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Anelastic (dielectric) relaxation of point defects at any concentration,
with blocking effects and formation of complexes
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A derivation of the relaxation strength for anelastic and dielectric relaxation of point defects is pro-
posed, and the calculation is extended to cases not yet treated; the formulas reported in the literature can
be obtained as particular cases. The relaxation strength is expressed as the sum of the contributions of
all the pairs of configurations that the defect can assume. The case of arbitrarily high concentrations
with blocking, short-range interactions, and formation of defect complexes is also treated, and the for-
mulas of the partial concentrations of the various defect configurations are provided. The proposed ap-
proach is useful if the formation of complexes and the short-range interactions occur within independent
cells or subsystems into which the crystal can be divided. Two specific cases are discussed as applica-
tions: the anelastic relaxation of a four-level tunnel system and of interstitial hydrogen in the hcp rare
earths with the formation of H pairs.

I. INTRODUCTION

The theory of anelastic and dielectric relaxation of a
crystal containing point defects, i.e., of the linear
response of the crystal to the application of a stress or
electric field, has been systematized by Nowick and Hell-
er in a series of papers. ' They considered defects
reorienting among configurations that are made non-
equivalent by the application of stress or an electric field
and calculated both the relaxa'. ion rates and strengths.
They provided expressions valid in the low-concentration
limit for all the possible symmetries of the applied stress,
defects, and host crystals by using the results of group
theory.

The case of relaxation among configurations that are
nonequivalent even in the absence of stress or which in-
volve defect complexes appears more complicated.
Nowick and Heller extended the analysis also to such
cases in Ref. 1 and 4, calling them "reaction modes" as
opposed to the "reorientation modes. " That analysis is
based on a thermodynamic approach and is restricted to
low concentrations, without blocking effects; no prescrip-
tions are given for the calculation of the relative concen-
trations in the general case where several nonequivalent
configurations are possible.

In the present paper, a very simple derivation of the
expressions of the relaxation strength is provided, which
is based on a statistical rather than thermodynamic ap-
proach and which covers in a unified manner the reorien-
tation and reaction cases or any mixed situation. The re-
laxation strength is also expressed as the sum of the con-
tributions of all the pairs of configurations between which
relaxation occurs. The calculation scheme may include a
method recently proposed for evaluating the probabili-
ties of the configurations of point defects with arbitrarily
high concentration, taking into account short-range in-
teractions, such as blocking effects or the formation of
defect complexes. Such a method is valid when the crys-
tal can be divided into independent cells or subsystems
within which the short-range interactions and the forma-

tion of complexes take place; the simplest case is that of
independent defects.

The great majority of the experimental work avoids the
analysis of aspects related to the relaxation among non-
equivalent configurations. Nevertheless, in recent times
much attention is being devoted to systems containing
nonequivalent configurations of defects and where the
concentrations of the relaxing interstitials or vacancies
may be so high that blocking effects come into play. We
mention here the high-T, superconducting oxides of the

YBa2Cu306+„ family, whose CuO„planes (0 & x & l)
contain highly mobile 0 atoms, giving rise to a variety of
effects that have been only partly analyzed. Further-
more, the hcp RH„systems (R =Y, Sc, Lu) are being ex-
tensively studied also by anelastic relaxation with H con-
tents up to tens of percent or near the stoichiometry of
the dihydride R H2+„. " Here H can relax between
tetrahedral and octahedral sites and tends to form pairs
in tetrahedral sites separated by an R atom along the c
axis. Several anelastic relaxation measurements of RH
exist, but no analysis of the possible involved relaxations
has been made; in Sec. IVB, formulas appropriate for
such cases will be provided as an application of the
presently proposed calculation scheme. Another example
will be provided in Sec. IV A by calculating the different
relaxation modes of a four-site tunnel system. Hydrogen
trapped by substitutional Ti in Nb is supposed to tunnel
among four sites, giving rise to a four-level tunnel system;
recent experiments may only be explained by discriminat-
ing the possible relaxations between the four levels. '

II. ANELASTIC AND DIELECTRIC RELAXATION

Anelastic relaxation is the phenomenon that occurs
when a solid contains defects that produce a local elastic
distortion, which may exist in at least two configurations
differing in magnitude or orientation of the associated lo-
cal strain. The anelastic contribution to the macroscopic
strain may be written as
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where c is the molar concentration of the defects of type
a (or in configuration a) and A.IJ.

' is the ij component of
the so-called elastic dipole of defect a; by definition A, ';. ' is
the contribution to c.; of one mole of defects of type a
(ij =x,y, z)."

This is completely analogous to the case of paraelectric
relaxation, and in fact it is also called paraelastic relaxa-
tion when only a reorientation of the elastic dipoles is in-
volved. In the case of defects with an associated electric
dipole, their contribution to the ith component of the
electric polarization P; can be written as

(2)

where p', ' is the electric dipole moment associated with 1

mol of defects of type n. The only difference between the
electric and elastic cases is that stress, strain, and the
elastic dipole are second-rank tensors, while the electric
field, polarization, and dipole moment are vectors. In
what follows we will explicitly refer to the elastic case,
but without taking into account the tensor character of
the physical quantities, so that the electric case is ob-
tained simply by changing o into E, c. into P, and A, into
p. As explained in Ref. 2, one can always choose the rep-
resentation of the normal coordinates of o and c., where
they become vectors related to each other by a diagonal
matrix: o.; =M,;c, . In what follows we will refer to a par-
ticular normal mode, for which o., c., and M are scalar
quantities, and therefore the subscript i wi11 be dropped.

On application of an external stress o (electric field E),
the energies of the various configurations will be per-
turbed and their concentrations will change to reach a
new thermal equilibrium, changing in turn the value of
the anelastic strain e'" (polarization P). Each relaxation
process reaches the equilibrium with a relaxation time ~,
which is related to the rate of conversion of the defect
among its possible configurations.

