(R")=[t (R;.)ter(R; )]'~ . Here a .(y)
denotes the type of atom on site i (j). Note that the
transfer integral t (R; ) depends on a and y via R;J be-
cause of the difference in atomic size. (ii) The interatomic
distance R; is dominated by the types of atoms a on site i
and y on site j, and is given by a geometrical mean:
R; r=(R; Rr~)'~ . (iii) The. transfe. r integrals follow the
same power law with respect to the interatomic distance:
t'J. 0- R, ", a. being independent of the type of atoms. (iv)
The amorphous pure metals A and B have the same
structure: R;""=AR;, where A is a proportionality
constant independent of sites i and j. In other words, we
may assume that the amorphous B metal, which was con-

We consider a binary ( A -8 ) amorphous alloys de-
scribed by a simple tight-binding Hamiltonian as follows:

H=ge, n, + g t,'ata
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FIG. 1. Nearest-neigbor interatomic distances in amorphous
Fe,La&, alloys (Ref. 27). Dashed curve shows Fe-La distance
calculated from the geometrical-mean (GM) model.

structed so as to be similar to the structure of amorphous
A metal, gives the same electronic structure as in the ~eal
amorphous 8 metal after taking the structural average.

The first assumption was proposed in the substitutional
alloys, and it is recognized as a reasonable approxima-
tion in transition-metal alloys. The second assumption is
expected to hold true approximately for the nearest-
neighbor interatomic distance, since the amorphous al-

loys have a structure similar to the dense random packing
of hard spheres (DRPHS) model. We have compared
R;" with (R; R; )'~z in amorphous Fe-La (Ref. 26) and
Cu-Zr (Ref. 27) alloys and have verified that the second
assumption holds true within a few percent error as
shown in Figs. 1 and 2. Although the second assumption
is not expected generally for further distant pairs, we em-
phasize that the nearest-neighbor transfer integrals are
dominant in the DRPHS-like structures and thus deter-
mine the main part of the electronic structure. The
power-law relation in the third assumption is verified in
the band theory, and the same exponent a = 5 is expected
for the transition-metal —transition-metal alloys. ' ' The
fourth assumption is based on the fact that the essential
part of a large number of experimental pair-distribution
functions in metallic alloys is explained by a simple
DRPHS-like model independently of their bonding na-

rc 29, 30

We obtain from assumption (i) the following relation:

,(.)*, ,(c) (3)ij a ij y

Here we can choose t;, for example, as t,~
=t (R;~r). It

should be noted that t, still depends on the types of
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P2(A)
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Here p2(a) is the second moment for the average density
of states (DOS) for amorphous pure metal a:

JM2(a)= f e [p (e)],de .

Here [ ], denotes the structural average.
By making use of the relation (7), the Careen's function

(2) is written as follows:
O

E0
0
L 4h

2.5

Cu-

Cu-Cu
G„= ' [(L-'—t)- ]„'. .

f~ 'y

Here (t );.= t; an—d the locator L is defined by

CO+l5 Fi
(f. ); =L; '5; 5,

ra

(12)

(13)

2.0
Cu 0.8 0.6 O.a 0.2 Zr'
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FIG. 2. The same as in Fig. 1, but for amorphous Cu, Zr,
alloys (Ref. 26).

taa(R a')
Ij

tBB(R ar)
Ej

atoms a and y via R;.y, but r" only depends on the type
of atom a because of assumption (iii):

Equation (12) shows that the off-diagonal disorder for
atomic configuration in the transfer integrals has been
transformed into a diagonal disorder in the locator E. In
other words, the system has been transformed into a sub-
stitutional alloy with random potentials on a network for
amorphous pure metal, so that one can construct a
theory using the methods developed in the substitutional
alloys. In the following section, we present a single-site
theory.

III. SINGI.E-SITE APPROXIMATION

We adopt the locator expansion ' ' as follows to treat
the Green's function C,J =r G;J.rr'.

