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During the solid-state amorphization process, there have been a number of observations showing a
large lattice dilatation and softening of shear elastic constants. Based on these reports, the amorphiza-
tion mechanism was modeled by introducing static displacement of atoms that caused lattice strain. The
calculation indicated that a crystalline structure became unstable at a critical strain value. Qualitative
agreement was obtained between the calculated and experimental values of the changes in the shear elas-
tic constant and the lattice parameter at the instability point.

I. INTRODUCTION

Crystal-to-amorphous transformation (amorphization)
can take place in a wide range of materials by means of
various solid-state techniques.! These techniques include
high-energy particle irradiation, ion implantation, hydro-
gen charging, ion-beam mixing, annealing of diffusion
couples, mechanical alloying, and mechanical deforma-
tion. A basic premise of amorphization is to increase the
free energy of the original crystalline phase to a point
higher than that of an amorphous phase without trans-
forming to other crystalline phases. The free energy can
be raised either by forming a nonequilibrium solid solu-
tion! or by accumulating lattice defects such as antisite
defects,? Frenkel pairs,’ point defect clusters,* and dislo-
cations.’ Transformation to other crystalline phases can
be kinetically restricted by performing the amorphization
process at a relatively low temperature.

Despite the variety of amorphization techniques, there
appears to be a common observation; lattice strain and
the softening of shear elastic constants occur before the
onset of amorphization. The necessity of the elastic
softening to amorphization is clearly demonstrated in
Table I for intermetallic compounds irradiated with

TABLE 1. Reported amorphization tendency (C—a) by ion
irradiation, lattice parameter increase (Aa/a,), and shear elas-
tic constant decrease (—AC /C,) for various intermetallic com-
pounds.

C— A Aa/ay (%) —AC/Cy (%)
Nb,Ir 520
Zr;Al Yes 0.8 50°
CuTi 40°
FeTi 1.3~2.0 40¢
FeAl No 20°
NiAl 0.67 104
2Reference 7.
YReference 8.
‘Reference 9.
dReference 10.
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high-energy Kr ions.” !° Shear elastic constants of the

compounds that were amorphized exhibited more than
40% decrease. On the other hand, shear elastic constants
of NiAl and FeAl that did not undergo amorphization
exhibited only 10-20 % decrease. Table I also lists the
reported values of lattice parameter variation during irra-
diation. In contrast to the shear elastic constant, it ap-
pears at the first sight that the change in the lattice pa-
rameter does not have any relationship with the amorphi-
zation tendency. However, the following evidences sug-
gest the importance of the lattice strain to amorphiza-
tion. During Kr-ion irradiation of Zr;AL® a 0.8% in-
crease in the lattice parameter was observed before the
onset of amorphization, as shown in the Table. When the
same material was amorphized by hydrogenation,!! the
lattice parameter was found to increase by the same mag-
nitude prior to amorphization. Although the shear elas-
tic constant was not reported for a hydrogenated Zr;Al,
the Gruneisen relationship'? requires that the same de-
crease (50%) in the shear elastic constant be observed for
the same dilatation value.

Similar results have been reported in thin films of Si.
As the grain size of hydrogenated polycrystalline silicon
was decreased by controlling the deposition conditions,
abrupt transformation from a crystalline phase to an
amorphous phase was observed at a grain size of ~30 A.
The lattice parameter of the specimen near the transition
point was found to be ~ 1% greater than that of a much
larger grain specimen.!’> Coincidentally, when Si was
amorphized by self-ion implantation,'* the same magni-
tude of lattice strain was observed before amorphization
took place, as identified by an x-ray rocking curve tech-
nique. Consistent results were obtained by analyzing a
shift of a crystalline Raman peak.'> Since the peak shift
was larger than the calculated value using a reported
force constant and a lattice parameter change of 1% in
Si, reduction of the force constant was suggested to ac-
company the observed strain. These results suggest that
amorphization occurs when the crystal is strained to a
critical value that is dependent on materials. The critical
magnitude of strain appears to result in a large decrease
(40-50 %) in the shear elastic constant that is indepen-
dent of materials.
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The following evidence in other materials amorphized
by different methods further supports the importance of
the elastic softening and lattice strain to amorphization.
During B-ion implantation into Nb,'® the mean-square
displacement amplitude of atoms, determined by the x-
ray diffuse scattering intensity, was found to increase rap-
idly and saturate at the onset of amorphization. Such
atomic displacement would lead to the softening of the
shear elastic constant due to the elastic anharmonicity.
Amorphization has also been reported in the NiTi in-
termetallic compound by cold working.® Estimated lat-
tice dilatation and associated decrease in the shear elastic
constant caused by dislocation accumulation were found
to be comparable in magnitude to those in Table 1.!7