After the application of a constant stress, each relaxa-
tion process will contribute to the strain with

The imaginary part is the elastic energy-loss coefficient
(the inverse of the mechanical Q), and the real part is
called the modulus defect.

III. CALCULATION
OF THE RELAXATION STRENGTH

The stress derivative of the energy E of a defect o. is
simply related to the component A, of its elastic dipole,
because they are the same second derivative of the Gibbs
free energy. In fact, the differential of the free energy per
unit volume is

dg= sdT—sdc—r+ gE dc
1

a

where Uo is the unit-cell volume and s is the entropy per
unit volume, disregarding the configurational entropy
due to the distribution of the defects in the possible
sites. ' From Eq. (7) one obtains the desired relation:

an

Bc

g2 g (jE
Bo Bc Uo Bo

Equation (6) can then be written as

an dC~

According to Eq. (4), the relaxation strength is propor-
tional to the stress derivative of the anelastic strain (1).
In the case of paraelastic response, the elastic dipole is in-
dependent of stress, and all the stress dependence comes
from the defect concentrations through the defect ener-
gies

an d d dEp
do do p dEp do

b (1—e '~'),

giving rise to the so-called aftereffect. ' '" The quantity
6 is the relaxation strength, defined as

We will see later that the derivatives of the concentra-
tions of independent configurations with respect to the
energies are of the form

/Man
M

dC~ Cp=pc', —5 &, c'= pc'
dEp c' (10)

where c.=Mo. is the elastic strain, M being the appropri-
ate unrelaxed modulus.

Instead, on application of a periodic stress with angu-
lar frequency co, the resulting strain will follow the stress
with a delay; this can be described in terms of a complex
contribution 5M to the dynamic modulus M(co)

5M 5M
1+(cow) M 1+(cur)

where P= 1/kT, 5 &
is the Kronecker symbol, and c'

tend to c for small concentrations and unpaired defects
(there should not be confusion between the index p and
p= 1/kT, which instead appears as a factor).

If the configurations exclude each other within the
same cell, instead of being independent, an additional
term appears, which, however, is of the same form and
allows the same manipulations to be done. Equation (10)
allows us to write
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pea

I I I I

=g g (A. —
A, Ap+Ap —Apl, ), = g g, (k —kp)

a p(a a p&a

b, =g gb, p.
a p(a

(12)

Moreover, all the terms have the same simple expression
for any number and type of the configurations; in fact, no
hypotheses have been made about the elastic dipoles and
energies. The formulas generally adopted appear to not
satisfy Eq. (12), but they can always be put in that form
after appropriate changes of notation and manipulations.

It may also be instructive to rewrite the above expres-
sions in terms of the averages of the elastic dipoles over
the concentratior. s (for simplicity in the low-
concentration limit):

X=—gc A, =, V= —gc A,'.1 e'"(o =0) ~ 1

C c C
(13)

This means that the relaxation strength can simply be
decomposed into the contributions from all the pairs of
configurations between which relaxation occurs:

In contrast with the previous treatments, all the defect
configurations will be considered on the same level,
whether they are equivalent by energy and symmetry or
not. The summations are intended over all the possible
configurations a (types of sites) of the atomic species
representing the defect, whose total concentration c is
conserved. Each configuration must be constituted by
only one defect atom in order to avoid the complications
due to the change in the configurational entropy with the
formation of defect complexes. At most, all the
configurations may contain the same number of defects;
for example, they may consist of different orientations of
pairs of atoms, but cannot include the dissociated atoms.
The case of the formation of defect complexes will be
treated in Secs. III C and III D with a different statistics.
We will use the terms "site" and "configuration" in an in-
terchangeable way.

The statistical weight of a particular configuration a
with energy E is

The change of the population of the ath configuration
can be written as

—pE
m =e (16)

dc dc dEp
0 p p 0 p

=Pc vo(A, —
A, );

Cp
If the configuration has multiplicity m; i.e., it can be
realized in m modes (or there are m sites of type a per
unit cell); then, according to Boltzmann statistics, its
weight is m u and its molar concentration is

i.e., on application of a stress, the relative variation of c
is equal to the deviation of A, with respect to the mean
elastic dipole or mean anelastic strain divided by temper-
ature. Similarly, the specific total relaxation strength is
equal to the mean-squared deviation of the elastic dipoles,
divided by temperature:

m a lpga
Ca =C

Z
ma~a ~ (17)

where c is the total molar concentration of the defect, i.e.,
the number of defects per unit cell. The derivative of c
with respect to the defect energies can be easily put in the
form of Eq. (10):

dCa
=Pcvo(V —

A, ) .
do do

(15) dca =c
dEp

ma da
z dEp

maMa dZ

z~ dEp

Cp=Pc —5 pC

A. Noninteracting defects obeying Boltzmann statistics
(low-concentration limit)

In the present paragraph, we will deal with nonin-
teracting defects whose mean occupation numbers follow
Boltzmann statistics. This is the usual case already treat-
ed by Nowick and most of the other authors. The use of
Boltzmann statistics is justified when the defect concen-
trations are so small that the occurrence of double occu-
pation of a defect site is negligible.

Then, proceeding as in Eq. (11),one finds that the relaxa-
tion strength is

CaCp
(A. —Ap)

Muo c
(20)

(A, —
Ap) =g g & p, (19)

a p(a a p&a

where the relaxation between a and P contributes with
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Such an expression of b p was already derived by
Nowick following a thermodynamic method, although
for the case of only one pair of configurations. With that
approach a major complication is connected with the cal-
culation of the configurational entropy of the defects.
The mixed case of a reaction between two types of di-
poles, each having different orientations, was also con-
sidered in Ref. 1, and Eq. (4.23) of that paper can be put
in the form of Eq. (20).