Furthermore, we have following relation from assump-
tions (ii) and (iii):

=L+E~E+LtftE+ . . (14)

t"=r"*t"r"ij a ij y (5)
Taking the diagonal element of G at the origin, we have a
relation,

Here t; =t (R; ) does n. ot depend on the atomic
configuration any more. The factor r" is defined by

taa(R aa)
lj

t88(R 88)
1J

(6)

and it is independent of sites i and j because of the as-
sumption (iv).

From Eqs. (3) and (5) we obtain

t' =t r(R «)=r*tr"lj ij a ij y

r„(a=A )
(s)r (c)—

a a a 1 (a=+)
The factor r„ is obtained from the second moments as
follows:

y tAA(R AA )2
~

~4 y tBB(R BB )2

J J

After taking the structural disorder, we obtain ~rA ~
as

follows:

=E+LS(L )E+
1

L ' —S(L)
(15)

Here So(E ) denotes the sum of all the paths in which an
electron starts from site 0 and end at site 0 without re-
turning to site 0 on the way.

In the single-site approximation (SSA), we replace the
locators outside the origin with an energy-dependent
effective locator X:

1

—S,(Z)
(16)

Here [ ], denotes the configurational average when the
central atom is fixed. The self-energy is related to the
Green's function with the effective locator as follows:

(~—] ~)—f
' —So(X )

We next replace So(X) with an effective self-energy $0
when we take the structural average in Eqs. (16) and (1'7):
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F(X ') = [c„F„(X ') '+c~F~(X ') '] ', (26)1

a
(18)

(27)
F(& ) —= [((& & ) )oo]

0
(19)

The parameter A, is determined as follows by taking the
second moment in Eq. (25):

1/2

(28)
P2

Here L denotes the locator for the type of atom a at the
origin.

Eliminating the self-energy 40 from Eqs. (18) and (19),
we obtain the expression for [ [6 ],],= [[0 ],], /I &

as follows: Here p2(a) is the second moment for [t;J(a)]. (Note that
we only required the change of the shape with concentra-
tion, but not the change of the width of the DOS for
[t;~ j.) p2 in Eq. (28) is the second moment of average
DOS for the common band [ t;J ], and is obtained as fol-
lows (see the Appendix):

(20)

The coherent Green's function F(X ') is given by the lo-
cal DOS p (E) for the transfer integrals [t; ] as follows:

P2= [c„[pi(A)]' +c~ [@2(8)]' (29}
(21)

%'e have calculated the DOS for amorphous Cu35Zr65
within the SSA to test the quantitative aspect of our
theory.

The input DOS for amorphous Cu was prepared by
scaling the DOS (Ref. 32) for amorphous Fe with the ra-
tio 8'(fcc Cu)/W(fcc Fe) = 0.275/0. 486 (Ref. 33). (See
Fig. 3.) We have calculated the DOS for amorphous Zr
as shown in Fig. 3 using the first-principles tight-binding
LMTO recursion method. ' The amorphous structure
was generated by using the relaxed DRPHS model with
1500 Zr atoms and truncated Morse pair potentials. The
d electron number Nz =2.5 was taken from the d com-
ponent of our first-principles calculations, and NC„=9.4
was chosen so that the position of the Cu peak in the
DOS is in agreement with that in the UPS data by
Oelhafen et al.

Calculated results are presented in Figs. 4 and 5 to-
gether with the recent result obtained by Fujiwara' and

The effective locator X is determined from the condi-
tion that the impurity Green's function (18) should be
identical with the coherent Green's function (19) after
taking the configurational average:

pc [E ' X'+F—(X ') '] '=F(J '), (22)

where e is the concentration of atom a. The above
equation is well known as the coherent-potential-
approximation (CPA) equation.

