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A series of atomistic calculations is performed in order to evaluate the efFects of several physical
factors on dislocation emission in a model hexagonal lattice. The method of calculation is the lattice
Green s-function method, together with several pair potentials with variable parameters. The phys-
ical factors of interest are the dislocation width (or, more precisely, maximum strain) and "unstable
stacking energy" suggested by several continuum-based calculations, as well as the mode-E loading.
We find that the continuum theories are surprisingly accurate, provided that some modifications
are made. Typical discrepancies are of order 10'Fo in the emission stress intensity. However, the
atomistic calculations indicate that several of the assumptions underlying the continuum theories
are inaccurate. In addition, we find strong mode-E —mode-EE interactions, which are summarized in
the form of a crack-stability diagram.

I. INTRODUCTION

It is generally believed that a major factor in determin-
ing the ductile vs brittle behavior of materials is the ease
of emission of dislocations from a crack tip. If dislocation
emission is sufficiently easy, then a crack will respond to
an applied stress by such emission, and concomitant plas-
tic deformation, rather than by crack extension. Nearly
two decades ago, Rice and Thomson developed a semi-
quantitative criterion for ductile vs brittle behavior based
on a balance of forces on the dislocation due to the ap-
plied stress and the image force. For the "mode-II emis-
sion configuration" where the dislocation is emitted on
the cleavage plane ahead of the crack, continuum elas-
ticity theory predicts that the critical value of the stress
intensity for dislocation emission, Kii„ is

= pb/(1 —v)/87rr„

where p is the shear modulus, 6 is the Burgers vector
of the emitted dislocation, and r, is an empirical core
cutofF parameter. For physically reasonable values of r„
the ductile-to-brittle transition then occurs at approxi-
mately pb/10', = 1, where p, is the surface energy. If
6 is large, then the creation of the dislocation requires

. a large energy barrier, which tends to cause brittleness;
if p, is large, then ductility is enhanced because crack
propagation is made more difficult. This criterion suc-
cessfully correlates a large body of experimental data.
However, there is not a precise prescription for obtaining
the dislocation core cutofF parameter r, .

This analysis has been extended by several workers,
including YVeertman, 3 Schoeck, 4 and Rice.5 Of particu-
lar interest here are the treatments of Rice and Schoeck.

Both of them have reanalyzed the Rice-Thomson cri-
terion on the basis of the Peierls approach (see Hirth
and Lothes), in which the emitted dislocation is viewed
within continuum theory as a continuous distribution of
infinitesimal dislocations. Rice assumed a periodic re-
lation between shear stress and a continuously defined
sliding displacement 6'(r) along a crystal slip plane ema-
nating from a crack tip. Three energy terms were then
included: the energy of the sliding displacement, the in-
teraction energy of the (partly formed) dislocation with
the external stress Geld, and an elastic self-energy term
from the dislocation, whose form rejects the presence
of the crack. Finally, it was demonstrated that emission
would occur precisely when the dislocation is half-formed,
i.e. , 6(r) = b/2 at the crack tip. For the simplified
case of pure mode-II loading and coincident crack and
slip planes, it was possible to obtain an exact solution to
the force-balance equations for 6(r), and thus an emis-
sion criterion. Rice identified a solid-state parameter, the
unstable stacking energy p„„which characterizes the re-
sistance to displacement along the slip plane, and thus
to dislocation nucleation. It is the maximum energy bar-
rier encountered in blocklike sliding along the slip plane,
of one-half of the crystal relative to the other. Thus it
provides the simplest measure of the efFects of the dis-
creteness of the crystal structure. In terms of p„„ the
emission criterion is as follows:

(1.2)

This approach has the advantage that there is no need
to introduce an empirical cutofF parameter; in fact, p„,
can be accurately calculated by several existing first-
principles total-energy methods. However, the theory
contains approximations which need to be tested, for
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example the assumption that the inhomogenous distri-
bution of displacements around a dislocation can be de-
scribed by the homogeneous displacements entering p„,.

Schoeck uses a distribution of infinitesimal disloca-
tions as well, in a continuum theory based on an approx-
imation of the Peierls analysis, with an explicit image
force term. Rather than exactly solving the force-balance
equations, Schoeck simplifies the problem by assuming a
fixed analytic form for the distribution of infinitesimal
dislocations:

so that the displacernent 6(x), the (negative) integral of
P(x), is given by

the different loadings. We obtain numerical estimates of
the critical stress Kii, required for dislocation emission
for several pair-potential-type force laws, and find that
the dislocation maximum strain g describes our results
very accurately. We then compare our results to those of
Schoeck and Rice, and finally develop a crack-stability di-
agram which illustrates the interactions between mode-I
and mode-II loading.

Although this paper focuses on the simplified case of
dislocation emission along the crack plane, the method-
ology is entirely applicable to the more physically inter-
esting case in which the dislocation emerges on another
slip plane. This case will be treated in a subsequent pub-
lication.