Equation (20) asserts that the magnitude of the relaxa-
tion between configurations a and P is proportional to
the concentration of both. In the case of a reorientation
among m configurations with the same energy, one has
c =c&=c/m and the temperature dependence of the re-
laxation strength becomes the well-known I/T law. In-
stead, if E —Ep=E, the product c cp will be maximum
at k T-E; in the frequent case of relaxation between only
two levels differing in energy of E, the temperature
dependence of the relaxation strength is given by

b, -cP sech (PE/2), (21)

B. Noninteracting defects obeying Fermi-Dirac statistics
(any concentration)

When the probability of multiple occupation of a same
defect state (site) becomes appreciable, one should use
Fermi-Dirac statistics instead of that of Boltzmann. This
may happen because of the high concentration of the de-
fects or because at low temperature they tend to stay in a
restricted number of low-energy sites. In Fermi-Dirac
statistics, the occupation number n of site a may only
assume the value 0 or 1, and the expression of its mean
value may be easily evaluated in the framework of the
grand-canonical ensemble, ' as briefly shown in the Ap-
pendix.

Again, we will suppose that the occupation of a
configuration (site) is independent of the others; i.e., there
are no interactions between the defects. Also, all the
configurations consist of a single defect atom (or of the
same number of atoms).

In the absence of interactions between different cells,
we can consider the grand-partition function z of a single
elementary cell; this is, in turn, the product of the grand-
partition functions of its sites, which are independently
filled (in the present context, it looks more natural to con-
sider sites to be filled with at most one defect rather than
configurations to be assumed by the defect):

z=+z

z =1+e =1+wp(p —& )
(22)

Here m is the multiplicity of site e; i.e., there are m

which is maximum at kT=0. 65E, tends to c/kT for
kT))E, and tends to zero as Pe ~ for small T. Such a
temperature dependence of 6 is well known for two-level
tunnel systems, ' ' where it may dominate the shape of
the relaxation curves. One should take into account the
falling off of 6 whenever relaxation occurs between states
whose energy separation is E)kT.

identical sites per cell, and w is the statistical weight for
the occupation of a particular site a. The chemical po-
tential p must be chosen in order to satisfy the condition
of defect conservation [Eq. (A4)]:

m Blnz

P Bp 0 Bp

Wa= gm
za

=pc

Wa
c =m

z
(24)

As before, c is the molar defect concentration, which can
have the maximum value of g m when p is infinite.

We now repeat the steps followed to obtain Eqs.
(19)—(21), starting with the derivative of c with respect
to Ep and keeping in mind that c depends on Ep also
through p:

dCa 1 dwa

dEp z dEii

wa dza
z2 dEp

=/3c 1—Ca Bp
aEp

(25)

We would like to express d p/dEp in terms of the concen-
trations in order to have an expression analogous to Eq.
(10) or (18). This can be obtained by deriving Eq. (23)
with respect to Ep..

dc dCa

dEp dEp
(26)

If we define new quantities c',

Ca =Ca 1
Ca c'= pc' (27)

then Eq. (26) becomes

p Cp

BE& c' (28)

and Eq. (25) becomes

dCa Cp=Pc~, —
5~p

p C
(29)

which is exactly of the form of Eq. (10). Therefore, fol-
lowing Eq. (11),we write the final expression

(30)

This expression is the same as Eq. (20) obtained with
Boltzmann statistics, though with the concentrations sub-
stituted by the primed concentrations defined in Eq. (27).

(23)

which is a polynomial equation for e p" with degree equal
to g m and defines the partial concentrations c as
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In order to understand the meaning of the primed con-
centrations, we note that the probability that a particular
site a is occupied is p =c /m; in fact, c is the mean
number of the m sites of a cell which are occupied.
Then the factor in parentheses in Eq. (27) is the probabili-
ty that a particular site e is empty, q =1—p, i.e., an
availability factor that ensures that there are empty sites
where the defect can go for relaxation to occur. At low
concentrations this factor is close to 1, and the above for-
mulas tend to the previous Boltzmann case. We can also
write

giving them an appropriate energy, which is not neces-
sarily the sum of the energies of their sites, when in-
dependently filled. An example where these possibilities
are exploited will be given in Sec. IVB. Of course, one
can also cover the case of the independent occupation of
two sites a and P by summing the probabilities of only
the first one being filled, w, or only the second one, w&,
or both, w w&.

The condition of the conservation of the number of de-
fect atoms is

I
C a m apa~a

n m w =pc (33)

symmetrical in the probabilities of the sites being vacant
and filled. In this way we recognize that also the relaxa-
tion strength is symmetrical in the concentrations of the
filled and vacant sites; at low c, it is proportional to the
concentration of filled sites and vice versa at high c to the
concentrations of the vacant sites.

C. Short-range interactions and defect complexes

The calculations of the two preceding paragraphs were
limited to the case of configurations consisting of only
one defect atom (or at least all of them consisting of the
same number of atoms) and independent of each other.
We consider now the case with blocking effects and with
the formation and dissolution of complexes. The calcula-
tion of the concentrations in the framework of the
grand-canonical ensemble can include such effects, as
shown in Ref. 5 and briefly in the Appendix. The method
consists in constructing the grand-partition function z of
a cell by summing the statistical weights of all the possi-
ble mutually exclusive configurations that the defects can
assume in that cell. The general form of these terms is

which is a polynomial equation for e~" with degree equal
to the maximum n and which allows the partial concen-
trations c to be written as

namawa
Ca=

z

It has been chosen to include the number of atoms of a
complex into the concentrations. If we used the concen-
trations of the complexes instead of the atoms forming
the complexes, we would later obtain expressions con-
taining some more n and n&. We proceed now to calcu-
late the derivatives of the concentrations with respect to
the energies, as in Eqs. (25)—(29). As in the preceding
paragraph, we need the derivative of p with respect to
E&, which can be calculated starting from Eq. (33). It is
convenient to rewrite it as

c 1+ pm w = gn m w ~c= gm w (n —c);

