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Dipolar antiferromagnetism in the spin-wave approximation
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The spin-wave Hamiltonian for a two-sublattice antiferromagnet with purely dipolar interactions is di-

agonalized. The simple-cubic (sc) lattice is solved as an example, and is found to exhibit zero-point-
motion corrections to the Neel state that are much larger than those of the nearest-neighbor sc Heisen-

berg antiferromagnet. The two-dimensional square dipolar lattice is found not to exhibit long-range or-
der at finite temperature in this approximation.

I. INTRODUCTION

It is well known that the magnetic dipole-dipole in-
teraction can give rise to spin-wave excitations in ordered
magnetic systems, just as the exchange interaction does,
These are frequently ignored in the analysis of real dipo-
lar magnets, many of which are anisotropic. When no
anisotropy is present, however, dipolar spin waves can
lead to substantial quantum eftects. Ferromagnets with
purely dipolar interactions have been studied in the spin-
wave approximation by Cohen and KefFer, ' who found, in
the bcc and fcc lattices, appreciable zero-point correc-
tions to the energy of the classically expected ground
state.

In this paper, we analyze a purely dipolar antifer-
romagnet in the Neel two-sublattice model, using the
spin-wave theory. General results for the spin-wave spec-
trum and zero-point corrections to the ground-state ener-

gy and sublattice magnetization are obtained. These re-
sults are applied to a simple cubic (sc) lattice of magnetic
dipoles, which has a classical antiferromagnetic ground
state. We find that the zero-point corrections in this case
are more than double those found in the nearest-neighbor
sc Heisenberg antiferromagnet, suggesting that dipolar
magnets are more quantum mechanical than generally
suspected. We also examine the question of Auctuations
in two-dimensional dipolar lattices. These are compared
to those in the two-dimensional square lattice Heisenberg
antiferromagnet, which (for the case S= 1/2) has recent-
ly been the focus of interest in possible connection with
high-temperature superconductivity.

A somewhat di6'erent treatment has been given earlier
for the "truncated" dipolar Hamiltonian appropriate for
nuclear magnetic resonance. This Hamiltonian, which
contains only those dipolar parts which commute with
the Zeeman energy, leads to much smaller quantum
corrections.

II. SPIN-WAVE SPECTRUM

The dipolar Hamiltonian is

where
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For magnetic moments p having at least axial symmetry,
the numerical coe%cients above are defined as follows:
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In the spin-wave approximation, for a two-sublattice anti-
ferromagnet with two spins in a primitive unit cell and
polarization axis z, this takes the form
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a and b (1 and m) refer to the two sublattices, S is spin,
and gI~ and g~ are the components of the g factor parallel
and normal to the z axis. The definition of the A;.~(k) is
chosen to conform to that of Refs. 5 —7:

,'S—p—~[gi A "(k)+2g~A "(kp)]

ik (R„+r,. —r. )

R„+r;—ri —rI .=p
(4)

where ko is the wave vector of the antiferromagnetic
structure, and A ~(k) is defined as in Eq. (4) with r; =rj.
Similarly,
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where R„ is the location of primitive cell n, and r; and r
are the locations of two spins within the unit cell.

This Hamiltonian can be expressed in matrix form as

1
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where ak =(ak, bk, b k, a k ), the 4&&4 matrix [Mk ] is
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so that the eigenvalues take the familiar form
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and E'k =Ek +2EO 2EO ~ The Hamiltonian can be di-
agonalized in closed form, yielding

~Bravais Q Ako —k IBko —k I'.