6(x) = b/2 —(b/~) arctan(x/ u)i, (1 3) II. DESCRIPTION OF CALCULATION

Kii, = [0.69@/(1 —v)] ~gb (1.4)

The similarity of this criterion to the Rice-Thomson cri-
terion Eq. (1.1) suggests that 1/g may be thought of as a
more precisely defined version of the Rice-Thomson pa-
rameter r, . Again, there are several approximations that
need to be tested, in particular the assumption that the
shape of the dislocation is unaffected by the presence of
the crack. In addition, the empirical parameter g is not
obtained from the theory, but must be obtained from
atomistic simulations.

In this paper, we aim to obtain a more precise descrip-
tion of the criterion for dislocation emission, via atomic
simulations. We use our lattice Green's function method
(Thomson et al.7) in the mode-II emission configura-
tion to study the fracture behavior of a two-dimensional
hexagonal lattice. Although the mode-II emission ge-
ometry is, of course, idealized, it allows us to see in
the simplest possible fashion some of the eEects which
must also be present in more complex systems. In par-
ticular, mode-I and mode-II loadings act independently
within elasticity theory, but in our atomistic model it
is possible to identify directly the interactions between

where the integration constant is chosen so 6 goes to zero
far from the crack tip. Here x is measured relative to
the center of the dislocation. The critical parameter in
the theory is then the dislocation half-width iv. We will
find it convenient to replace m by the maximal strain
g in the dislocation distribution, because this quantity
can be readily evaluated in our simulations. Clearly, the
two parameters are equivalent, as, according to Eq. (1.3),

b/xui Thes. e parameters are the simplest descrip-
tion of the structure of the emerging dislocation. They
are related (although certainly not equivalent) to p„„
as we shall see in Sec. IIIB, a small value of p„, leads
(within the Peierls approach) to a large value of iii and
thus a small value of g. Thus, a small value of g corre-
sponds to easy dislocation emission.

By evaluating the energy of the emerging dislocation
distribution as a function of position, Schoeck was able
to calculate the value of K&& at which there was no energy
barrier to emission; this value was taken to be Kyy, . The
numerically obtained result is

A. Crystal geometry and elastic parameters

Our two-dimensional (2D) hexagonal model lattice
with a crack is depicted in Fig. 1. In our calculations,
the supercell size is 4 x 10, and the total allowed crack
length, 2l „+1, is 101 lattice spacings; the allowed
length of the cohesive zone at the crack tip where the
bonds are "nonlinear" (neither completely broken nor lin-

ear) is 20. (See Thomson et al.7) for further discussion
of these parameters. ) The actual crack length l, is then
determined by the number of broken bonds. Note that
the cohesive zone is placed at only the right-hand side of
the crack; at the left-hand side, all of the bonds up to
the end of the allowed crack region are assumed broken.
The external load, F, for the system is a pair of oppo-
sitely directed forces applied to the two atoms (top and
bottom) at the center of the allowed crack region. The
force F contains both tensile and shear components. For
each value of F, we achieve mechanical equilibrium, with
a convergence criterion corresponding to all atoms mov-

ing less than 10 lattice spacings in a self-consistency
iteration.

In comparing the 2D calculations with the conventional
plane strain elastic equations quoted in Eqs. (1.1)—(1.4)
above, there is a fundamental point which must be kept
in mind. The 2D model is not 3D plane strain. However,
it is equivalent to 3D plane stress. To see why, consider

:FI

FIG. 1. Schematic of crack geometry and application of
forces.
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c+t,
~I,rr =

~ere c —t
(2.1)

(The reader will note that the expressions for stress-
intensity factors are the same in both plane strain and
plane stress. ) In this equation, we have introduced the
usual continuum parameters, c, equal to half the length
of the broken-bond region (cf. Fig. 1), and t, the lattice
position where the force is applied, relative to the crack
tip. In our case, the length of crack is complicated be-
cause the crack "tip" will lie at some point within the
cohesive zone, and the particular atomic solution will de-
termine where this is. We choose the atomic crack tip to
be the point were the forces exerted across the cleavage
plane are the greatest, and the center of the dislocation to
be the atom pair where the relative displacement across
the cleavage plane is closest to a half lattice spacing; for
the triangular lattice this corresponds to the atoms being
precisely above and below one another. Thus, with the
loading prescription used here, K will decrease as the
crack propagates under fixed load. By comparing the
Griffith value for the critical stress intensity (in plane
stress) required to propagate the crack,