Pn (p—E )
m w =me (31) deriving both sides with respect to E&, we obtain

where n is the number of atoms forming that complex
(and therefore of occupied sites), m is the multiplicity,
i.e., the number of ways in which the complex can exist in
the cell, and E is its mean energy per defect atom.
The grand-partition function of the cell is

O=Pz pc (n —c) —5 &
Bp

which, defining the primed concentrations as

z=l+ pm w (32) c' =c (n —c), c'= gc' (35)

The difference with respect to the case of the preceding
paragraph is that here the configurations are incompati-
ble, while in the former case [Eq. (22)] all the
configurations are independent of each other and there-
fore can be simultaneously occupied. In fact, Eq. (22)
also contains terms such as w w&

. . w due to sites
a, P, . . . , y simultaneously occupied with energy
E +E&+ +Ez. The advantage of expressing z as in
Eq. (32) is that one may include only the desired
configurations, each with its own energy. One can easily
include blocking effects; for example, if a cell cannot con-
tain more than one defect atom, then all the
configurations will have n =1. It is also possible to im-
pose that certain complexes are favored or unfavored by

becomes

Bp cp
BEp c'

By using Eq. (36) and the relations

dwa, Qp

dE BEP P

dz dwa Bp
dZ,

= & - dZ,
=~' 'BZ, "

we can write

(36)

(37)
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d wa
a ay~

r

Cp=P n c,—5&
Cp

Ca C, Cp

We will index the M incompatible configurations (as in
Sec. III C) by a, P, with 1 ~ a„P~ M, and the N indepen-
dent ones (as in Sec. III B) by o, w, with M + 1
~ o, r ~ M+X; indexes p and v will be used for the com-
plete range of the configurations. Recalling Eqs. (22) and
(32), we write the total grand-partition function as

CaCp=P +c c& n—c 5&
c

Z=z+z = 1+pm w +(1+w ) (41)

Cp=P c', —5
&

+c (c&—c5 &)
C

(38)
where the configuration v has multiplicity m (it can be
realized in m„ways) and statistical weight

where in the last step cc 5 p has been added and sub-
tracted. This expression is the same as the case of in-
dependent configurations [Eq. (29)] plus a term of second
order in the concentrations having the same form of the
main term. We can therefore proceed exactly as in Eq.
(11) to obtain

CaCpg g (A. —Ap)', +c cp
a p&a

(39)

This formula is very similar to those obtained previously
[Eqs. (19) and (30)], although the new corrections may
not be interpreted in the same straightforward manner.
In fact, the factor (1—c!n ) in the primed concentra-
tions [Eq. (35)] is not exactly the probability that the
configuration a is empty, as in the preceding paragraph;
moreover, the second-order term c cp is not obviously ex-
plained. '

To first order in the concentration, Eq. (39) corre-
sponds to Eq. (19), obtained following Boltzmann statis-
tics. This can be seen when n =n p=1, by noting that in
the limit of small c the primed concentrations tend to the
unprimed ones and the second term becomes negligible.
The coincidence of the cases of independent and incom-
patible configurations is expected at low concentrations,
when the occurrences of incompatible states become
more and more unlikely.

When treating cases with complexes, it may be useful
to rewrite Eq. (39) as

g g (A, —Ap)~c cp
a p(a

(n —c)(n —c)
+1

g n~c —c
r

(40)

with the n put in evidence. We remind the reader that
when n &1, A, is the elastic dipole per atom, as is clear
from the definition (33) of c and from that of the elastic
dipole [Eq. (1)). In the discussion it will be shown that in
specific cases the low-concentration limit of Eq. (40) coin-
cides with the formulas provided by Nowick in Ref. 4.

pn(p —E)
w =e, v=e, o . (42)

=pc +pc (43)

and neither g c nor g c are constants. By deriving
Eq. (43) with respect to E„,we obtain

pc n —gc& +pc n
a p o.

»

Cv tv Ca a~P) ~ ~ ~ ~

c (n —c /m„), vo'y7y» ~ ~ ~

(44)

If we define the primed concentrations exactly as in the
last two paragraphs,

c~ c~ n~ pep
p

c'=c (n —c Im ),

c'= pc' + gc' (45)

we can write Eq. (44) as

Note that the number n„of atoms constituting the
configuration v is written explicitly also for v=o. in order
to have a better compatibility with the case v=a. In Sec.
IIIB the configurations were considered as sites to be
filled with no more than one atom, and therefore n was
always equal to 1; however, it is possible that some of the
independent configurations may contain more than one
atom.

The derivation of the relaxation strength goes parallel
to that made in the two preceding paragraphs. The inter-
mediate formulas are longer, because the sums must be
split in a sum over the first M configurations and one over
the other ¹ in fact, the terms with index a are in general
different from those with index o.. Moreover, one cannot
write g c =c any more, because now

c)in& m n wmn , wc=— =g +g
P (jp z z

D. General case of coexisting incompatible
and independent configurations

I
Cv v=o., o . (46)

We will now discuss the case of incompatible
configurations coexisting with independent config-
urations. This is the combination of the two last para-
graphs, and it is worth being discussed both for the sake
of completeness and for the simplicity of the result.