Consistent results have been reported theoretically by
molecular-dynamics simulation of the amorphization
process. The radial distribution function, coordination
number, and mean-square displacement amplitude of lat-
tice atoms were calculated as interstitials were inserted
into an fcc structure followed by structural relaxation.!®
It was found that with increasing the interstitial concen-
tration, the mean-square displacement increased and the
radial distribution function and coordination number ap-
proached those of an amorphous structure. Similar re-
sults were obtained in NiZr, during introduction of an-
tisite defects!® and NiZr during introduction of either
Frenkel pairs or antisite defects.?® In NiZr, the accumu-
lation of Frenkel pairs or antisite defects were both found
to increase the crystalline volume by 4% and decrease
the shear elastic constant by ~50% before the onset of
amorphization. It has been also shown?! that a large de-
crease of the shear elastic constant occurs during intro-
duction of antisite defects in materials that fit with the
empirical criteria for amorphization,?? indicating a close
link between the amortization mechanism and the soften-
ing of the shear elastic constant.

These experimental and theoretical results have all in-
dicated directly or indirectly that during the course of
amorphization, lattice atoms are displaced from their
equilibrium lattice sites, causing lattice strain and the
softening of shear elastic constants to critical values. In
this regard, the amorphization mechanism has often been
paralleled with the melting phenomena’® described by
the Gibbs’ criterion of the crystalline instability caused
by lattice dilatation and the decrease of the elastic con-
stants to a null value.?*> We are unaware of an attempt to
describe explicitly the effects of lattice dilatation and
softening on the crystalline stability. This work is intend-
ed to describe the amorphization mechanism in terms of
the elastic instability caused by static displacement of
atoms. The variation of the interatomic distance was cal-
culated as a function of the defect concentration. An in-
stability point of the crystalline structure was found to
exist where the lattice strain diverges to infinity. Qualita-
tive agreement was found between the calculated values
and the experimental values of the shear elastic constant
and the lattice parameter increase at the instability point.

II. THEORY

The present theory for amorphization is derived from
the melting theory developed by Ida,?* based on the elas-
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tic anharmonicity accompanied by the vibrational
elongation of interatomic spacings that increased with in-
creasing temperature. In the case of solid-state amorphi-
zation that occurs at a low temperature, thermal vibra-
tion is not a major cause for the elongation of interatomic
spacings and is thus neglected in the present work. In-
stead, static displacement of atoms from their lattice site
is a dominating phenomenon as a manifestation of lattice
defects introduced during the amorphization process.

Let us suppose for simplicity that the crystal in con-
sideration consists of a single element and is elastically
isotropic. Static displacement of the nth atom can be de-
scribed by the following Fourier series:

u, = Yagcos(k-a,)q,, . (1)
ki
Here, a,; is a displacement amplitude, k is a wave vector,
i represents each normal mode of vibration (i =1 for the
longitudinal mode and i =2,3 for the two independent
transverse modes), a,, is a position vector of the nth atom,
and qy; is a polarization vector of corresponding vibra-
tion modes.

When we define a new position vector, r,=a, +u,,
after static displacement of u,,, the fractional increase of
the interatomic distance (i.e., strain) between the nth and
n'th atoms can be given as

Irn’—rn ] - Ian'.——an |

N P : @)

Expanding |r, —r,| with respect to u, —u, up to the
second-order term, Q becomes

_awu , 1 |u? (a-u)?
Q—7+E[—i‘———a—4— , (3)

where a=a,.—a,, u=u,—u,, a=|al, and u =|ul.
When the scalar product a-u is taken for all possible vec-
tors, it is obvious that the first term in (3) vanishes.
Then, inserting (1) into (3) yields

(a-qy; )?

a’

1— 4)

o=3 aii%sinz(k-a)
ki a
Since static displacement has a relatively long wave-
length, sin(k-a) can be approximated to k-a. Thus,

2l (arqy )

a2

1— (5)

o= Eaii k-2
ki a

In order to express ay; as a function of k, it may be
useful to consider dynamic displacement of atoms due to
thermal vibration, which is given by

u,= ¥ ay;cos(k-a, —awyt), (6)
ki
where the same notation was used as in (1) with an addi-
tional time dependent term with parameters w,; for a vi-
bration frequency and ¢ for time. Equality between the
kinetic and potential energies yields

A =———5 )
k mN o}
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where m is the mass of an atom, and N is the total num-
ber of atoms. For a small k, a dispersion relation is ap-
proximately expressed by a linear relationship, w,; =v;k,
with the wave velocity v; as a proportional coefficient.
Here the distribution of k is isotropic because of the ini-
tial assumption. From a relationship of elastic constants
C;=pv} with p being the atomic density, the dynamic
displacement frequency can be described with time in-
dependent parameters as follows:

a)ki=k\/C,~/p . (8)

Then the dynamic displacement amplitude due to
thermal vibration is obtained by inserting (8) into (7),

me2 C,' '