K(. = 2+p, p(1+v),

with the numerical results from our simulations, we find
that the continuum relation (5) is accurate to within a
few percent for our atomistic calculations, provided that

a 3D lattice composed of layers of our 2D lattice stacked
above one another in the third dimension. If the 3D lat-
tice is then given a plane strain (displacements in the
direction normal to the 2D layers are zero), the atoms
lying in layers above and below a reference layer will ex-
ert forces on the atoms of the reference layer, because of
the strained bonds between the layers. This is a Poisson's
ratio effect. In our problem, these forces are not allowed.
In 3D plane stress, a displacernent between the layers oc-
curs such that no forces are transmitted from one layer
to another. This means that so far as the in-plane stress
and strains are concerned, the additional layers do not
contribute, and the plane stress 3D problem yields the
same result within the plane as the actual 2D problem
we simulate. Thus, we must compare our 2D simulations
with plane stress predictions, not the plane strain predic-
tions in Eqs. (1.1)—( 1.4). The conversion of plane strain
results to plane stress equations is very simple: One must
convert every factor (1 —v) in Eqs. (1.1)—(1.4) into the
factor 1/(1+v). Inour lattice, p = k~3/4 and v = 1/4,
where k is the spring constant. Thus there is a correc-
tion factor of 6% and 3%%uo between the plane strain and
plane stress emission predictions of Schoeck and Rice,
respectively, which we will fold into the comparisons we
make below. The reader may note that we have quoted
the value for v appropriate for a 3D medium, not that
for 2D. This is necessary in order to be consistent with
using the 3D continuum equations in plane stress.

Our results will be given in terms of stress-intensity
factors, which from elasticity theory for a finite crack
(see Thomson') are given by

t, exceeds 30 lattice spacings. In our lattice, p = k~3/4
and v = 1/4, where k is the spring constant.

B. Force laws

In this work, we use a variety of pair-potential-based
force laws. In all of these, we choose the parameters so
that the elastic spring constant k is the same, in order
to facilitate comparisons; nevertheless, the surface and
unstable-stacking energies can be varied considerably. In
addition, we cut the force off at the second-neighbor dis-
tance y 3a, where a is the lattice constant. A constant is
then added to the pair-potential functions given below,
in order to make them continuous at the cutoff distance.
The truncation efFects are the largest for the "Cu" pa-
rameters (TUBER below with l = 0.19); here small cutofF-
induced trapping effects are observed. In the other cases,
the truncation effects are negligible. The force laws are
illustrated in Fig. 2. The first is the universal binding
energy relation (UBER) of Rose, Smith, and Ferrante. s

Here, the pair force is given by

FUBER k( )
—(r—a)/I

which is derived from the pair potential

V, = -kI'[I+ (r —a)/i]. -~"-.&~',

(2.3a)

(2.3b)
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FIG. 2. Force laws used in atomistic simulations. Solid
curve, F+ + with l = 0.191; long-dash curve, F with L =
0.248; short-dash line, F" with L = 0.262; long-short dashes,
F with L = 0.266. Distance in units of a, force in units of A:a.

where A: is the linear spring constant, r is the interatomic
separation, and t is the force law decay-length parameter.
We will always express t in units of a. Several values of
t are used to elucidate the chemical trends as clearly as
possible; although not all of these necessarily correspond
to real materials, the variation of t is a useful stratagem
in exploring brittle vs ductile behavior.

In order to obtain a wider range of force laws, we have
modified the attractive part (r ) a) of the force laws
in several ways (but always keeping the UBER repulsive
part). In all these additional cases, we have retained the
"Cu" values for A: and have chosen L so that the bond
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strength is also the same as for "Cu," unless stated oth-
erwise.

k(r——a)e-("

(2.3c)

(2.3d)

(2.3e)

Of these, F corresponds to a pair potential with Gauss-
ian form; in the remaining cases the pair potentials were
obtained by numerical integration of the force.

C. Eva1uation of Kzz

Our results for Kii, are obtained for both equilibrium
and nonequilibrium cracks. By an equilibrium crack, we
mean one which is in stable static equilibrium consistent
with the force laws at its tip. A nonequilibrium crack
is one where we have arbitrarily cut the bonds, and not
allowed the bonding forces to reconnect themselves across
the cleavage plane, even when the atoms are within range.
This is a mathematical trick used ubiquitously in fracture
mechanics. Thus, a pure mode-II nonequilibrium crack
is one where no mode-I loadings are exerted to open the
crack tip, but a mathematical knife is invoked to cut
the bonds across the cleavage plane behind the crack tip
(i.e. , to the left of the crack tip in Fig. 1). This is the
atomic analogue of Rice's mode-II construction. We have
also constructed other nonequilibrium solutions, where
the mode-I load is greater than zero, but is not sufficient
to hold the atoms apart, in equilibrium, against their
bonding forces at the tip.

Although in this way, we are able to construct an
atomic analogue of the continuum mode-II crack, there is
an important distinction to be made between the atomic
and continuum cases. In the continuum, there is no ver-
tical displacement on the cleavage plane ahead of the
mode-II crack. In the atomic case, there is, because of
the response of the hexagonal lattice to the horizontal
mode-II shear force. This causes a closure of the crack
tip, with an efFective compressive mode-I loading there.
It is an unavoidable result of the lattice, not to be con-
fused with the "Poisson ratio effect, " and leads to results
which have no analogue in the continuum mode-II case.
In comparing our mode-II results with those of Rice, this
distinction must always be kept in mind.