C

After a straightforward calculation completely analogous
to those carried out in the two preceding paragraphs, we
can express the derivatives of the concentrations with
respect to the energies as
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dC CR" =p.c„,—5„+c„c—5„+c +5 „+5,dE " c'
L

(47)

where the second term exists only if both Ju, and v refer to the first M incompatible configurations. Introducing Eq. (47)
into Eq. (9) and proceeding as usual, we finally find

I I

(A,„—A, ) + g g c cp(A. Ap)—
UO p ~&p a p&a

(48)

This result is the plain combination of the formulas valid
for either cases of the independent and incompatible
configurations [Eqs. (30) and (39)]. The last term appears
only for pairs of configurations which are both incompa-
tible.

IV. DISCUSSION

p 2c~cp
lim 5 p= (A, —Ap)'c-0 MuO C

(49)

where we recognized that cp«c and c -c. This result

A major advantage of the present approach is that of
considering all the defect configurations in the same way
without distinguishing between defect reorientations or
reactions. This simplifies the derivation of the relaxation
strength and its final form. The expression derived by
adopting the Boltzmann distribution function coincides
with those already reported in the literature, though it is
expressed as the sum of the contributions from all the
pairs of configurations. This is useful when one wants to
separate the various contributions to relaxation; an exam-
ple will be given in Sec. V A.

When calculating the partial defect concentrations
within the grand-canonical ensemble, one can adopt
Fermi-Dirac statistics and obtain formulas valid for arbi-
trarily high concentrations. As long as the configurations
are independent, the relaxation strength is simply propor-
tional to the product of the concentrations of the filled
and vacant sites involved in the relaxation. In Secs. III C
and IIID, it has been shown how to introduce short-
range interactions into the computation, such as blocking
effects and the formation of complexes. The proposed
method may be used in complicated cases where other
approaches would be too difficult or useless.

Some of the formulas available in the literature may be
obtained as particular cases of the present approach. We
will demonstrate it by comparing the low-concentration
limit of Eq. (40), valid for relaxation among defect com-
plexes, with the expressions provided by Nowick in Ref.
4. This can be done only case by case, because Nowick's
formulas refer to particular reactions, for instance,
a+P~~g, without conversion between a and P, whereas
here it is assumed that all the configurations are accessi-
ble through any path. We consider the case of sites of
type cx, which may be divided in pairs, each cell contain-
ing a pair; when both sites of a pair are filled, we obtain a
comPlex P with np=2, E XEp, and Ap+A. . We there-
fore have, from Eq. (40),

corresponds to that provided by Nowick in Eqs. (31)—(34)
of Ref. 4, if we consider the reaction a+a~~p and take
into account that in Nowick's paper cp and A,p are the
concentration and elastic dipole of the pairs and not of
the paired atoms.

It is worthwhile to evaluate the concentrations c and

cp in both cases to see the differences between the ther-
modynamic and statistical methods. According to Eqs.
(31) and (32), we have

z=1+2e +e ~ =1+2x+bxP(p —E ) 2P(p —E )
(50)

where x =exp(Pp), b =exp( 2PE&), 2—Eb =2(E Ep) is-
the binding energy of the pair, and E was chosen as the
zero of energy. Correspondingly, we write

c =2x/z, cp=2bx /z . (51)

Equation (33) becomes a second-degree equation for x,
whose solutions are

1 /2
1 —c + bc(2 c)—

X =
b(2 c) —(1—c )~

+1 (52)

where the minus sign has to be chosen in order to have
the correct limit of p to minus infinity when c goes to
zero. In this limit we have, to first order in c, x =c/2,
z =1, and therefore

lim c =c, lim cp=bc /2 .
c~o c~0

(53)

On the other hand, according to the thermodynamic
method, we solve the system of equations constituted by
the condition of constant number of defect atoms and by
the mass action law

C~+Cp=C
2P(E —E )

c /cp=ke ~ =i/b,
(54)

k
4b

4bc'+
k

1/2

(55)

whose low-c limit is cp-bc /k; by comparison with the
previous case, we put k =2. The main difference between

where the constant k comes from the configurational en-
tropy of the particular system. The evaluation of the
latter may be difficult, and in this case we will let k as a
parameter to be adjusted in order to obtain the correct
low-concentration limit of cp [Eq. (53)]. The solution of
Eq. (54) is
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Eqs. (51) and (55) is that in the former case c& correctly
tends to c as c approaches 2, whereas in Eq. (55) it is al-
ways lower, approaching 2 only in the limit of infinite
binding energy of the pair. The failure of Eq. (55) is due
to the fact that the mass action law (54) is only valid in
the low-c limit. The formula corresponding to the mass
action law becomes more complicated when using the
configurational entropy of the defects without the ap-
proximation of small c, moreover, the evaluation of the
configurational entropy may be a very diScult task.

Another approach for obtaining the relative concentra-
tions of defect complexes consists in writing the rate
equations of the possible reactions and imposing the equi-
librium condition; one obtains a system of equations for
c (in general nonlinear) without the need of evaluating
the configurational entropy. In the general case, howev-
er, the solution of the system of equations may be not
trivial; moreover, at arbitrarily high concentrations one
should include into the equations the probability that the
site where the atom is jumping is empty, and this further
complicates the problem.

From the above comparison, we see that the advan-
tages of using the grand-canonical ensemble are that (i) it
is valid at arbitrarily high concentrations; (ii) the con-
struction of the grand-partition functions of the cells and
the evaluation of the concentrations are straightforward,
whatever the complexity of the configurations; and (iii)
the only possible time-consuming step is the evaluation of
the chemical potential p, which, however, reduces to the
solution of a polynomial equation in e~". This approach
is therefore simpler than the others, but it cannot be used
always. In fact, it relies on the possibility of dividing the
system in noninteracting subsystems or cells whose
grand-partition function can be evaluated; the trivial case
is that of each site constituting a subsystem. A situation
that does not satisfy the above requirement is that of in-
terstitial atoms that can form a complex in all the possi-
ble pairs of nearest-neighboring sites. In this case, what-
ever partition one chooses between the sites, there is al-
ways a pair that crosses the partition, which therefore
cannot be properly taken into account.