2
ay; =

Note that there is no time related factor in this equation.
Considering static displacement as an instantaneous snap
shot of dynamic displacement, it would be reasonable to
use Eq. (9) for the static displacement amplitude with the
following modification: The potential energy for a single
mode of thermal vibration kyT is replaced by the free-
energy increment due to defect accumulation. We will
write it as x Af /3N, where x is the number of defects and
Af is the free-energy increment per defect. The factor 3N
in the denominator is to make x Af the potential energy
for a single mode of the displacement wave, assuming
that the free-energy increment is equally partitioned to
each normal vibration mode. Thus, Eq. (5) becomes

2 2
_20xAf g1 |k a _la.
Q 3mN? E’ C |k a ! q ki (10)

This summation can be approximated to an integral
form with continuously varying k. For this mathematical
procedure, a is fixed and k is varied by varying k and the
angle 0 formed by k and a. The probability of finding &
in a small segment dk d@ is V /4n’k?sin0dk d O where V
is a unit-cell volume. Since the total number of k is N, k
can take a value up to %(6772N /V). Also notice that
k||qy; and klqy,,qu;. With all these taken into account,
Q is finally given as

—4pxAf |1 3
e="4m | e | (1

where M =mN, a mole weight and the isotropic condi-
tion, C, =Cj, is used.

If C; remains constant independent of x, the crystal
would expand linearly to an infinite value with increasing
the defect concentration because of the linearity between
Q and x in the above equation. However, this is not the
case, since the anharmonicity requires C; to decrease
with increasing Q. This effect of Q on C; can be ex-
pressed by expanding InC; to a linear term

InC,=tnCo+ -S| o
ne; n i0 CiO 8Q 0=0 ’

where C; is the C; value at Q =0. Then

(12a)
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C" =C,-Oexp( —bQ) ) (12b)
where
_ 1 9C;
CiO aQ Q=0 ’

The logarithmic form was employed by Gruneisen!? and
Ida?* for mathematical convenience and is also chosen in
the present work to obtain a simple analytical expression
for the crystalline instability. Other functions of C; could
be expanded to express the anharmonicity. However, the
differences from (12b) can be shown to be negligible due
to a small magnitude of Q of the order of 107 3-1072,
Thus, using various expressions of the anharmonicity has
negligible effects on the final result.

When (12b) is inserted into (11), we have a similar
equation to that of the thermal vibration case.

. _ 4pxAf 1 3
Q exp(—bQ) 45M —Cm+c20 . (13)

Variation of Q as a function of x is schematically shown
in Fig. 1. It is obvious that the Q —x curve has a physi-
cally reasonable meaning only along a solid line. The
derivative dQ /dx becomes infinity as x approaches x *,
indicating that the lattice atoms would spontaneously
separate from each other at x =x *. Thus, the crystalline
structure is considered to be unstable at the critical point
(x*,Q*) that are given by

v 4M 1 3
4ebpAf | Cip  Cyo

-1
, (14a)

(14b)

S|

Q*=

It should be noticed that this instability arises when in-
crease of the strain accompanies softening of the elastic
constants as described in (12b). Hence, this instability is
called the elastic instability.

At the instability point, the elastic constant is obtained
by inserting Q*=1/b into Eq. (12b),

*=0.37C, . (15)
Q \
\
\
\
\\
Qk \
o x* X

FIG. 1. A schematic diagram of the strain (Q) vs defect con-
centration (x) relationship described by Eq. (13). Q* and x*
are the values at the instability point.
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Therefore, the elastic constant is expected to decrease by
67% for all materials when they undergo amorphization.

ITI. RESULTS AND DISCUSSION

Experimentally, the critical strain Q* corresponds to
the maximum value of the fractional increase of the lat-
tice parameter observed at the onset of amorphization.
Unfortunately, parameters that are necessary for calcula-
tion are available only in Si, FeTi, and NiAl to make
comparison with the experimental values. Therefore,
these materials are taken as representative cases to test
the proposed model.

In order to calculate Q*, the unknown parameter b is
eliminated in Egs. (14a) and (14b);

s_depx*Af | 1 3
0 45M C10+C20 ) (16)