Typical crack atomic configurations are shown in Fig.
3, which displays the atoms in the cohesive zone at the
end of the crack (where nonhnear bonds are attached).
In all three frames, the crack tip is well defined in terms
of the maximum force exerted across the cleavage plane.
The various values of Ki ri are determined from Eq. (2.1),
with the measured position of the crack tip, and the in-
put loads. In Fig. 3(a), the crack is loaded by a purely
tensile force. In Fig. 3(b), the tensile force is the same as
in Fig. 3(a), but a shear component is added. An incip-
ient dislocation (before emission) is seen, whose position
is indicated in the figure. Figure 3(c) shows the config-
uration after the shear component is increased slightly.
The dislocation has now been emitted. It stops at the

Crack Tip

Crack Tip
Emerging Dislocation

(c)
Crack Tip Dislocation

FIG. 3. Crack geometries. (a) Pure mode-I crack. Ar-
row denotes crack-tip position. (b) Equilibrium crack just
before emission. The "half dislocation" symbol denotes the
center of the emerging dislocation. (c) Equilibrium crack after
emission. The filled circles denote atom size in the equilib-
rium lattice, the outer circle about each atom center gives
the range of the force law, and the density of 61ling denotes
the magnitude of the total force on an atom transmitted to it
across the cleavage plane. Full black denotes zero force, full
vrhite maximum force.

end of the cohesive zone, because from this point on, the
bonds are linear and therefore cannot break. In effect, the
end of the cohesive zone acts as a strong pinning point.
Kii, is obtained from our calculations as the value of Kii
corresponding to Fig. 3(b), i.e. , just before emission.

In order to see the dislocation properties in a more
quantitative manner, we examine the horizontal relative
displacement, Au(x), across the cleavage plane. That
is, we compare the displacement on the upper cleavage
plane, u+(x, ) with that of the corresponding atom on the
lower cleavage plane, u (x;). Au(x;) = u+(x;) —u (x,).
Figure 4(a) shows the results for the equilibrium case,
with varying mode-II loading. We see that a disloca-
tion is built up gradually with increasing mode-II loading.
The center of the dislocation (emerging or fully formed) is
at the point of maximum slope in the curve, which defines
the parameter, rl. Once the dislocation is emitted (upper
curves), a well-defined region of fairly "perfect" crystal
is seen between the dislocation and the crack tip. Figure
4(a) also shows that the position of the crack tip wanders
somewhat during the emission process. The amount of
this wander depends upon the force law, and is a general
characteristic of the emission process. Figure 4(b) again
shows the equilibrium case, but with focus on two values
of Kii, immediately before and after emission. For sub-
sequent use, a comparison with the form of Schoeck [Eq.
(1.4)] is shown.
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Figure 4(c), shows the horizontal displacements for the
nonequilibrium mode-II case. Again, the dislocation is
well separated from the crack tip after emission.

We list values of stress intensity in Fig. 4 as calculated
from the computed structure and Eq. (2.1). However,
the variation of K in Fig. 4(b) for the two structures, for
example, just before and just after emission is only about
IFo. When the crack tip structure changes drastically, as
it does between these two cases, the value of K cannot
be inferred to such accuracy. The reader should simply
know that the actual force exerted at the center of the
crack does increase in the way implied from the reported
values of K.
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FIG. 4. Horizontal relative displacements, Au(z), vs hor-
izontal position z. (a) and (b) Equilibrium crack. (c) Pure
mode-II nonequilibrium crack. Displacements and positions
are given in units of a. Frames (b) and (c) include fit to Eq.
(3) for dislocation shape (connected circles). In frame (a)
KI is fixed at 0.261, while Kqq ranges from 0.005 to 0.015;
emission occurs at approximately K» = 0.11. In frame (b),
cur~es are for Kn = 0.109 and 0.110; in frame (c), curves are
foL rYqq ——0.136 and 0.137. The best values of the dislocation
width, m and maximum strain, g, to 6t the arctan function
are listed on the figures in (b) and (c).

A. EfFects of farce law on p„p„„and g

Before turning to our numerical results for K~y„we
discuss in general terms the effects of the atomic force law
on the basic parameters that we expect to be relevant for
fracture. In the Rice-Thomson model, brittle vs ductile
behavior is defined by whether or not the conditions for
dislocation emission for a crack in mode-I configuration
are met prior to Griffith cleavage. Although the present
work treats cracks in mode-II configuration, the behavior
of the emission criterion vs the cleavage condition is still
relevant to the more general brittle or ductile issue in the
mode-I configuration. The mode-I configuration will be
addressed in a separate paper.