A final point regards the type of interactions modeled
in the present paper, which are only of the short-range
type. The adopted formalism is well suited to the
description of such interactions, such as the blocking of
neighboring sites or the formation of defect complexes,
up to the maximum possible concentration. Instead, no
attempt has been made here to incorporate long-range in-
teractions or critical ordering of the dipoles, as, for in-
stance, in Refs. 1, 14, and 23.

V. APPLICATIONS

A. Four-level tunnel system

A simple application of the result of Sec. III A is the
calculation of the relaxation magnitude between the four
levels of a four-level tunnel system (FLS). Hydrogen
trapped by substitutional Ti in Nb is thought to tunnel
among four equivalent tetrahedral sites in squared coor-
dination, giving rise to a FLS; ' a variety of anelastic re-

laxation effects below 50 K seems explainable only by
separately taking into account the possible different types
of relaxation between the four levels of the tunnel system.
Indeed, Granato, Hultman, and Huang' calculated the
relaxation strength of a FLS with the approach of Sec.
III, although they did not separate the contributions of
the different relaxation modes.

The response of a tunnel system to stress cannot be
simply described by elastic dipoles, because the energy
levels have a finite curvature as a function of stress. It is
generally supposed that the effect of shear strain c on a
symmetric tunnel system mainly consists in changing the
energies of the otherwise identical sites of a quantity
5=ye. , where the deformation potential y is the parame-
ter characterizing the inAuence of stress on the tunnel
system. Instead, the tunneling energy bo is supposed to
depend on s much less than the asymmetry energy 5. '

The energy levels of a symmetric FLS subjected to a
homogeneous stress are

E, ~=+(4bo+5 )'~, E23=+5, (56)

BE2 3
MU k = — ' =+y.0 2, 3

(57)

Therefore the relaxation of the FLS is described by Eqs.
(6) and (57), and the populations of its four levels obey the
Boltzmann distribution function, i.e., Eq. (17), with
m =1; in fact, for each FLS there is only one atom that
can occupy four levels, and therefore there are no multi-
ple occupations or blocking effects to take into account.
Therefore the relaxation strengths for the transitions be-
tween the various pairs of levels are described by Eqs.
(17) and (20) with the elastic dipoles given by Eq. (57).
A comparison with the experimental data on NbTi„H
will be provided in a future publication.

B. Hydrogen in the hey rare earths

As an application of the analysis made in Sec. III C, we
consider the case of interstitial hydrogen in the hcp rare
earths, which has been under investigation for many
years. " There are two types of sites available for H
in these metals: two tetrahedral (T) and one octahedral
(0) per each metal atom. All the T sites remain
equivalent under the application of any stress, and the
same holds for the 0 sites; therefore, the relaxation of iso-
lated hydrogens may only consist of a change of the rela-
tive concentrations of the T and 0 sites. Povolo and
Bisogni recognized this fact and analyzed the symmetry
and relaxation kinetics of some point-defect pairs in a
hcp 1attice, but not the corresponding relaxation magni-
tudes. It has also been experimentally established that
the H atoms occupy mainly the T sites and tend to form

where 5=y(so+a) contains a constant contribution yso
due to random elastic interactions with other defects.
The elastic response of such a FLS to a small applied
elastic strain E=o/M can be described by four strain-
dependent elastic dipoles A,;:

~E&4 5
MUON ) 4= — ' =+

(4g2+ g2) 1n
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pairs along the c axis.
Several anelastic relaxation measurements have been

made on such systems. The main relaxation process has
an activation energy of about 0.6 eV, coincident with that
for the H long-range diffusion, and an intensity roughly
proportional to the H molar concentration cH, for cH be-
tween 0.01 and 0.2. Besides, many other processes of
lower intensity have been found at low values of cH and
in the presence of 0 impurities, but they have not yet
been analyzed.

Although it has been recognized that the main relaxa-
tion process should be connected with the H pairs, an
analysis has never been attempted. Moreover, the fact
that the dependence of its intensity on cH is linear rather
than quadratic seems puzzling at first, so that some au-
thors doubt whether the process actually consists of a
redistribution of H between T and 0 sites. "

The main phenomenon which we want to describe here
is the pairing of hydrogen in the T sites and its distribu-
tion between T and 0 sites. We will divide the system
into independent cells, each containing one metal atom,
one 0 site, and the two T sites that can contain the H
pair, as schematically shown in Fig. 1. In the real case,
the occupation of two nearest-neighboring T sites belong-
ing to different cells is forbidden. Such a condition can-
not be easily imposed within the present approach, be-
cause different cells are considered as independent; it will
be neglected here. We will proceed as in Sec. III C.

T 2T 0 cell
oo oo oo o ~ oo oo0, 0 0 0 ~ 0

~ metal atom

o (e) empty(f il led) tetrahedral site
a(~ ) empty(filled)octahedral site

FIG. 1. Partition of a hcp lattice into cells, used for calculat-
ing the partial concentrations of the singly occupied tetrahedral
(T) and octahedral (0) sites and pairs of occupied tetrahedral
(2' sites.

