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The spin-wave Hamiltonian for a two-sublattice antiferromagnet with purely dipolar interactions is di-
agonalized. The simple-cubic (sc) lattice is solved as an example, and is found to exhibit zero-point-
motion corrections to the Néel state that are much larger than those of the nearest-neighbor sc Heisen-
berg antiferromagnet. The two-dimensional square dipolar lattice is found not to exhibit long-range or-

der at finite temperature in this approximation.

I. INTRODUCTION

It is well known that the magnetic dipole-dipole in-
teraction can give rise to spin-wave excitations in ordered
magnetic systems, just as the exchange interaction does.
These are frequently ignored in the analysis of real dipo-
lar magnets, many of which are anisotropic. When no
anisotropy is present, however, dipolar spin waves can
lead to substantial quantum effects. Ferromagnets with
purely dipolar interactions have been studied in the spin-
wave approximation by Cohen and Keffer,! who found, in
the bce and fcc lattices, appreciable zero-point correc-
tions to the energy of the classically expected ground
state.

In this paper, we analyze a purely dipolar antifer-
romagnet in the Néel two-sublattice model, using the
spin-wave theory. General results for the spin-wave spec-
trum and zero-point corrections to the ground-state ener-
gy and sublattice magnetization are obtained. These re-
sults are applied to a simple cubic (sc) lattice of magnetic
dipoles, which has a classical antiferromagnetic ground
state. We find that the zero-point corrections in this case
are more than double those found in the nearest-neighbor
sc Heisenberg antiferromagnet, suggesting that dipolar
magnets are more quantum mechanical than generally
suspected. We also examine the question of fluctuations
in two-dimensional dipolar lattices. These are compared
to those in the two-dimensional square lattice Heisenberg
antiferromagnet, which (for the case S =1/2) has recent-
ly been the focus of interest in possible connection with
high-temperature superconductivity.?

A somewhat different treatment has been given earlier’
for the “truncated” dipolar Hamiltonian appropriate for
nuclear magnetic resonance. This Hamiltonian, which
contains only those dipolar parts which commute with
the Zeeman energy, leads to much smaller quantum
corrections.

II. SPIN-WAVE SPECTRUM

The dipolar Hamiltonian is
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In the spin-wave approximation, for a two-sublattice anti-
ferromagnet with two spins in a primitive unit cell and
polarization axis 2, this takes the form*
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For magnetic moments p having at least axial symmetry,
the numerical coefficients above are defined as follows:
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a and b (I and m) refer to the two sublattices, S is spin,
and g, and g, are the components of the g factor parallel
and normal to the z axis. The definition of the 4 i‘}ﬁ(k) is
chosen to conform to that of Refs. 5-7:
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where R, is the location of primitive cell n, and r; and r;
are the locations of two spins within the unit cell.
This Hamiltonian can be expressed in matrix form as
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where a£=(ag,bk,bT_k,a;k ), the 4 X4 matrix [M, ] is
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and €, =E{°+2E —2E¢. The Hamiltonian can be di-
agonalized® in closed form, yielding
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If the underlying lattice (ignoring spin) is a Bravais lat-
tice, then all the matrix elements will be even functions of
k, and the Ef® will be real. In this situation the eigenval-
ues simplify considerably:
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Because €, =E*+2(E —E&), the sum €, + EZ® can be
expressed in terms of lattice sums EPT over the entire
Bravais lattice, corresponding to one spin per primitive
cell instead of two:
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where k, is the wave vector of the antiferromagnetic
structure, and 4 “#(k) is defined as in Eq. (4) with r; =r;.
Similarly,

€k “EszEl?oL—k +2(gj /g1 )EEOL = Ay ks
B{“+Bg*=Bp"
=1Sgiu%[ A™(k)— A™(k)—2i47(k)]
=B, , (10)
B¥—B{*=Bp =By i
so that the eigenvalues take the familiar form
Opravais=V AL =B, ?
OBravais =V Aicy—k — | Biey—i -

Unlike the nearest-neighbor Heisenberg antiferromagnet,
the two branches of the spin-wave spectrum are nonde-
generate. These results for wg,,,i; are very similar to
those obtained in the ferromagnetic case,! the only
difference being the replacement of 4 “(0) in the latter by
A#(kg).
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III. ZERO-POINT ENERGY
AND SPIN DEVIATION

The ground-state energy of the system is
W0=C—Zek+%2(w}f+wk_). (12)
k k

The constant C is the classical Néel ground-state energy,
which can be written
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where Eko represents a summation over all spins 7 in the

lattice, and N, is the number of two-spin primitive cells
in the lattice. The second two terms in Eq. (12) constitute
the quantum zero-q(oint energy. For any lattice,
S Ef=0since 3¢ T’Z(S,I,O. Hence
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and the ground-state energy becomes
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For purposes of calculating the zero-point spin devia-
tion in the ground state, an anisotropy field term ¥, is
added to the Hamiltonian:
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in the spin-wave approximation, where H, and H, are
oppositely directed anisotropy fields. This leads to
modified eigenvalues Qi given by