The chemical trends associated with changing the
force law are most easily studied in the context of the
UBER with fixed spring constant, k. Thus, as men-
tioned above, we will generally keep A: fixed at the "Cu"
value. Under that assumption, there is only one pa-
rameter which affects the competition between cleavage
and emission —the (dimensionless) length-scale parame-
ter t Results f.or the surface energy p„ the unstable
stacking energy p„„ the critical mode-II energy release,
girc = K&2&, /2p, (1 + v), and the dislocation maximum
strain, tl, are given in Fig. 5 as functions of t. [This ex-
pression for gir, is written for plane stress. Compare Eq.
(1.2).j We evaluate p„, using the condition that the verti-
cal component of the force between the two sliding blocks
vanish, as suggested by Rice.5 In our simple model, p,
is equal to the value of the pair potential at the nearest-
neighbor separation, because each surface atom loses two
neighbors by the creation of the surface. In the UBER
formulation, we see by Eq. (2.3b) that this is roughly
proportional to t2, as is seen in Fig. 5. On the other
hand, p„, first increases with increasing l, then reaches a
maximum, and finally decreases, For small t, the increase
in p„, is due to the increase in depth of the potential dis-
cussed above; for a vanishingly deep potential, p«must
of course vanish. As t increases further, the potential
becomes broader, and the corrugations in the energy as
a function of displacement are reduced. This results in
p„, possessing a maximum as a function of I,. Note that
over the whole physically relevant range of t,', p„, varies
less than p, . The reader will note that the small vari-
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FIG. 5. Dependence of twice the surface energy 2p,
(dashed line), unstable stacking energy p„, (solid line), giie,
(connected triangles), and dislocation maximum slope q (con-
nected squares) on length-scale parameter l in UBER force
law. g is dimensionless, and is plotted on the right axis,
the other three quantities are plotted on the left in units
of 2p„,(Cu). gii, is plotted for the plane stress predictions
discussed in the text.

ations in rI observed with varying 1 are similar to those
in p„,. We have plotted the parameter gii, in order to
track Rice's criterion, Eq. (1.2), with the parameter l.

At this point, we are in a position to compare the rel-
ative magnitudes of Ki,/Kri„which is the analogue in
the present case of the intrinsic ductility criterion intro-
duced by Rice and Thomson, and discussed briefiy in the
Introduction. Because Ki, is controlled by p„and Kii,
is probably closely related to p„, and rl, we believe that
the increase of p, relative to p„, and g, shown in Fig.
5, can lead to a crack switching from brittle to ductile
behavior with increasing t. The fact that the curve for
2p, is always above p„, means that at least for reason-
able values of t, the UBER force law is always "ductile"
in this sense for the mode-II configuration.

B. Maximum-slope criterion

Results for Kii, for the various force-law types and pa
rameters that we have used are given in Fig. 6. Here,
we show results for both equilibrium and nonequilibrium
cracks. The horizontal axis is ~rl, as is suggested by
Schoeck's analysis [cf. Eq. (1.4)]. We find that Kri, is
determined very accurately by q, as evidenced by the
figure. Our results combine both fully equilibrium and
nonequilibrium cases where the mode-I load is not suf-
ficient to open the crack, as well as pure mode-II cases.
All cases can be plotted on the same trend )ine, so we
have not distinguished equilibrium from nonequilibrium
in the figure. Here, the dashed line is a fit to the UBER
results, which we consider the most physical. We note
that this correlation is predicted already by Eq. (1.1).
We expect r, to be roughly inversely proportional to g.
Thus Kii, oc ~g, in agreement with the results of Fig. 6,
and with Eq. (1.4).

FIG. 6. Atomistic results for Kjp, vs square root of dis-
location maximum strain. Dashed line denotes linear fit to
UBER points; dot-dashed line is result of Schoeck. Points for
various force laws labeled in box. Units of K are (k~a). The
Schoeck results, Eq. (1.4), have been altered for plane stress
conditions.

C. Evaluation of Schoeck's model

Schoeck's model provides an evaluation [cf. Eq. (1.4)]
of the proportionality constant relating K&« to ~rl. We
see in Fig. 6 that his constant provides agreement with
the atomistic results at roughly the 10% level. In order
to test his assumptions, we have evaluated the quality of
fit that is obtained by Eq. (1.3) for the dislocation shape.
As indicated in Figs. 4(b) and 4(c), the quality of fit is
quite good for the UBER force law. In the pure mode-II
(nonequilibrium) crack, the center of the dislocation is
right at the crack tip, while in the equilibrium case it
is shifted by about one lattice constant. We find that
although the arctan is a good fitting function for the
UBER, it is less so for the force law, E' in Eq. (2.3e). I"
is, of course, an extreme case, and not very "physical, "
but it gives us a sense of the limits of the theory. As
Schoeck states, the assumptions in his development make
one expect that his prediction for Krr, will be an upper
limit. Figure 6 shows that expectation is valid for the
UBER, but not for the other force laws.