= 1+(2+a )x +bx (58)

where we put x =exp(Pp ), a =exp( PEo ), —
b=exp( 2PE2T)—, E2T be—ing the pair-binding energy
per atom, and we chose ET as the zero of the energy. We
have supposed that the T and 0 sites are mutually
blocked within the same cell, and therefore the possible
configurations of a cell are empty, with one H in either T
site, with one H in the 0 site, or with an H pair in the T
sites. The condition (33) for the chemical potential is a
second-degree equation in x, whose solution is

The grand-partition function of each cell may be writ-
ten as

P(,p —ET ) P(p —Ep ) 213(p—E2T )

1/2
(2+a )(1—c ) + 1

4bc (2 c)—
2b (2 —c) (2+a ) (1—c )

+ for O~c ~1,
] for 1~c ~2, (59)

2x 2bx ax
C =, C =, CT & 2T & 0 (60)

where the sign has to be chosen in order to make p an in-
creasing function of c. According to Eq. (34), the partial
concentrations are

cT=cT(1—c),
c2T —C~T(2 —c )

co =co( 1 c )

C CT+C 2T+CO

(61)

We could have added the simultaneous occupation of one
T and 0 site with an energy EoT=ET+Eo, without
complicating the problem: We would just have an addi-
tional term in x which does not increase the degree of
the equation for x, and an additional concentration coT.
Instead, if we imposed that the 0 sites are filled indepen-
dently of the T sites, the grand-partition function of a cell
would be, according to Sec. III D,

and are

(kT X2T) cTc2TP, +cTC2T
MUD C

(Xo X2T) coc2TP, +coc2T
Mvo c

(62)

=(1+2x+bx )(1+ax),
and the equation for x would be of the third degree.

We now pass to the evaluation of the relaxation rnagni-
tudes for the formation and dissolution of pairs and for
the change between 0 and T sites. These are readily ob-
tained from Eq. (39) in terms of the primed concentra-
tions

(A, T
—

A,o ) cTco
TO P i +cTCO

MUO c'

We remind the reader that c2T is the concentration of the
paired atoms and that the distortion of a pair is 2A.2T. A
set of the above equations will correspond to each corn-
ponent of the elastic modulus. Note that the relaxation
due to the dissolution of a pair 2T in two isolated T sites
is observable only if the elastic dipole of a pair, 2A, 2T, is
different from that of the unpaired atoms, 2A, T, for at
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least one type of deformation; this is expected to be true
in view of the strong tendency to pair formation. Anelas-
tic relaxation experiments have only been performed on
polycrystals, and we cannot have information on the
magnitudes of the various components of the elastic di-
poles, at the moment.

Rather than attempting a fit of some of the experimen-
tal data, we will show the general behavior predicted by
the above equations, assuming reasonable values of the
pair-binding energy —2Ez T and 0-site energy Ez
(ET=0). The estimates of czT and co available in the
literature (in particular for YHO, 5 from Ref. 8 and YHO z
from Ref. 10) can be reasonably accounted for by Eqs.
(58)—(60) with Eo/k —1000 K and Ezrlk ——500 K,
and we will use these values. The choice of a value of
1000 K for the difference between the energies of the oc-
tahedral and tetrahedral sites relies especially on esti-
mates that the 0 occupancy is of only a few percent in Y,
even at 700 K. '

Figure 2 shows the relaxation strengths as a function of
the H concentration for the three types of relaxation
T-2T, T-O, and 0-2T. It has been put as
(hA, ) /(Mvo) = 1 for all three cases. At 200 K the inten-
sities of the relaxations involving the 0 sites are at least
two orders of magnitude smaller than that involving the
T sites only, as a result of the low octahedral occupancy.
The decrease of 6 when c approaches its maximum value
is due to the disappearance of empty sites into which H
can jump; in this condition, 6 becomes proportional to
the concentration of vacant sites, as noted in Sec. III B.
The curves of Fig. 2 do not describe the real RH sys-
tems (R = rare earth) at x =cH close to 2, because at

that stoichiometry one has hydrides with different site en-
ergies and symmetries; moreover, the occupation of two
nearest-neighboring T sites (belonging to two adjacent
cells) seems unlikely, but the model allows it.

A relevant feature appearing in Fig. 2 is that b, T zT is
no longer proportional to c already for c as low as 0.01,
which is about the lowest concentration used in the ex-
periments. The curve that is closest to the actual condi-
tions of the reported anelastic relaxation experiments is
that of T=200 K, which is about proportional to the first
power of c for c )0.01. This means that the large dissi-
pation peak observed around 250 K may well be due to
the formation and dissolution of the H pairs, even if its
intensity is roughly proportional to the H content. This
assignment becomes the only reasonable one if the popu-
lation of the octahedral sites is confirmed to be as low as
supposed here, because of the already mentioned depres-
sion of the relaxation strengths associated with such sites.

The fact that the pair concentration and therefore the
strength associated with their relaxation are less than
proportional to c results also when using the approxima-
tion of low concentrations. The dotted lines of Fig. 2 are
obtained from Nowick's analysis by using Eqs. (49), (54),
and (55) and neglecting the octahedral occupancy. Al-
though

ATILT

is definitely higher than in the preceding
case, it exhibits exactly the same trend up to very high
concentrations. The curves merge at concentrations that
become lower with decreasing temperature. This is due
to the fact that c is multiplied by exp(2Eb/kT) in the ex-
pressions of czT,' that factor drastically increases for T
below Eb/k, and therefore the first-order expansions of
czT in a series of powers of c is valid at lower and lower
values of e.

The temperature dependence of hT zT is shown in Fig.
3 for two concentrations. Both the present calculation
and the approximated one (dotted line) have a maximum
at a temperature that is about half of the energy

1O-4

1O-'

CI

X
1O"

20x lO 5—

15 c =0. 1

1O-'

1O-'
1O-4 10 3 10 ~ 10 '

concentr ation
10'

g 10
~ M

5

FIG. 2. Normalized intensities of the relaxations between
paired (2T) and isolated T and 0 occupations of an interstitial
atom in a hcp lattice, according to Eq. (62). The pair-binding
energy and 0-site energy are given in the text. The dotted lines
are calculated with the approximation of low concentration; the
dashed-dotted lines are the slopes of curves proportional to c
and c

0 200 400 600
temperature (K)

FIG. 3. Normalized relaxation strength between the paired
and unpaired occupations of an intersititial atom in a hcp lat-
tice. The parameters are the same as in Fig. 1 and are given in
the text. The dotted lines are calculated with the approximation
of low concentration.
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di6'erence between the paired and unpaired hydrogen
atoms, as explained at the end of Sec. III A.