The atomic levels [e ] in the locators I E J are deter-
mined to satisfy the local charge neutrality at each site:

n =
cup (23)

Here the energy co is measured from the Fermi level. n

is the electron number for pure metal a, and p (co) is the
local DOS for atom a given by

p (e)= ——1m[[6 (co+i5)],], .D
(24)

Here we introduced the number of degeneracy D (D =5
for transition metals) assuming D-fold equivalent bands
for brevity.

According to Eq. (7), the shape of the DOS for amor-
phous pure metals defined by [ r (R; ) ] is common to
the constituent metals A and B. To describe the different
shapes of DOS in both pure-metal limits (i.e., c =0 and
1), as expected in 3d-4d and 3d-5d amorphous alloys, we
consider the concentration dependence of the transfer in-
tegrals [t;1], and adopt the common band model as fol-
lows:

60
0
U

IX

V}

. I
Q —CU

~
g I

I
g: 1

IQ-Fe ':ig'~ /

i
I I

40

0.4—0.4
t,, =Ar,, =A[c~ r,, ( A)+c~rj(B )] . (25}

(Ry)Here t j(a) = t (R;,c =1). —
The coherent Green's function F(X ') in the common

band model may be obtained approximately by equating
the self-energy $0 defined by Eq. (19) in which [t;J ] have
been replaced by [ t;J. ], with an average
c„$0(A )+c~4'0(8), So(a ) being the self-energy for
[ t j (a ) ]. The result is given by

FIG. 3. Input densities of states (DOS's) for amorphous Cu
(dotted curve), Fe (dashed curve) (Ref. 32), and Zr (solid curve)
pure metals. The DOS for Cu was obtained by scaling that of
amorphous Fe with the ratio 0.275/0. 486 (Ref. 33), and that for
Zr was calculated by means of the tight-binding LMTO recur-
sion method.
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FIG. 4. The DOS for amorphous Cu35Zr65 alloys obtained by
means of the single-site theory with the GM model (solid curve),
the tight-binding LMTO recursion method (dashed curve) (Ref.
10), and the orthogonalized LCAO method (dotted curve) (Ref.
12). The inset shows the experimental data of the UPS by
Oelhafen et al. (Ref. 34).

FIG. 6. The DOS for amorphous Fe65Zr35 alloys calculated
with use of the single-site approximation (solid curve), the
Bethe-type approximation with coordination number z* =12
(dot-dashed curve; see Sec. IV), and the tight-binding LMTO re-

cursion method (dotted curve).

that obtained by Ching et al. ' with use of the orthogo-
nalized linear combination of atomic orbital method. In
spite of its simplicity, the SSA based on the GM model
reproduces an overall structure having a narrow Cu band
with a peak and broad Zr band. The DOS's in our theory
have less structure as compared with more reliable results
because of the single-site approximation and the use of
single-band model.

%'e have also examined the validity of the single-site
theory in amorphous Fe9QZr&Q and Fe65Zr35 alloys. Cal-
culated DOS in the amorphous Fe9QZr&Q alloy was found
to agree reasonably with the first-principles results, but a
considerable disagreement was found in amorphous
Fe65Zr35 alloys as shown in Fig. 6, where the parameters
X„,=7.0 and Xz, =3.2 are chosen from the results of

the tight-binding LMTO recursion method at 65 at. %
Fe.

The first-principles result shows a shoulder at 0.25 Ry
due to the Zr subband and a two-peak structure in the Fe
subband. In particular, the peak at higher energy in the
Fe subband is located around the Fermi level, which
might play an important role in the ferromagnetism of
amorphous Fe65Zr35 alloys according to the Stoner cri-
terion. The SSA with use of the GM model does not
reproduce this peak. This shortcoming remains
unimproved, even if we adopt the Bethe approximation
going beyond the SSA as long as we fix the coordination
number to be 12. We, therefore, improve the theory in
the next section.

IV. BETHE-TYPE APPROXIMATION
WITH ATOMIC-SIZE EFFECTS

E
O
0

60

80—

40

40
—0.5

20
~ ~ ~ ~ ~ ~ ~ ~

Z!