In this equation, the product x*Af is a total free-energy
increase at the instability point and is therefore equal to
the driving force for amorphization. In the case of Si,
amorphous structure has been characterized mainly by
bond-angle distortion of tetrahedrally coordinated Si
atoms.?>?® Thus, x *Af can be replaced by the stored en-
ergy, AH,, due to the bond-angle distortion, which can be
derived from the observed half width of a transverse-
optical peak in a Raman spectrum. Sinke et al.?’ calcu-
lated a stored energy of 19 kJ/mol for both as-deposited
and as-implanted amorphous Si by using equations given
by Wong and Lucovsky28 and Saito, Kurosawa, and
Ohdomari.” In the case of irradiation-induced amorphi-
zation of intermetallic compounds, the chemical ordering
energy has been proposed to be a major part, if not all, of
the driving force.? Empirically,*® the chemical ordering
energy is known to be approximately 1 of the formation
enthalpy, —AH,, that has been experimentally deter-
mined in the case of FeTi and NiAl (Ref. 31) or can be
calculated by using Miedema’s formula®? for other com-
pounds. The elastic constants C;, and C,; in (16) are re-
placed by the single-crystal elastic constants Cy; and C,,,
respectively, and can be found in a Landolt-Bornstein
table.’3 Therefore, the critical value Q* can be calculat-
ed by the following equations:

7703
pAH, | 3
0*=0.24 —+—=— | for Si (17a)
M Cii Cu
p(—AH,) 1 3
=0.08————L [—+=2-|,
0.0 M Cy Cysy
for FeTi and NiAl. (17b)

Table II lists the calculated value of Q* and parame-
ters used for the calculation. The critical strain Q* can
be compared with the maximum lattice parameter in-
crease Aa/a§, observed experimentally during the
amorphization process. In the case of Si and FeTi,
Aa /af is equal to or larger than the Q* and amorphiza-
tion was observed. On the contrary in NiAl, Aa/a§ is
only 1 of the O* and the crystalline structure was found
to be stable under the irradiation condition. Thus, the
critical strain criterion for the elastic instability of crys-
tals are found to well describe the amorphization mecha-
nism.

As shown earlier in Table I, all compounds that under-
go amorphization exhibit more than 409% decrease in the
shear elastic constant, while others exhibit only 10-20 %
decrease. This tendency agrees qualitatively with the
proposed model that predicts a 67% decrease of the shear
elastic constant for all amorphized materials. The quan-
titative difference may be partly due to the simple as-
sumption of the elastic isotropy in the theory despite that
the elastically anisotropic polycrystalline specimens were
used for the experiment. (A Zener’s anisotropy factor,>*
C4/C’, is 0.67 for FeTi and 3.34 for NiAl. A large an-
isotropy for NiAl is mainly due to a premartensitic effect
near room temperature, showing a substantially soft
C'.3%3%) In an anisotropic crystal, one shear elastic con-
stant decreases more than the other. In a polycrystalline
form of such a crystal, a measured shear elastic constant
takes a statistically averaged value of C’' and C,, that
may be given, for example, by the Reuss average,®’

10C’C,,

= 1
Gr 4C,,+6C’ 18

Because of this statistical character of the anisotropic
polycrystalline materials, a large decrease of one shear
elastic constant is hampered by the smaller decrease in
another shear elastic constant. According to the Reuss
average, 40% decrease in G, can be observed when C’
and C,, decrease, respectively, by 67 and 34% or 27 and

TABLE II. Calculated values of Q* and the experimental values Aa/ay. Parameters used for the

calculation are also listed.

M p Cy, Cus —AH, AHg o* Aa/al
(g/mol)  (g/cm?) (X102 dyn/cm?) (kJ/mol)  (kJ/mol) (X107%) (X1072
Si 28.1 2.34 1.65 0.79 19.0 0.70 1.0
FeTi 51.9 6.54 3.10 0.75 31.0 1.35 1.3-2.0
NiAl 42.8 5.91 2.02 1.15 58.5 2.00 0.67
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67%. Thus, the calculated value of 67% for a decrease of
the shear elastic constant can be considered as a largest
possible value that is observed in elastically isotropic ma-
terials. On the other hand, in anisotropic polycrystalline
materials, a smaller decrease of the shear elastic constant
would be observed.

IV. SUMMARY

Lattice strain and softening of the shear elastic con-
stant were shown to be common observations during
various solid-state amorphization processes in a wide
range of materials. Based on these observations, the crys-
talline stability was theoretically evaluated by introduc-
ing static displacement of lattice atoms as a manifestation
of lattice defects and by calculating the lattice strain (Q)
as a function of the defect concentration (x). When the
anharmonicity was taken into account, there was an in-
stability point at which dQ /dx was found to diverge to
infinity. The critical strain at the instability point was

J. KOIKE 47

calculated for Si, FeTi, and NiAl and found to agree well
with the lattice parameter increase observed before
amorphization took place. The calculated elastic con-
stant was found to decrease by 67% independent of ma-
terials, which agreed qualitatively with experiment. The
quantitative differences from the experiments were attri-
buted to the elastic anisotropy effects and the statistical
nature of polycrystalline materials used for the experi-
ment. It was concluded that solid-state amorphization
takes place because of the elastic instability of the crystal-
line structure induced by a critical lattice strain and asso-
ciated softening of shear elastic constant that are caused
by static displacement of atoms from their lattice sites.
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