VI. CONCLUSIONS

General expressions of the relaxation strength for ane-
lastic (dielectric) relaxation have been provided in terms
of the concentrations of the various defect configurations
together with the expressions of the concentrations.
Cases of increasing complexity have been treated: (i) de-
fects relaxing according to Boltzmann statistics among
configurations that are independent of each other, which
contain the same number of defect atoms; (ii) as before,
but within the formalism of the grand-canonical ensem-
ble, according to Fermi-Dirac statistics in order to
prevent the multiple occupation of sites; (iii)
configurations that are excluded from each other, but
which can contain any number of defect atoms, accord-
ing to Fermi-Dirac statistics (formation and dissolution
of complexes, blocking and trapping effects); and (iv)
cases (ii) and (iii) mixed together. The formulas previous-
ly reported in literature may be obtained as particular
cases.

In all the situations, the relaxation strength 6 assumes
the simple form of a sum over all pairs of configurations,
each term being the relaxation magnitude 6 & between
configurations a and )(3. The calculation and final expres-
sion of 6 & are simple and do not depend on the type of
relaxation (reorientation, relaxation between sites of
di8'erent energy, formation and/or dissolution of com-
plexes). When using Boltzmann statistics, b, p is propor-
tional to the product of the concentrations c c& divided
by the total concentration. When using Fermi-Dirac
statistics, the concentration of each site (configuration) is
multiplied by the probability that the site to which relax-
ation occurs is empty. When imposing that the
configurations are mutually incompatible, an additional
term arises, which is of the second order in the concen-
trations.

The advantage of the grand-canonical ensemble over
the thermodynamic method for calculating the partial
concentrations is that there is no need of calculating the
configurational entropy of the defects. One has only to
construct the grand-partition function appropriate for
the particular system, which can be done in a straightfor-
ward manner, however complex the system. The expres-
sions of the partial concentrations can also be written in a
straightforward way in terms of the chemical potential.
The latter is computed as the root of a polynomial equa-
tion whose degree depends on the number of the indepen-
dent configurations and of the atoms that they are com-
posed of.

The results provided here are particularly useful when
dealing with high concentrations of defects and short-
range interactions (long-range interactions have not been
included). Arbitrarily complex situations with several
types of defect configurations can be treated in the same
simple way, provided that the crystal can be divided in
independent subsystems or cells within which relaxation
occurs.
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APPENDIX

We will give a brief description of the method of calcu-
lating the mean occupation numbers n (partial concen-
trations, not to be confused with the number n of atoms
forming the complex a used in Sec. III) of single sites or
complexes of sites within the grand-canonical ensemble,
including short-range interactions. The method, pro-
posed in Ref. 5, is an extension of the textbook calcula-
tion. '

By definition, the mean occupation number of a site n
with energy F. is

l —p(n E + npEp+ )
n =— n ea Z a

[n]
(Al)—p(n E +n&E&+ . )

[n]

where the sums are over all the possible configurations

t n )
=n, n p, . . . '

, each configuration has energy

E[„]=g n E, statistical weight exp( —PE[„]), and
fixed total number N of defect atoms, g n =N. In
Fermi-Dirac statistics, one does not allow for multiple
occupation of a site: n =0, 1. The set of all possible
configurations, t n ), is called the canonical ensemble, and
generally the sums with the restriction of a fixed total
number of atoms cannot be performed. Therefore one in-
troduces the grand-canonical ensemble, where the sum is
extended to all the sets of possible configurations, [n ),
without a condition on the total number N[„]=g n

The statistical weights become exp( pE[„]+pMN[—„])~

where the parameter (M (chemical potential) has to be
chosen in order to peak the probability distribution at the
desired total number of atoms, N~„~ =X. We then have

p[n (p, —E )+np(p Ep)+ ]-
n~ = n~e

[n]
(A2)

p[n (pE)+np(, p— Ep)+ ]-
e

[n]

The grand-partition function Z can be written as the
product of the grand-partition functions of all the in-
dependent sites

(A3)

where m is the statistical weight for site n being filled
(the statistical weight of any site to be empty is I) and
Fermi-Dirac statistics was assumed. The condition for
the total number of atoms is
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1 BlnZ 1X= gn =X
P r)p

(A4)
Z( ABC) =(1+w„)(1+w~ )(1+wc )

= 1+wg +wg +wg +N g wg +wg wc
Equation (A4) expresses the mean occupation numbers in
terms of the site energies, and it must be solved with
respect to p.

In the above formulas, the sites are considered as in-
dependent of each other, because E(„)=g n E, with
E independent of the occupation. In this case Z can be
written as in Eq. (A3). The method proposed in Ref. S
consists of grouping together the sites within which the
short-range interactions or the formation of complexes
takes place and of writing and manipulating the corre-
sponding grand-partition functions. For example, the
grand-partition function of sites A, 8, and C is

+ l8g ling +W g N g Mc (AS)

where one can easily recognize the contributions of one,
two, or all three sites occupied. In order to introduce in-
teractions between these sites, it is sufficient to change
properly the energies of the various types of occupation.
If no more than one site can be filled as a result of block-
ing erat'ects, then the terms with two or three atoms are
suppressed (their energy is infinity). The formation of a
stable pair in sites 3 and 8 with binding energy Eb is de-
scribed by w~ wz =exp(2Pp PE&t—t ) with E„Js=E~
+E~ —Eb.
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