~ ~

0.5

~ ~ ~ ~ ~ 4

1.0

(Ry)

FIG. 5. Local DOS for Cu (solid curve) and Zr (dotted curve)
parts in amorphous Cu35Zr6, alloys in the single-site theory.
The inset shows the first-principles results by Fujiwara (Ref. 10).

The amorphous alloys with large atomic-size difference

may cause a structural change, which is not obtained by
the geometrical mean model. An example is shown in

Fig. 7. There, one of the B atoms in the amorphous
pure-metal B is replaced by an impurity atom A with

larger atomic radius. The nearest-neighbor (NN) shell is

expected to expand according to the relation

R; r=(R; Rf~r)', so that there is no change in the
coordination number on the NN shell. However, more
distant atoms may not satisfy such a relation. A few of
the B atoms outside the NN shell are expected to fall into
the NN shell with the expansion of the NN shell as
shown in Fig. 7 by an arrow. This causes the change of
the coordination number around the 2 atom. In what
follows, we take into account such a difference in coordi-
nation numbers between A and B atoms.

We start from Eq. (3), which does not assume the rela-
tion R, ~=(R, Rf~r)', and define the G"reen's function

G'=(I. ' r)— (30)



47 SIMPLE THEORY OF ELECTRONIC-STRUCTURE. . . 7741

~ ~ ~ ~

~ ~ ~

~ ~ ~ 0

'I ~ so

replaced by Sz'(L). We then introduce an eff'ective self-
energy S(X ) when the configurational as well as structur-
al averages are taken outside the cluster:

z
—1

(36)
~ ' ' ~

o

~ ~ ~ ~

~ ~ ~

~ ~ ~

.r.
~ ~ ~

~e

Here (t); = t;, and the locator L is defined by

CO+ l 5
(L ') =lr" I'(L ') =

ij a ~J
I

(c) I2a
(31)

Next we consider a cluster with the NN shell, and
make the locator expansion in the Green's function as fol-
lows: '

GI)0 =L()+L()g t() GJ.'0,
J

(32)

FIG. 7. Schematic rearrangement of neighboring atoms when
the A atom with a large atomic size is embedded in amorphous
pure B metal with a small size. The surrounding atoms are ex-
pected to be expanded according to the GM model, but the B
atom on site j outside the shell may approach the A atom at the
central site, so that the coordination number around the
atom increases.

z

[[G..],],= Xp.(z)p. (zln) J gp, (y )dy
z, n J

(37)

The conditional probability p (z I n ) is given by a bino-
mial distribution function within the pair approximation
as follows:

I (n, z,p )= zt aa )n( 1 aa )z
—n

n!(z n)!— (3&)

Here p is the probability of finding atom a at the neigh-
boring site of atom a which is assumed to be independent
of z. It is given by the atomic short-range order (ASRO)
parameter ~ as follows:

The random variables inside the cluster with the cen-
tral atom a and NN shell are now the number of a atoms
on the NN shell n, the coordination number z, and the
squares of transfer integrals [y =tJ0]. Introducing the
probability p (z) of finding z sites on the NN shell of
atom a, the probability p (zln ) of finding n atoms of
type a on the NN shell with z sites, and the probability
p, (yi)dyJ of finding tJ20 between yJ and yJ+dyJ, we obtain
the averaged Green's function for the type of atom a as
follows:

G'() =L t 0G(N+L S'(L)G'()+L g TJ, (L)G 0 .
i&j,o

(33)
p =Ca+ C-+a (39)

t2
1

(34)

It should be noted that the coordination number z of the
central atom a now appears as a random variable in the
above equation.

