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Simulations were performed using the method of molecular dynamics for ideal lattices and for lattices
with defects generated by three different procedures. Curves of relaxation of stress o vs logarithmic time
t were obtained. In agreement with experimental results, the simulated curves exhibit three regions: ini-
tial, nearly horizontal, starting at o; central, descending approximately linearly; and final, correspond-
ing to the internal stress o; as defined by Li. The existence of the central linear part has been predicted
by a cooperative theory. In agreement with the theory, the slope of the simulated central part is propor-
tional to the initial effective stress 0§ =o,—0c;. The central part extends over approximately one decade
of log,ot for ideal lattices but over several decades for lattices with defects. High values of the imposed
strain € correspond to low internal stresses o;, and vice versa. Stress relaxation is mainly due to defor-
mations that occur in the vicinity of the defects, hence the process is related to the defect concentration
and the amount of free volume v”/. Collective response of atoms in groups is observed. The origin of the
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defects does not seem to influence the relaxation.

I. INTRODUCTION AND SCOPE

Service performance and service life of non-fully-elastic
materials and components can in general be predicted
from the knowledge of dependence of viscoelastic proper-
ties with time ¢. There are two fundamental kinds of
transient experiments for such materials, stress relaxation
and creep.”? In the stress relaxation mode one deter-
mines the time decay of stress, o =0o(¢), at a constant
strain €; in creep the opposite occurs. The time-
temperature superposition principle and shift factors
computed by applying that principle make possible the
prediction of long-term behavior of viscoelastic materials
from short-term tests. Already in 1965 one of us® had
demonstrated the existence of common features of stress
relaxation curves for ostensibly vastly different materials,
including a number of metals and polymers. Subsequent
experimental studies over the years have confirmed
this.*> A theory was developed to account for these
features;® !0 the theory is not specific to any particular
class of materials; it is summarized in Sec. II. The objec-
tive of the present work is the acquisition of greater un-
derstanding of the stress relaxation phenomenon from
computer simulations of metal-like lattices and confron-
tation of the simulation results with predictions of the
theory and with experimental findings.

In general, there is a choice between Monte Carlo
(MC) and molecular dynamics (MD) simulations. As re-
viewed by Binder,!! MC simulations are particularly use-
ful for dealing with phase transitions and related phe-
nomena. MC and MD, as tools to study materials sub-
jected to external mechanical forces, particularly polym-
eric ones, were compared and discussed in some detail in
Ref. 12. Mechanical behavior is mostly simulated by
MD, largely dealing with uniaxial tensile forces so as to
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elucidate the physical significance of the stress-strain
curves. An example is a study of ideal solids by Wang
et al.'* They found that there is a critical value of the
applied stress above which the specimen fails irreversibly
via the nucleation of small-scale defects. The stress at
failure decreases considerably when the temperature in-
creases.

To our knowledge, stress relaxation in crystals was not
simulated before. Simulations of plastic deformations in
solids were reported in several papers. Thus, Deng, Ar-
gon, and Yip'* simulated atomic glasses under shear
stress. They found local, partly dilatant, shear transfor-
mations nucleated preferentially in the boundaries of a
liquidlike material as the principal mechanism of plastic
strain production. The liquidlike material separated
small quasiordered domains formed by a well-relaxed
glass. Local shear transformations in atomic clusters oc-
curred mostly in the direction of the applied stress. Sro-
lovitz, Vitek, and Egami'!® simulated amorphous metals,
showing that regions of inhomogeneous atomic move-
ment, which results in plastic deformation, are not corre-
lated with local-density fluctuations but with regions of
high shear stresses. These regions were sustained by the
applied stress. Maxima of the radial-distribution func-
tion under shear strain were flattened in comparison to
the unstrained model.

Since we are also conducting MD simulations of poly-
mers, '*17 we expect to report stress-relaxation simulation
results for polymerlike materials in a later paper.

II. A COOPERATIVE THEORY

The experimental stress relaxation curves, plotted trad-
itionally in o =o(log,ot) coordinates, exhibited three re-
gions: initial, nearly horizontal; a long central region,
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descending approximately linearly; and final, correspond-
ing to the internal stress o; as defined first for metals by
Li,'® and subsequently found also for polymers.®!'%2° A
number of theoretical models have been developed, aimed
at predicting and explaining those curves. Such models
have been reviewed in Ref. 21, and their various
deficiencies pointed out. Briefly, models that can explain
the behavior of metals served poorly for polymers and
vice versa; see also Ref. 10. Moreover, the collective
response typically was not taken into account.