Unlike the nearest-neighbor Heisenberg antiferromagnet,
the two branches of the spin-wave spectrum are nonde-
generate. These results for coB„„;,are very similar to
those obtained in the ferromagnetic case, ' the only
difference being the replacement of A "(0) in the latter by
A "(kp).
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with eigenvalues co given by

III. ZERO-POINT ENERGY
AND SPIN DEVIATION

The ground-state energy of the system is

W'p =C gek+ —g(rok +—cok ) .
k k

(12)

(~k+) =ek+ IEka
I

—IBkaI —'(IBka
I

+ IBa"
I

)+—'g

where

BabI2 Bab I2)2+16 2 IEabI2+4IB«(Bab )s

+(B")*B'
I

4E' B'" —(—E' )*B„'"I

The constant C is the classical Neel ground-state energy,
which can be written
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If the underlying lattice (ignoring spin) is a Bravais lat-
tice, then all the matrix elements will be even functions of
k, and the Ek will be real. In this situation the eigenval-
ues simplify considerably:

(co—
) =(e„+E' ) IB„"+B„'I—

Because ek =Ek'+2(Ep' Ep ), the sum ek+—Ek" can be
expressed in terms of lattice sums Ek over the entire
Bravais lattice, corresponding to one spin per primitive
cell instead of two:

where Ek represents a summation over all spins n in the
0

lattice, and Xo is the number of two-spin primitive cells
in the lattice. The second two terms in Eq. (12) constitute
the quantum zero-point energy. For any lattice,

ik rl
XkEk 0 since eke '=6„p. Hence

II (E«Eab)=2% II E„
g

and the ground-state energy becomes
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For purposes of calculating the zero-point spin devia-
tion in the ground state, an anisotropy field term &~ is
added to the Hamiltonian:
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in the spin-wave approximation, where H, and Hb are
oppositely directed anisotropy fields. This leads to
modified eigenvalues 0& given by
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The sublattice magnetization deviation at T =0 is
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where E'k' =6k+g((pgH, b. The corresponding spin devi-
ation at T=Ois

b,S'= VhM, (T =0)/N0g„~P

In the limit H, b ~0 these results yield
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At finite temperatures an additional temperature-
dependent contribution b,M, (T) exists, which vanishes as
T~O but not as H, b ~0: '

where

5=x-'(4IE'I' —~-'[B„-([E„'"]*[B"]*
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In the case of a Bravais lattice, this simplifies to
5=Ek /ek, with the more compact result

ke (1—5)

cok (exp[Peak ]—1)

with simplifications as above for the Bravais lattice case.

IV. EXAMPLES

A. Three dimensions

Amongst the primitive cubic lattices, only the simple
cubic (sc) has a classical dipolar antiferromagnetic
ground state. '" It consists of (110) planes of spins alter-
nately polarized in the +z directions, so that
k0=(m/a, vr/a, 0), where a is the cube edge. The lattice
sums required for the A ~(k) in the simple cubic case
have been evaluated previously, ' for a representative set
of 512 values of k within the cubic Brillouin zone. We
find that the spin-wave energies &ok are positive and real
throughout the zone. The spectrum is plotted in Fig. 1

for representative directions in the tetragonal Brillouin
zone of the antiferromagnet, assuming an isotropic g fac-
tor. At k=O, the energies cok display the nonuniform
convergence characteristic of the dipolar sums A ~(k).
cok 0 was evaluated using the small k expansion for
A ~(k) of Aharony and Fisher. The fact that cok=0 is
not zero, as it is for the isotropic Heisenberg antifer-
romagnet, rejects the fact that the dipolar Hamiltonian
is not invariant under a rotation of all spins. The spec-
trum has a zero in both branches at the corners of the
Brillouin zone. Near these points the co* are linear in k.
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and the spin deviation is found to be

ES'= —0. 149 .

and for the spin deviation we find

AS'= —0. 141 .