— B, )2+ 4|EfY (el +eb )2 —2(ed — €)X BEI*+ B2, %)

2—4|EZB, —(E")* B

—4(e8 + €2 (BEL(EfD)* (B )* +EZ(B)* ] +c.c})'/? . (16)

The sublattice magnetization deviation at T =0 is
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where €;"=¢, +g”,uBHa 5. The corresponding spin devi-
ation at T =0 is
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In the case of a Bravais lattice, this simplifies to
8=Ef® /e, with the more compact result
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At finite temperatures an additional temperature-
dependent contribution AM (T) exists, which vanishes as
T—O0 but not as H, ,, —0:>1°
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with simplifications as above for the Bravais lattice case.

IV. EXAMPLES

A. Three dimensions

Amongst the primitive cubic lattices, only the simple
cubic (sc) has a classical dipolar antiferromagnetic
ground state."!! It consists of (110) planes of spins alter-
nately polarized in the =z directions, so that
ko=(m/a,m/a,0), where a is the cube edge. The lattice
sums required for the 4%%(k) in the simple cubic case
have been evaluated previously,'? for a representative set
of 512 values of k within the cubic Brillouin zone. We
find that the spin-wave energies wj are positive and real
throughout the zone. The spectrum is plotted in Fig. 1
for representative directions in the tetragonal Brillouin
zone of the antiferromagnet, assuming an isotropic g fac-
tor. At k=0, the energies w; display the nonuniform
convergence characteristic of the dipolar sums A %A(k).
oi—, was evaluated using the small k expansion for
A°3(k) of Aharony and Fisher.® The fact that wi_ is
not zero, as it is for the isotropic Heisenberg antifer-
romagnet, reflects the fact that the dipolar Hamiltonian
is not invariant under a rotation of all spins. The spec-
trum has a zero in both branches at the corners of the
Brillouin zone. Near these points the w? are linear in k.
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FIG. 1. Numerical evaluation of the dipolar antiferromag-
netic spin-wave spectrum of the sc lattice, from Eq. (11). The
convergence of w; at k=0 is nonuniform. The upper curve
corresponds to w; and the lower curve to of. The two
branches are degenerate on the x and y faces of the Brillouin
zone.
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This is an important difference with the case of the trun-
cated dipolar Hamiltonian, whose spectrum exhibits a
substantial gap® for all k. The gap is responsible for the
much smaller zero-point effects predicted for that Hamil-
tonian.

At T =0, we obtain the zero-point energy by numeri-
cally carrying out the sum 3, (@} +wy ) in Eq. (15). We
obtain a ground-state energy

Wo=No(gupS)P?{ A%(ky)+(1/8) A%(ky)+4.091a 3]}
= w§lassical (140,236/5) , 1)

where a’ 4%(k,)= —5.352 and a is the sc unit cell edge.
The zero-point contribution AW = W,— W§assical ig rath-
er large, amounting to 47% of W§#s%! for § = 1. This is
more than twice as large as the corresponding result for
the nearest-neighbor sc Heisenberg antiferromagnet,'3
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The magnitude of AW /W§Bsieal in cubic dipolar fer-
romagnets is similar to the dipolar antiferromagnet, but
even la.rger:1 0.280/S (fcc), and 0.287/S (bcec). At T =0,
the spin deviation AS?is given by Eq. (19) as

G A+ Aok 1
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after numerically carrying out the integration. This re-

TABLE 1. Zero-point contributions AW to the ground-state
energy and AS, to the sublattice polarization, calculated in the
spin-wave approximation for sc and square lattices, for dipolar
and nearest-neighbor Heisenberg Hamiltonians.

Lattice AW, /W AS*®

sc dipolar 0.236/8 —0.252
sc Heisenberg 0.097/8* —0.078*
Square dipolar, 3D field 0.114/S —0.149
Square dipolar, 2D field 0.076/S —0.141
Square Heisenberg 0.158/8* —0.197%

#Reference 13.

sult is more than three times the spin reduction for the sc
Heisenberg case,”” ASf;,=—0.078. For S=1, the
reduction amounts to slightly more than half the sublat-
tice polarization in the Néel state. These zero-point devi-
ations are unexpectedly large, and call into question the
common perception that dipolar systems are inherently
more classical than those based on exchange. The nu-
merical results are summarized in Table 1.