Because of these problems, a cooperative model, which
seems to possess sufficient generality, was developed.®™ 10
The model assumes a two-level system, with unrelaxed
flow units in the upper level. Thus, the number n of such
units at any given time serves as the measure of stress o,
or, more accurately, of the difference 0 —o;. The flow
process consisted of elementary events (transitions) of
varying multiplicity; that is, the events formed clusters of
different sizes. The relaxation of a cluster of size s was
assumed as

hy=dng/dt=—sn, /T, (1)

where n, was the number of unrelaxed flow units in clus-
ters of this size and 7 a relaxation time for a single event.
The clustering mechanism was formally equivalent to the
interaction underlying the Bose-Einstein distribution and
related to the phonon characteristics of the system distur-
bances produced by the elementary events. As in that
distribution, single events were spontaneous. Each event
might produce a number of induced or secondary events.
This led to

un,=—s/[e’’P—1], (2)

where u was a numerical factor; the maximum cluster
size at t =0 is B=(—6urny)'/?/7, while 7, was the total
flow rate at t =0.

Given the shape of the experimental curves described
above, particularly important was the slope

F=[do/d(Int)] . - (3)
Distribution (2) led eventually'® to

F=ny/(InB+y), 4

where ¥ was the Euler constant. Since the original total
number of flow units n, within a cooperative region was
proportional to the initial effective stress o§ defined as

of=0y—0;, (5)
from (4) we had
F=cog§ . (6)

Here c is a proportionality factor, found experimentally
to have values near to 0.1 at ambient temperatures for
metals, polymers as well as for a number of other solids.3

A somewhat more generalized model, which allowed
transitions to lower-as well as to higher-energy states??
led to essentially the same results. Ostensibly, the present
model yielded results largely equivalent to those obtained
when using the concept of stress-dependent thermal ac-
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tivation (SDTA).®> For instance, an exponential relation
between the rate dn /dt and n was obtained in both cases.
However, the cooperative approach made it possible to
linearize the process with regard to o, as required by
Eq. (6). Such a linearization was not possible in SDTA
because of the assumption of the energy of activation de-
creasing linearly with the effective stress.

Under these circumstances, an important question is
this: Could we execute simulations realistic enough to
exhibit the same features as the experiment and the
theory, while at the same time providing information on
the nature of the transitions postulated by the model?
MD simulations had already been found effective in prob-
ing processes that were difficult to handle by analytical
theories. Thus, valuable insights had been obtained in
studies of diffusion kinetics,?® crystal growth,?* phase
structures and melting, 2>~ %’ including complicated cases
of monoatomic materials on graphite.?’~?° Of course,
simulations do not replace either theory or experiment.
Their unique capability is the reproduction of macroscop-
ic behavior, while structures and interactions are con-
trolled: Interaction potentials are precisely defined, while
decisive parameters can be varied one at a time. We ex-
pected that these features would be advantageous also in
the elucidation of processes which occur during stress re-
laxation.

II1. THE SIMULATION PROCEDURE

Stress relaxation was simulated by MD for a single-
component system of particles placed on the two-
dimensional triangular lattice. We used this lattice, since
all nearest neighbors are equivalent and the respective
coordination number z=6 also occur in three-
dimensional real crystals.

All simulations had been performed for systems in-
teracting via the most popular 6—12 Lennard-Jones po-
tential (based on the pioneering work by Mie?), that is

U(R)=8u . [(r, /r)2—(r, /7)) ;

here r, is the collision diameter, so that U(r,)=0, while
for the minimum of the potential we have R ;, =2!"%r .
We defined the reduced units of length R =R /r,. Other
reduced units are the same as defined by Allen and Tildes-
ley;3! in particular, the reduced energy is U=U /u,,
the reduced time 7=t[u,,;,/(mr2)]'/? and the reduced
temperature T=kpT /u,,,, where ky is the Boltzmann
constant. Forces and stresses are measured, respectively,
in units of u;, /7, and u;, /r2. Since all particles have
equal mass, for perspicuity we have taken that mass as
the mass unit: m; =1. Conversion into realistic metal pa-
rameters can be achieved!® by taking u_;, =2.5 X 1072°J
and r,=0.25 nm.