At this stage, we assume the geometrical mean
R; r=(R;J R,rr)'~ for the z atoms on the NN shell.
Adopting Eq. (5), we obtain

2

Ir
I J~0 i SJ(L)

J Ir(z)I2
J

(35)

Next we replace the outside of the cluster with the CxM
model with assumptions (i)—(iv), so that S,'(L)IIrJ("I is

Here we have neglected the transfer integrals between the
central atom and the atoms outside the cluster. The self-
energy SJ' (T ;) denotes the sum. of all the paths, which
start from site j and end at site j (i) without returning to
the cluster on the way.

In the Bethe approximation, we neglect T;., which pro-
duces the paths with loops between the atoms on the NN
shell. Solving Eqs. (32) and (33), we obtain the Green's
function G00 =G()0/I r"I:

T

Note that v.z and ~z are not independent each other be-
cause of the following relation for the number of A-B
pairs:

z
r =1— (1—r ).a (40)

Here z* denotes the average coordination number on the
NN shell of atom a.

For the distribution p (z), we adopt the simplest ex-
pression,

p (z)=(z* —[z*])5(,),+([z']+I—z*)5

(41)

Here f(y) is a function of y, and 5y =y —[y], . This ap-

which satisfies the conditions 1 =g,p (z) and
z* =Q,J2 (z )z. Note that atoms'with a larger size are ex-
pected to have fewer coordination numbers, so that the
difference between zz and zz means that in the atomic
size.

Finally, we adopt the decoupling approximation for
p, (yj ), which is correct up to the second moment:

ff(y V, (y )dy = -,
' g f [ [y ],+v[(5y )'],'"] (42)
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proximation has been used in the theory for amorphous pure metals.
By making use of these approximations, the average Green's function (37) is expressed as follows:

[ ( 5y )
2

]
1 /2

[y],K — z n+—(2j —z+n )
[y].

K =(L ' —4)

[[G ],],= gp (z) g 1(n,z,p ) g g I (i, n, —,')I (j,z —n, ,')—G (znij),
z n=0 i=Oj=O

1 1 . [(5y }'],'"
G (znij) =

2 E ' — n+( 2i n—)
[y], [y 1,&.—

(43)

(44)

(45)

Here the average [y ], is obtained from the second mo-
ment [see Eq. (11)] and an average coordination number
z' as follows:

F(X ') =
—,
'

' —([8] + [(58)'],' )&)
(53)

[y], =
P2(& )

(46)

where 58=8—[8]„and [8],=z'[y], =@2(8).
Solving Eq. (53), we obtain

The fluctuation [(5y) ],' /[y], in Eq. (44) is obtained
from the relation t; ~ R;j ' [see assumption (iii) in the
GM model]:

(5y )',
2FX ' —1+ 1+4

2
FX '(FX ' —1)

z'[y ],
[(5y }'],

2z [y], 1—, F
z*[y ],'

[(5 )2]1/2 [(5R )2]1/2

[y ], [R ],
(47) (54)

2

[(r-' —t)-'] = r
J~o X Sj(X)

(48)

Here the effective locator is determined from the CPA
equation (22).

When we take the structural average, we replace S'(X )

with the effective self-energy S. The latter is determined
by the self-consistent equation:

[R ], [[(5R ) ],' ] being the average (fluctuation) of the
NN interatomic distance in amorphous pure metals.

The self-energy of the GM model 4' in Eq. (45) is ob-
tained as follows. First, we express the coherent Green's
function of the GM model within the Bethe approxima-
tion as

The sign at the right-hand side should be chosen to be
ImE &0. We can calculate F(X ') from Eq. (21) when
the model DOS [p (e ) ), for {t;~ ] does not depend on the
concentration. We can then calculate the electronic
structure of amorphous alloys from Eqs. (43), (44), (52}
and (54).

When we take into account the concentration depen-
dence of the transfer integrals t adopting the common
band model defined by Eq. (25), we obtain the explicit ex-
pression for K (i.e., eV) from the averaged DOS for con-
stituent amorphous metals, [p„(e)], and [p~(e}], as fol-
lows.