B. Lower dimensionality

It is interesting that both AS? and AW also exceed the
corresponding spin-wave results for the two-dimensional
square lattice Heisenberg antiferromagnet (Table I).
Since long-range order becomes more problematical for
d <3, it is of some interest to investigate lower-
dimensional dipolar lattices to see if zero-point effects be-
come larger. Dipolar interactions for dimensions other
than three can be defined in more than one way. The
simplest case to examine, and perhaps the only one which
is physically realizable, is that of three-dimensional spins
(and magnetic fields) on a lattice of reduced dimensionali-
ty. In one dimension, the classical ground state is fer-
romagnetic, with dipoles arranged head to tail. This is
confirmed by imaginary spin-wave energies, for some
values of k, in all the possible antiferromagnetic struc-
tures. In two dimensions we have studied only the square
lattice, which we find to have a classical antiferromagnet-
ic ground state composed of (10) chains of spins aligned
alternatively up and down in the lattice plane, with
ko=(m/a,0) oriented normal to the chains. The max-
imum Luttinger-Tisza eigenvalue!! for this lattice is
—a*A%(ky)=5.099, corresponding to a ground-state en-
ergy of No(gupS)* A% k,). The other eigenvalues are
4.488 (k,=[0,0]), —1.323 (ky=[w/a,m/a]), and
—6.034 (k,=[0,7/a]) for spins lying in the plane; and
2.646 (ko=[w/a,w/a]), —0.935 (k,=[w/a,0]), and
—8.978 (ky=[0,0]) for spins normal to the plane. The
states with k;=(0,0) correspond to ferromagnetic order.
The spin-wave energies for the ground state are real and
positive throughout the first Brillouin zone, with a zero
in the spectrum of wj at k=(0,+w/a). Near these
points the spectrum is linear in k. A numerical evalua-
tion of the ground-state energy gives

Wo=—No(gupS)*5.099+1/5(0.583)]a 3
=Wgesel(1+0.114/8) ,
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and the spin deviation is found to be
AS?=—0.149 .

From the standpoint of analyzing the dependence of
fluctuations on spatial dimensionality, an alternate
definition of the dipolar interaction is to require the di-
mension of spins and fields to be the same as that of the
lattice. (This approach ignores inconsistencies which
may arise from a tensor, rather than vector, definition of
spin.!¥) An example is given by Aharony and Fisher,®
who define the interaction between two dipoles to be
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The magnetic field and the spins, as well as the lattice, are
of dimension d. In two dimensions, In|R; —R,| replaces
IR, —R,|>"% For d <2, this expression must be modified
by a factor (—1) to avoid inversion of all energies with
respect to d >2. For d =1, the interaction vanishes. In
two dimensions, we find the square lattice again has the
same classical antiferromagnetic ground state, with
ko=(m/a,0) oriented normal to sublattice polarization.
The maximum Luttinger-Tisza eigenvalue for this case is
—a’A%(ky)=3.437. The other eigenvalues are O
(kg=[m/a,w/a]), —3.437 (ky=[0,7/a]), and O
(ky=[0,0]). The last corresponds to ferromagnetic or-
der and has a minimum ground-state energy of
—No(gugS/a)*m, when the (two-dimensional) Lorentz
field factor is included. For a spin-wave Hamiltonian
defined as in Egs. (1) and (2), we obtain a real spectrum
qualitatively similar to the previous example, with o} de-
creasing linearly to zero at k =(0,t#%/a). A numerical
evaluation of the ground-state energy gives

Wo=—Ny(gupS)*[3.437+(1/5)(0.262)]a 2
=w§lassical(140.076/S) ,

and for the spin deviation we find
AS?=—0.141 .

Thus for both types of square lattice, the zero-point
corrections are smaller than for the sc dipolar lattice.
They are also smaller than those of the square Heisenberg
model. In the second, strictly two-dimensional example,
this may be a reflection on the inadequacy of the spin-
wave approximation for two-dimensional spins, since one
ordinarily expects fluctuations to increase as dimensional-
ity is lowered. However, in both cases the integrals for
AM(T) diverge, just as for the square lattice Heisenberg
antiferromagnet, and carry the same implications about
the absence of long-range order at finite temperature. It
is interesting to speculate that this result may be general,
and that there may exist an extension of the Mermin-
Wagner theorem!’ to long-range interactions such as the
dipole interaction.

V. CONCLUSIONS

We have obtained a general solution of the two-
sublattice dipolar antiferromagnet in the spin-wave ap-
proximation. The results are particularly simple for Bra-
vais lattices. In the case of the simple cubic lattice, zero-
point corrections to the energy and sublattice magnetiza-
tion are unusually large, more than double those of the
nearest-neighbor sc Heisenberg antiferromagnet.
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