In our simulations an N-particle system was placed in a
cell with periodic boundary conditions. We used a MD
technique that allowed the simulation cell to change size
and orientation in response to any imbalance between
internal and external stresses, as well as provide control
of the temperature of the system. Among various
methods of doing this’! we chose a procedure of
Berendsen et al.’? It was noted by Brown and Clarke®’

min
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that in this method the motions of the cell were damped
to such an extent that the danger of unphysical oscillato-
ry response to changes in the applied stress is practically
eliminated. Thus, this seemed to be a preferred method
for simulation of nonequilibrium properties of condensed
phase systems. Moreover, the method turned out to be
relatively easy to implement.

The cutoff radius used in simulations was taken as
Feut —2.5R iy that is, first and second neighbors were
taken into account. We have found that using higher
cutoff radii did not change the course of the simulations
and had no effect on the results. During the simulations,
at the beginning of each time step, the velocities v;(z)
were updated for each particle as follows:

F;(t)
vi(t+At/2)=v,(t—At/2)+—At . (7

1

Here At is the time step, F;(¢) the force acting on ith par-
ticle, and m; is the respective particle mass. We have
taken Ar=0.0075; in the remainder of this paper, unless
indicated otherwise, we shall use the reduced variables as
defined above, but from now on we shall drop the tildes.

The system temperature was defined in terms of the
particle average kinetic energy. To maintain the system
at a particular temperature, the particle velocities ob-
tained from Eq. (7) were rescaled:

vi(t+At/2)=Mt+At /2)v;(t +At/2) (8)
where the coefficient A(z) is given by
AMe)=(1+kp[To/T(t)—1]V2 . 9

kr is the rate of thermal relaxation, which defines the
strength of coupling between the system and a ‘“‘thermal
bath.” We use k;y=0.05 so that the coupling is
sufficiently weak. T is the reference temperature. The
temperature of the system 7T was obtained from the kinet-
ic energy E, ; since our systems were two-dimensional, us-
ing our reduced temperature we had E; =Nu_;, T. The
kinetic energy was calculated by the summation of
squared velocities over all particles:

N
E ()=13 mpA1). (10)
i=1
Updated coordinates of the particles r;(#) were com-
puted as

r;(t+At)=r;(t)+vi(t+At/2)At . (11)

Then the periodic boundary conditions were applied to
the particle coordinates. These coordinates—and the
coordinates of the simulation cell as well—were scaled as
follows:

r(t+AD= {14k, [a,(t)+ag(O)]}r,(t+Ar) . (12)

Here 1 is the unit tensor, and g ;(¢) and g ;(t) are, respec-
tively, the tensors of the internal and external stress. We
used a convention such that in tension the external stress
imposed on the material was positive, while the internal
stress induced in the sample was negative. To balance

the tension, these two stresses had to have opposite direc-
tions. The coefficient «, describes the strength of the
coupling between the unbalanced stress and the size of
the cell. We present below results for «, =0.0005. How-
ever, we checked that the systems behave very similarly
for values of k,=0.0004 and 0.000 625. We also found
that for values of «,, twice as large—or twice as small—
as 0.0005, the cell became unstable and collapsed.
The internal stress tensor is given by

1 [ & N—-1 N

Ql(t)=7 Smyvivi— ¥ 3 ;F; |, (13)

i=1 i=1 j=i+1

where r;; is the vector difference r; —r; evaluated using
the periodic boundary conditions, 3* while F,j is the force
acting on the ith particle from the jth particle; V is the
volume (that is, the area in the two-dimensional system)
of the simulation cell. Since the cutoff radius defined
above was used, not all pairs were actually taken into ac-
count in the summation.

In a typical stress relaxation experiment at room tem-
perature the time span is 10°-10’s. Spending that much
real time on a computer is impractical. Moreover, and
more importantly, the computer samples were much
smaller than specimens studied in experiments, so our
samples should have responded much faster; this point
was discussed in earlier modeling of stress-strain
curves.!” We ascertained, however, that the size of the
system studied did not affect the simulation results; see
below the beginning of Sec. V. Calculated stress was
averaged over 2000 time steps.

To be sure that we were well inside the solid state dur-
ing stress relaxation, we approximately determined the
melting transition by stepwise increase in the temperature
under a low pressure. The onset of melting was observed
above the reduced temperature of 0.41, while accurate
simulations of melting in such a system by Abraham?*26
located the melting point as T, =0.45, with the onset of
the process somewhat below T,,. His results showed that
the system was fully stable at 7=0.40. We find this also
for our system: The curve of the kinetic energy E; as a
function of time ¢ at 77=0.40 shown in Fig. 1 exhibits
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FIG. 1. The kinetic energy vs reduced time at the reduced
temperature T =0.4.
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only random and insignificant fluctuations, and analo-
gous curves for T=0.1 and 0.2 look quite similar. Our
subsequent stress relaxation simulations were performed
at temperatures between 0.1 and 0.4.