We are also able to test Schoeck's assumption that the
width of the dislocation is the same in the crack core as in
the free lattice. The Peierls analysis (Rices) finds a ratio
of two between the two values, with the crack-tip dislo-
cation being wider. Our results, for an equilibrium crack,
are given in Fig. 7. We see that the ratio depends on
the force law, but is in the range of 1.4 for UBER. The
origin of the dislocation width change is a very impor-
tant question in the interpretation of our results. This
result can be understood via either of the two simpli-
fied models that are most used to describe dislocation
structure, namely the Peierls model used by Schoeck and
Rice, and the Frenkel-Kontorova model. If, in Rice's ap-
proach, one assumes that the misfit function 4(b) has a
sinusoidal form, with a maximum value of p„„ then the
usual Peierls analysis (Hirth and I othes) goes through
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FIG. 7. Relation between bulk dislocation maximum
strain g and crack-tip dislocation maximum strain g. Dashed
line is locus of equality between g and g . The Peierls-Nabarro
model in the free lattice is shown on the horizontal axis at

0.276. Points for various force laws are noted in the
figure box.

basically untouched, except that the force-balance equa-
tion is replaced by

p(2.")dz'/(2: —x')

= —[4vr (1 —v)p„, /pb] sin(2n. b(z)/b), (3.1)

where P(2:) = —d6/d2:. Here b is twice the displacement
u of Hirth and Lothe. The solution to this has the form
of Eq. (1.3), but with a width t'ai = pb /87r (1 —v)p„, .
Thus the width is inversely proportional to p„,. Foreman,
Jaswon, and Wood have studied numerical extensions
of the original Peierls treatment for force laws other than
the sinusoidal, and report that the core width is inversely
proportional to the maximum stress. This is in qualita-
tive agreement with the prediction from Eq. (3.1), be-
cause p„, is expected to be roughly proportional to the
maximum stress. Alternatively to the Peierls analysis,
in the Frenkel-Kontorova model (see Frank and Steedss),
the dislocation structure is determined by two parame-
ters, the in-plane force constant a, and the magnitude of
the corrugations in the potential associated with atomic
planes sliding over one another. The former quantity
may be associated with p, and the latter with p„,. The
Frenkel-Kontorova analysis indicates that t'ai oc go./p„, .
Thus, the content of all these results is that large corru-
gations tend to narrow the dislocation core, awhile a large
shear elastic constant tends to expand it.

One would expect that the tensile stress across the slip
plane exerted by the mode-I component of the load on an
equilibrium crack would increase the interplanar spacing,
and thereby reduce p„„on the other hand, the shear con-
stant remains constant (in the Frenkel-Kontorova model,
it is only the in-plane shear constant that enters). Thus
we have one tentative explanation of the change in the
dislocation width at the crack tip, based on the tensile
stress in that region. The importance of the tensile stress

D. Evaluation of Rice's criterion

Comparison of the present atomistic results with Rice's
continuum results is given in Fig. 8. We give results for
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FIG. 8. Atomistic results for K&I, vs square root of unsta-
ble stacking energy p„,. Dashed line denotes result of Rice, al-
tered for plane stress conditions. Triangles are for pure mode
II, while circles are for full equilibrium crack. Points for var-
ious force laws labeled in box. Units of K are (kv a) and p„,
are p, (Cu).

is confirmed by the result that for the pure mode-II crack
(no applied tensile stress), the dislocation just before
emission is actually 5% narrower than in the bulk. The
reason for the decrease in width is that for pure mode-II
stress in the hexagonal structure, the region around the
crack tip is indirectly compressed by the hexagonal lat-
tice response to shear loads as discussed at the start of
this section. This compression is overcome by the ten-
sile loading for an equilibrium crack. In addition to the
tensile stress, the core of the emerging dislocation is also
broadened by its image in the crack tip. Since the pure
mode-II emerging dislocation is narrowed as noted above,
clearly the major influence on the crack core is the tensile
stress in that case.

Because Schoeck's approach is continuum based, it has
no Peierls barrier to the motion of the dislocations. The
Peierls barrier increases in going from F~ to F~ to F',
and the plotted values of g in Fig. 6 also increase mono-
tonically, relative to Schoeck's curve, in the same se-
quence. Thus, the deviation of the points in Fig. 6 from
Schoeck's prediction seems to be simply explained by the
neglect of the Peierls barrier in his work.

In summary, we find that our results are well described
by a relation of the form of Eq. (1.1), with

r, = b/10@ (3 2)

Finally, Shoeck makes the important assumption that
during the emission process, the crack tip is held rigidly
in place. We find, in fact, that the crack wanders first
forward and then backward as the dislocation emerges.
This wandering of the crack during emission is an impor-
tant feature of all our emission simulations, and comes
up again in Sec. III F below.
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pure mode II, as per Rice, as well as for the fully equi-
libr:um crack. For pure mode-II loading, we find that
Kri, exceeds Rice's values by 15—30%, depending on the
force-law parameters. This level of agreement is quite
impressive, given the absence of adjustable parameters
in the theory, and its quasicontinuum nature. In the
equilibrium crack, the mode-I loading reduces Kpp, for
reasons to be discussed in Sec. IIIF. Here, surprisingly,
Kri, is closer to Rice's values than for the pure mode-
II case. Thus Rice's model actually gives more accurate
results for the equilibrium crack. In this case, the dis-
crepancies are approximately equivalent to those of the
Schoeck theory. The trends with changing l are also ob-
tained more accurately in the equilibrium crack, in that
Krr, increases weakly with increasing l (cf. Fig. 5) in
both the atomistic results and in Rice's results. In the
atomistic results for the pure mode-II crack, the order is
reversed in some cases.