From the standpoint of analyzing the dependence of
fIuctuations on spatial dimensionality, an alternate
definition of the dipolar interaction is to require the di-
mension of spins and fields to be the same as that of the
lattice. (This approach ignores inconsistencies which
may arise from a tensor, rather than vector, definition of
spin. '

) An example is given by Aharony and Fisher,
who define the interaction between two dipoles to be

S S~2

a~;a~ t,
' IR, —R,l"-'

The magnetic field and the spins, as well as the lattice, are
of dimension d. In two dimensions, In~R& —R2~ replaces
~R, —R2~ . For d (2, this expression must be modified
by a factor ( —1) to avoid inversion of all energies with
respect to d )2. For d=1, the interaction vanishes. In
two dimensions, we find the square lattice again has the
same classical antiferromagnetic ground state, with
ko=(m. /a, O) oriented normal to sublattice polarization.
The maximum Luttinger-Tisza eigenvalue for this case is—a 3"(ko ) =3.437. The other eigenvalues are 0
(ko = [rr/a, ~/a ]), —3.437 (ko= [0,sr/a ]), and 0
(ko= [0,0]). The last corresponds to ferromagnetic or-
der and has a minimum ground-state energy of—No(gp~S/a) n, when the (two-dimensional) Lorentz
field factor is included. For a spin-wave Hamiltonian
defined as in Eqs. (1) and (2), we obtain a real spectrum
qualitatively similar to the previous example, with ~k de-
creasing linearly to zero at k =(0,+m/a). A numerical
evaluation of the ground-state energy gives

8'o = No (gpit S ) [—3.437+ ( 1/S) (0.262 ) ]a
~classical

( 1 +0 076/S )

Thus for both types of square lattice, the zero-point
corrections are smaller than for the sc dipolar lattice.
They are also smaller than those of the square Heisenberg
model. In the second, strictly two-dimensional example,
this may be a reAection on the inadequacy of the spin-
wave approximation for two-dimensional spins, since one
ordinarily expects fluctuations to increase as dimensional-
ity is lowered. However, in both cases the integrals for
b,M, (T) diverge, just as for the square lattice Heisenberg
antiferromagnet, and carry the same implications about
the absence of long-range order at finite temperature. It
is interesting to speculate that this result may be general,
and that there may exist an extension of the Mermin-
Wagner theorem' to long-range interactions such as the
dipole interaction.

V. CONCLUSIONS

We have obtained a general solution of the two-
sublattice dipolar antiferromagnet in the spin-wave ap-
proximation. The results are particularly simple for Bra-
vais lattices. In the case of the simple cubic lattice, zero-
point corrections to the energy and sublattice magnetiza-
tion are unusually large, more than double those of the
nearest-neighbor sc Heisenberg antiferromagnet.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with G. T.
Zimanyi and R. R. P. Singh. This work was supported
by NSF Grant No. DMR-9107814.

M. H. Cohen and F. KefFer, Phys. Rev. 99, 1135 (1955).
S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev.

Lett. 60, 1057 (1988); Phys. Rev. B 39, 2344 (1989).
A. Abragam and M. Goldman, nuclear Magnetism: Order and

Disorder (Clarendon, Oxford, 1982), p. 589.
4K. KeFer, in Handbuch der Physik V. 18/2 (Springer, Berlin,

1966), p. 42.
5L. M. Holmes, J. Als-Nielsen, and H. J. guggenheim, Phys.

Rev. B 12, 180 (1975).
A. Aharony and M. E. Fisher, Phys. Rev. B 8, 3323 (1973).

7N. M. Fujiki, K. De'Bell, and D. J. W. Cxeldart, Phys. Rev. B
36, 8512 (1987).

sJ.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems

(MIT, Cambridge, MA, 1986), Chap. 3.
R. Kubo, Phys. Rev. 87, 568 (1952).
F. Ke6'er, in Handbuch der Physik V. 18/2 (Springer, Berlin,
1966), p. 109.

J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).
M. H. Cohen and F. Ke6'er, Phys. Rev. 99, 1128 (1955).

~3D. C. Mattis, The Theory of Magnetism I (Springer, Berlin,
1988), pp. 184—185.

W. M. Saslow, S. A. Fulling, and C. R. Hu, Phys. Rev. B 31,
364 (1985).

N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133
(1966); N. D. Mermin, J. Phys. Soc. Jpn. 26, Suppl. , 203
(1969).