The Green's function F(X ') = [(X ' At) '—
]oo ,is ex-

pressed by a self-energy 8 for the transfer integral t; as.
follows:

jo

S

(49) F(X ') = z jo
(55)

F(Z-'}=[(Z-'—8')-'], ,

IC =(X ' —S)

(50)

(51)

To obtain the approximate expression for 4, we rewrite
Eq. (49) as follows:

Comparing Eq. (55) with Eq. (50), we obtain

K =(X ' —AS) (56)

Next, we approximate 4 by an average of those for
amorphous A and 8 metals.

Here 8=+j~oyj, and K is connected with K in Eq. (45)
via

S=c„4(A ) +cti $(8 ) . (57)

(52)

It should be noted that the structural disorder in Eq.
(50) appears only via the random variable 8. By making
use of the decoupling approximation,

[(58) "+"],= [(58) ],"[(58)"], (k =0, 1),
we obtain

The self-energy S(a) for amorphous pure metal a is
defined by the Green function F (X ) [see Eq. (27)] as fol-
lows:

z A tjo(a)

j~o Z ' —A.Z(a) S

(58)

Solving the above equation in the same way as in Eq. (49),
we obtain
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(5y )',
2F X ' —1+ 1+4 F X '(F X ' —1)z'b 1,

'
[(5z )'],

2A, p2(a) 1 —
~

F
z'[p ],

(59)

Here p2(a) =z'[tjo(a) ]„and F~ and A, are given by Eqs.
(27) and (28), respectively.

From Eqs. (56), (57), and (59), we obtain an approxi-
mate expression of K:

K = [c~(K~ ) '+c~(Kii ) '] (60)

0
n = den ——ImG (znij ) .

oo 7T

Finally, the averaged DOS is obtained from Eq. (24) with
Eq. (43).

The input parameters are electron number n, the
DOS [p (e)]„the fluctuation of the interatomic distance
[(5R ) ],' /[R ]„the exponent x [see Eq. (47)], the aver-

age coordination numbers z and z, and the ASRO pa-
rameter 7„(or rii). We choose z'=12 in the following
numerical calculations. The LEE's are described by
[(5R ) ],' /[R ]„[z*j, and [r j. In particular, the
coordination numbers [z' j are the new variables charac-
teristic to amorphous alloys.

The present theory reduces to the Bethe theory, which
has recently been proposed by one of the authors, in the
limit of amorphous pure metal, and essentially reduces to
the Bethe theory of LEE's proposed by Miwa [31] and
Brouer et al. in the case of substitutional alloys with
the same band width. In the case of amorphous alloys,
the present theory describes the LEE's caused by
2X2' X2' ( —10 ) of atomic and structural configur-
ations on the NN shell, in particular, describe the effects
of the difference in atomic size in amorphous alloys via
the coordination number [z' j.

In the improved theory, we assume the average atomic
levels [[e ],], and the effective medium X '(co+i5) (for
example, g c E '

), and calculate F~ from Eq. (27), and
A, from Eqs. (28) and (29) using the input DOS [p ],. We
then obtain K from Eqs. (59) and (60), therefore calculate
F(X ') from Eq. (53). [[e ],], and X '(co+i5) are
self-consistently obtained by solving the CPA equation
(22) and the charge neutrality condition (23) with F(X ')
defined by Eq. (53). Next we can calculate K from Eq.
(52), and G (znij ) from Eq. (44). The atomic levels

[e (znij )j in the locator E ' of G (znij ) are deter-
mined again from the charge neutrality condition in each
configuration.
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of the theory and the effects of the atomic-size difference.
The results are presented in Fig. 8. We chose there the
coordination number zz, =14.0 so as to reproduce the
shoulder at 0.25 Ry, and varied zF', from 12 to 8 fixing
the ASRO r„,=0 Oand. [(5R )],' /[R], =0.06 (Ref. 26)
to examine the effects of the atomic-size difference on the
Fe local DOS via the coordination number.