The following are some of the likely reasons for the
minor discrepancies between Rice's theory and the atom-
istic results.

(1) As in Schoeck's approach, the lattice resistance to
dislocation motion, i.e., the Peierls stress, is not included.
This will tend to make Rice's estimates of Kri, too low
for high Peierls force crystals. As in Schoeck's case, we
find that the deviation increases monotonically with the
size of the Peierls barrier. Most striking is the mode-II
result for F', where the narrowed dislocation and short
range of force law combine to give a large deviation from
Rice's curve.

(2) In Rice's calculation the dislocation center is pre-
cisely at the crack tip, and it is exactly half formed at the
critical point of emission. For a pure mode-II nonequilib-
rium crack, we find that the dislocation just before emis-
sion is in fact right at the crack tip, and is half formed.
This holds for all values of t that we have used, as well as
for the modified potentials. However, for the equilibrium
crack, the position of the dislocation, and how completely
formed it is, depend on the force law. For example, for
an equilibrium crack in UBER, the separation between
the crack tip and the dislocation center increases with
decreasing I,. For l=lc,„, 0.7 lc,„, and 0.55 lc„, the sepa-
rations are about 1, 1.5, 2.5, respectively, in units of the
lattice constant.

(3) The motion of the crack tip during emission is ig-
nored.

(4) The interaction between mode-I and mode-II effects
is ignored. As mentioned above, we find that mode-II
loading creates some compressive stress in front of the
crack tip, which can be countered by an applied mode-I
stress. It is not clear how to evaluate such effects within
Rice's model. However, one could imagine a procedure
for evaluating the efFects of Kr on p„,.

E. Mode-I efFects: lattice trapping

By lattice trapping, we mean the phenomenon that in
all lattice models, the crack is stable at a particular lat-
tice position for a range of loads (see Thomson'). This
lattice trapping depends on the form of the force law.
The general expectation is that the lattice trapping is

smaller the longer is the range of the force. We have ex-
plored this question in our modeling with the result that
with the UBER force law, the trapping is only about 5%
for the "Cu" parameters, and even the observed trapping
is probably due to the truncation of the force at the next-
neighbor distance. For the extreme force, F, it is in the
neighborhood of 35%. Thus the difFerence between the
two conforms with the general expectation. We will find
that in cases where the trapping is significant, the mixed
mode behavior can become quite complicated.

F. Mode-I —mode-II coupling

One of the entirely atomistic aspects of our results is
the interaction between mode-I and mode-II loadings. In
linear elastic theory, these act independently (see Lin and
Thomsonio). Dislocation emission from a crack tip along
the cleavage plane is controlled exclusively by the mode-
II loading, while cleavage is controlled exclusively by the
mode-I loading. In addition, the shielding of the crack by
an edge dislocation on the cleavage plane is pure mode-II
shielding, with no shielding of the mode-I stress singu-
larity. Finally, in linear elastic theory, a pure mode-II
crack will never cleave, since there is no tensile force to
open the crack; therefore dislocation emission is always
favored. It is convenient to discuss mixed-mode loading
with a "crack-stability" diagram (Lin and Thomsonic).
In linear elasticity, the cleavage curve in such a diagram
[cf. Fig. 9(a)] is straight and normal to the Ki axis and
the emission curve is straight and parallel to the Kr axis.
In more elaborate calculations, the effects of mixed load-
ing on the Griffith condition and dislocation emission de-
pend in a complex way on the details of the atomic bond-
ing in the crack tip region. Cheung, Yip, and Argon, ii
and earlier Argon, iz have argued that shear softening by
high tensile stress is a critical element in dislocation emis-
sion. Beltz and Riceis modeled such effects by broaden-
ing their framework to include coupled shear and tension.
They concluded that in some cases, it is appropriate to
include the efFects of Ki on Kir, by simply evaluating
p„, under vanishing tensile stress (as opposed to fixed
relative vertical positions of the blocks of atoms).