The concept of competition between chain relaxation
capability (CRC) and destructive processes in viscoelastic
materials was developed®® and resulted in deriving quan-
titative relationships involving the brittle-ductile impact
transition temperature, rapid crack propagation, slow
crack propagation, and a connection between isobaric ex-
pansivity and dynamic-mechanical behavior; for a review
see Ref. 36. While a quantitative measure of CRC of the
material needs to be defined for each specific process,
such measures are, in general, related to free volume vf.
The latter can be defined by

v=v*+v/, (14)

where v is the specific volume per unit mass such as 1 g,
while v* is the characteristic (‘“hard-core, incompressi-
ble””) volume. One often uses instead

v=v/v* . (15)

In turn, v/ (or D) is related to the isobaric expansivity

a=V~Y3V/3T),. A statistical-mechanical theory
developed by Flory>"3® leads to the formula
v={aT/[3(1+aT)]+1}3. (16)

However, it is useful to consider more than just two com-
ponents of the specific volume;3°~*! specifically

v=vy+v,tv;,tv;, (17)

where vy, is the proper volume of the atoms, calculable
from their van der Waals radii; v, is the nonaccessible
volume between atoms, in principle calculable also from
the radii and from the interatomic distances; v; is the
volume involved in vibrations of atoms or other particles
(ions, polymer segments), also known as the bound or at-
tached volume; and v, is the detached volume (indepen-
dent holes). Neutron-scattering studies showed*? that the
frequency of vibrations did not change with the tempera-
ture T, but the amplitude did. v* can be approximately
identified with vy, +v,. The amount of bound volume v;
that can be attached to a particle seems to have an upper
limit.*> We saw that Egs. (15) and (16) take into account
predominantly bound free volume rather than indepen-
dent holes (i.e., lattice defects), although the volume of
the latter also changes with the temperature. We needed
to calculate for our computer-generated samples the free
volume created by temperature changes, as reflected by a
in Eq. (16). At each temperature, the horizontal width of
the sample was calculated as AI, =x,—x;, where x, is
the average coordinate of atoms in the vertical left out-
side row and x, a similar coordinate for the right outer-
most row. Analogously, Al, was evaluated as the
difference in the vertical coordinates of the top and bot-
tom rows of atoms. The temperature increase of the lat-
tice parameter averaged over x and y directions was used
as the measure of a in Eq. (16), the two-dimensional re-
duced volume #2”* calculated therefrom, and then two-
dimensional v* and v/ obtained from Egs. (15) and (14).
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Any of the systems obtained as described in the follow-
ing section were first equilibrated in two stages: at
T=0.4 for SO00At and then at a temperature somewhat
lower than that foreseen for stress relaxation for 25000A¢.
Although the initial configuration is constructed on a lat-
tice with the interatomic distances of R, the equilibra-
tion procedure ensured that the configuration was ap-
propriate for the off-lattice MD simulations. Then in
each case uniaxial stresses were applied instantaneously
along the y axis. We performed most simulations at high
strains, often at 10% strain.

IV. SAMPLE PREPARATION

We did not know a priori to what extent the ideality of
the lattice—or lack of it—affects the spectrum. There-
fore, we performed four series of simulations: first for
ideal lattices and then for lattices with defects deliberate-
ly introduced by three different procedures. We wanted
to see whether the origin of the defects affects the results.

In the first procedure, the defects were generated on
the computer by melting of the two-dimensional crystal
lattice and subsequent quenching. A constant volume
was maintained. Temperature was varied in steps that
ranged from 0.025 to 0.1. For restoring the thermal equi-
librium during quenching, each temperature reduction
was followed by 10° time steps of stabilization.

The second algorithm of defect generation was based
on the fact that undercooled samples generated under an
external pressure are more stable than those obtained in
the absence of such pressure—as found in the MD simu-
lations of Deng, Argon, and Yip.* For high quenching
rates and pressures P >0 the intensive properties
(configurational energy U, enthalpy H, or volume V) de-
crease continuously and monotonically. Then the melt-
ing and freezing curves might not meet at all below the
melting temperature 7,,. However, for P =0 the materi-
al, even if undercooled at tremendously high quenching
rates, was unstable and could undergo crystallization. In
fact, in some of our samples generated by the first
method, crystallization did occur on quenching, causing
disappearance of the majority of the defects. Of course,
spontaneous crystallization of an undercooled material
represents one more common feature of real and of our
simulated materials. The problem of maintaining a
predefined external pressure was dealt with by Ander-
sen®® and by Parinello and Rahman.*® The shape and
size of the simulation cell could be varied as a function of
any imbalance between the internal stress and the
predefined external pressure. We followed the procedure
of Parinello and Rahman and generated a lattice with de-
fects under various pressures P >0. The samples so ob-
tained were stable and contained sufficient concentrations
of defects.