Calculated DOS's generally show a two-peak structure
below the Fermi level. The amplitude of the low-energy
peak is larger than that of the high-energy one when

z„,=12. %'ith decreasing z„*„the high-energy peak rap-
idly develops and becomes dominant at z&, =8.0. It is
seen that the first-principles DOS's calculated by the
tight-binding LMTO recursion method is semiquantita-
tively reproduced by means of the improved theory with
zF', =9.0.

The amorphous Fe65Zr35 alloy is known to show the
ferromagnetism with the ground-state magnetization
0.95p~. ' The high DOS at the Fermi level is impor-
tant for the appearance of the ferromagnetism according
to the Stoner criterion. The present results suggest that
the ferromagnetism in amorphous Fe65ZI35 alloys origi-
nates in the formation of the high-energy peak due to the
atomic-size difference. It should be noted that the effect
is characteristic of amorphous metallic alloys and is not
seen in the simple substitutional alloys.

The theory describes the effects of ASRO [r j. We
show the DOS for amorphous Fe65Zr35 alloys with

V. ATOMIC-SIZE EFFECTS AND ASRO EFFECTS
IN AMORPHOUS Fe-Zr and Co-Y ALLOYS

We have calculated the DOS in amorphous Fe65Zr35
using the improved Bethe theory to examine the validity

FICx. 8. The calculated DOS for amorphous Fe65Zr35 alloys
with use of the Bethe-type approximation (solid curve) and the
tight-binding LMTO recursion method (dotted curve). The
numbers for the solid curves denote the average coordination
numbers of Fe atoms (zz, ).
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FIG. 9. The calculated DOS with atomic short-range order
XFe— 0.3 (dotted curve) and ~F,=0.3 (solid curve) in amor-
phous Fe65Zr35 alloys.

vF —+0.3 in Fig. 9 as an example. It is seen that the
width of the Fe subbands shrinks, and the shoulder
around co=0.2 Ry increases with decreasing ~F, because
such a change of ~ decreases the number of Fe-Fe pairs,
and increases the mixing between Fe 3d and Zr 4d orbit-
als. In particular, the DOS's at the Fermi level increase
with increasing Fe-Fe pairs.

Recently, Krebs et al. investigated the amorphous
Fe,Zr, , (0.2~c~0.9) alloys. They found that an-
nealed amorphous Fe50Zr50 alloys tend to separate into
amorphous Fe6zZr38 and Fe33Zr67 alloys, so that the al-
loys show the ferromagnetism with the ground-state mag-
netization of about 0.5p~, although the magnetization of
unannealed ones mostly disappears. This phenomenon
might be explained by the increase of the DOS at the Fer-
mi level with increasing Fe-Fe pairs as we have shown in
Fig. 9.

Another example which exhibits the atomic-size effects
on the stability of ferromagnetism is the amorphous
CozY alloy. This alloy shows the ferromagnetism with
the ground-state magnetization 1.0pz, ' although the
crystalline counterpart shows the paramagnetism
Inoue and Shimizu' calculated the DOS for amorphous
and crystalline CozY alloys using a tight-binding recur-
sion method and found that the ferromagnetism in amor-
phous CozY is stabilized by the formation of a peak
around the Fermi level. (See the inset of Fig. 10.)

We performed the same calculations as in the amor-
phous Fe65Zr35 alloy to examine the atomic-size effects
via the coordination numbers. The parameters were
chosen to be nc, =8 0, n&=1 7, ~c,=0 0, and
[(5R) ],' /[R], =0.06. The input DOS [p(e)], are
taken from those of amorphous Fe and Zr after scaling
the bandwidth with the ratios 0.441/0. 393 (Ref. 33) and
0.463/0. 544 (Ref. 33), respectively.