In our atomic calculations for the hexagonal lattice,
a strong mode-I —mode-II interaction is found even us-
ing only our simple pair potential methodology. Figure
9(a) shows the results for the UBER force law, using the
"Cu" parameters. Consider first the case of fixed mode-I
load and increasing mode-II load. We see that Krr, is
reduced by the mode-I load. We believe that this effect
may be understood in a simple fashion in terms of the
p„, parameter. As the mode-I load is increased, the two
blocks whose relative displacement defines p„, are sepa-
rated from each other, which as mentioned above reduces
the corrugations in the potential as a function of parallel
displacement. Thus p„„and in turn Krr„are reduced
by the mode-I loading. Alternatively, one could think
of the effect in terms of g. As discussed in Sec. III 8, g
decreases under mode-I loading and Kyy, is thus reduced
according to Eq. (1.4). Both of these effects should be
linear for small Kg, consistent with the behavior in Fig.
9(a). We also find a surprising crack-propagation effect
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in the response of the crack to mode-II loading. As in-
dicated in Fig. 4(a), with increasing mode-I loading,
the crack extends (even well below the Griffith mode-I
load) and at the same time builds up shear ahead of the
crack until a dislocation is emitted from the crack tip.
Then the crack tip retreats toward its original position,
but only part way. As the mode-II load is increased,
the process repeats itself. Thus, although mode-II load-
ing by itself provides no driving force for crack opening,
and the mode-I load is well below the Griffith value, the
crack propagates. Such a process is an entirely atomic
feature of dislocation emission, and corresponds to a cu-
rious mixed cleavage and emission event, which might be
observable as a crack advance associated with emission.

Consider now the case of a nonequilibrium crack with
less than the Griffith mode-I load, as the mode-II load
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is increased. We see in Fig. 9(a) that Ki, is reduced by
the presence of the mode-IE loading. This result may be
due to the effect of the mode-II loading on the surface
energy p, . To see this, consider the two-block geome-
try used to define p„,. The surface energy is simply half
the work required, per unit area, to pull the blocks apart
in the direction perpendicular to the surface. But, if
one first displaces the blocks in the parallel direction be-
fore separating them, as a mode-II load does, then the
atoms at the interface between the blocks are imperfectly
bonded, and less work is required to pull them apart. In
fact, p„, measures precisely the imperfection of the bond-
ing caused by lateral displacements. For small Kii„ the
symmetry of the lattice implies that the change in p, is
quadratic in Kii„consistent with the figure. If the blocks
were displaced as far as the saddle point defining p„, be-
fore they were separated, then the new (Kii-dependent)
surface energy would be p, —p„,/2. (The factor of 1/2
comes from the conventions in defining p, and p„„ the
former is defined per unit of total surface, so that pulling
the blocks apart involves twice the surface energy, while
the lateral displacement involves p„, with no extra factor
of 2.) This presumably defines an upper bound for the
effects of KII on Krc.

For comparison, we include in Fig. 9(a) the predic-
tion by the standard elastic analysis that a critical value
of the elastic energy release, written in plane stress,
g~ = (K&~ + Ki2&)/2p(1 + v) = 2p„should represent
the cleavage line (Sinclair and Finnis. i4) This analysis
assumes that the crack is always able to reach its ab-
solute lowest-energy state and will not be trapped in a
metastable, higher-energy state. I in and Thomsonio ar-
gue on heuristic grounds that the cleavage line is proba-
bly closer to being independent of Kpp and Kppp, but no
atomistic calculations have explored this question. We
show that for our hexagonal lattice, the cleavage line fol-
lows neither of these criteria. In the UBER force law,
the cleavage line is a relatively smooth curve lying be-
tween the vertical and circular cases. However, in the
results for the F laws, given in Fig. 9(a), it is very com-
plex. Although we do not consider the latter results to
be physically realistic, because of the short range of the
force laws, the large difference between Figs. 9(a) and
9(b) indicates the large effect of the force law (at con-
stant p, ) on the crack-stability diagram. This suggests
that the shape of the cleavage line appears to have little
to do with the energy release function, g, but is rather a
complex mixture of crystallographic and force law effects.

This argument is not to deny that energy is released
into the elastic Geld by the shear loading when the
crack propagates under mixed mode-I —mode-II loading.
Rather, the lattice bonding poses a necessary condition
for existence of the equilibrium crack, and this (Griffith)
condition has little to do with energy release. However,
once the conditions for existence are satisfied, and the
crack propagates under conditions where more elastic en-
ergy is expended than is necessary to make the surface,
then this excess energy is available to drive the crack to
high velocity. Hence, a crack under mixed mode loading
with the mixed load stability shown in Fig. 9(a), is more
unstable than when loaded in pure mode I.
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IV. CONCLUSIONS
The salient features of the results described above are

the following. The dislocation emission criterion is de-
scribed accurately by a parameter related to dislocation
structure, namely the maximum strain g of an incipi-
ent crack-tip dislocation. This parameter gives Kii„ for
a broad range of model force laws, to an accuracy of
about O'Fo. Evaluation of two continuum-based theories
due to Rice and Schoeck shows that both of these theories
agree surprisingly well with the atomistic results How-
ever, the atomistic results show that some of the assump-
tions underlying both of these theories are quite fiawed;
in particular, the maximum strain rl of the dislocation
core depends on its position relative to the crack, the
critical configuration is not necessarily right at the crack
tip, and the crack tip moves during emission. Finally, we
have shown that in atomistic calculations, mode-I —mode-
II interactions are obtained which can be understood via

the eifects of stress on the unstable stacking energy, the
dislocation width, and the surface energy.
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