Calculated results again indicate the development of
high-energy peak with decreasing zc, as shown in Fig.
10. This implies that the ferromagnetism in amorphous
CozY alloy is caused by an averaged coordination num-
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FIG. 10. Calculated DOS for amorphous Co2Y alloys with
various average coordination numbers of Co (zc, = 8—12). z~ is
fixed to be 12. The inset shows the result calculated by Inoue
and Shimizu (Ref. 13).

ber zc, (=9.0) smaller than zz, because of the atomic-size
difference.

VI. SUMMARY

In the present paper, we have proposed the GM model
for the amorphous structure and transfer integrals. The
model transforms the off-diagonal configurational disor-
der into a diagonal disorder in a tight-binding Hamiltoni-
an, which makes the theoretical treatment much simpler.
We have developed a Bethe-type theory as well as a
single-site theory for the electronic-structure calculations
in amorphous alloys on the basis of the GM model. The
theory drastically simplifies the numerical calculations of
electronic structures; the DOS of amorphous alloys are
calculated at any concentration from the data for constit-
uent amorphous pure metals ([p (e)], and
[(5R )],' /[R], ) and a few local parameters such as z'
and~ .

By comparing our results with those based on the
tight-binding LMTO recursion method, we have demon-
strated that the Bethe-type theory describes semiquanti-
tatively the electronic structures of amorphous
transition-metal alloys with a suitable choice of local pa-
rameters, in spite of a simple model Hamiltonian and the
GM model.

The theory describes the LEE's characterized by z*
and ~ . The LEE's dominate the local bandwidth and the
shape of the DOS. In fact, we have demonstrated that
the difference in the coordination numbers of constituent
atoms with the different atomic sizes is indispensable for
the stability of ferromagnetism in amorphous Fe65Zr35
and CozY alloys. Furthermore, we pointed out that the
enhancement of the Fe DOS at the Fermi level with in-

creasing ASRO parameter ~„, is consistent with the ap-
pearance of ferromagnetism in annealed Fe5pZr5p arnor-

phous alloys. More detailed investigations concerning
the problems in the structure vs magnetism will be pub-
lished elsewhere.
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One of the possible applications of the present theory is
the calculations of finite-temperature magnetic properties
in amorphous transition-metals alloys. We have recently
proposed a finite-temperature theory of arporphous me-
tallic magnetism on the basis of the functional integral
method, and have clarified a variety of magnetism in
amorphous transition metals. In this theory, one needs
the Green's functions of a one-electron system with ran-
dom exchange fields. The present approach allows us to
calculate such Green's functions in amorphous alloys.
This means that we can investigate the magnetism in
amorphous alloys at finite temperatures by combining the
present theory with the finite-temperature theory of
magnetism.

The application of the present approach to the amor-
phous rare-earth transition-metal alloys also seems to be
possible. In this case, one has to take into account the lo-
calized f electrons with use of a suitable model Hamil-
tonian. The effects of the structural and configurational
disorders on the transition-metal 3d and rare-earth 5d
band electrons as described by Eq. (1) are still expected to
be important in the alloys. We hope that the present ap-
proach wi11 p1ay an important role in qualitative or semi-
quantitative understanding of magnetism in these amor-
phous metallic systems.
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+cia g t p(B)
S

(A 1)

According to the GM model, we have a relation

(A2)

Here r~ is a site-independent constant and is obtained
from the second moments pz(a) = [g tip(u) ], as follows:

1/2
Q tjp(A )

J

g &,p(B )' (A3)

By making use of Eqs. (A2) and (A3), we can rewrite the
second term at the right-hand side of Eq. (Al) as follows:

g tip( &)tjp(B) =(r~ ) g tip(B)

( g )2 1/2 'y r (B)2 1/2

J S J S

(A4)

Substituting Eq. (A4) into Eq. (Al), we obtain the final re-
sult IEq. (29)].

(A5)

APPENDIX A: DERIVATION OF EQ. (3.16)

The second moment for the common band I t,j ] is ex-
panded as follows:

pz=c„g tjp(A) +2c„cia g rjp(/I)rjp(B)
,
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