In the third procedure one started again with the per-
fect lattice, with all the lattice sites occupied, and then
generated vacancies. Randomly chosen particles were
moved from the interior of the sample to an additional
layer (or several additional layers if necessary) of the sites
located at a side of the cell. For all system sizes, in this
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procedure a constant fraction of the number of particles
(N /30) was always moved, generating a proportionate
number of vacancies.

V. RESULTS AND DISCUSSION

We found that MD simulations of stress relaxation re-
quired a cuttoff radius such as defined above (with the
second-nearest neighbors included), as well as frequent
updates of the neighbor table. Only under these condi-
tions were structural changes, occurring during relaxa-
tion, stable. When the cutoff radius was such that only
the nearest neighbors were taken into account, imposi-
tion of the strain did not result in the decrease of the
width of the sample in the perpendicular direction. By
contrast, when the second-nearest neighbors were includ-
ed, strain imposition caused the width to decrease, as it
occurred in real materials, resulting in values of the Pois-
son ratio v < 1.

Numerical calculations for defective lattices are much
more time consuming than for ideal lattices. The size of
the system with defects, which can be simulated with
reasonable computational effort, was therefore limited to
several hundred particles. However, we ascertained that
the sizes of the systems studied were such that reliable re-
sults were obtained. In Fig. 2 we show results for three
systems, generated by the third procedure described in
the preceding section, at T=0.2. The smallest system
shows somewhat larger fluctuations, but—within the size
range studied —the shape of the stress relaxation curve is
unaffected by the size of the system. Analogous diagrams
for T=0.1 and 0.3 lead to the same conclusion.

Consider now our results from the series of simulations
performed for ideal lattices. We have consistently found
here that stress relaxation results mainly from propaga-
tion of cracks. The usual mechanism of stress concentra-
tion at the crack tips is operative here, as characterized
in macroscopic experiments by the stress concentration
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FIG. 2. Stress relaxation curves as a function of log (reduced
time) for three metal plus vacancies systems at the reduced tem-
perature 7=0.20 and the initial strain of 10.0%. The numbers
of particles in the central cell are indicated in the inset.
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factor K,=1+2(h /1)!/?, where h is one-half the length
of the major axis in a hole assumed elliptical and / the ra-
dius of curvature at each end of the major axis (see for in-
stance Ref. 47). In Fig. 3 we present a relaxation curve
typical for this series. The lattice structure correspond-
ing to the final approximately horizontal part of the same
curve is shown in Fig. 4. We see a considerable number
of microcracks of various sizes, oriented approximately
(but not quite) along the straining direction. Eventually,
crack propagation led to the failure of the lattice. The
time span of the relaxation process was relatively small.

It is instructive to compare our results to those of
Wang and his colleagues.'> They also studied ideal lat-
tices and obtained realistic results with positive Poisson
ratios. Their curve of the internal restoring force f; vs
time for the failure-causing external force looks qualita-
tively similar to our Fig. 3. However, the difference in
the type of the mechanical experiment simulated has cer-
tain consequences. In their tensile mode, when the ap-
plied force is below the failure level, the restoring force
fluctuates around a constant level; when the failure level
is exceeded, the failure occurs very rapidly. In stress re-
laxation, we always found a stress lowering with time,
with the central part descending at a lower rate than in
their catastrophic case. At the same time, we found simi-
larities between the two modes at the atomic level: It ap-
pears that in both cases defect generation occurred fol-
lowed by growth of the defects and eventually crack
propagation.

We extensively investigated systems with defects. An
example of a defective lattice generated by the partial
melting procedure described in Sec. III is presented in
Fig. 5. In contrast to Fig. 4, which shows a lattice after
relaxation, Fig. 5 shows the lattice “as received,” before
the imposition of strain. By defects we mean here any de-
viations from structure regularity such as single vacan-
cies, voids, etc. It is worth noting that the imposition of
a hydrostatic pressure decreased the interparticle dis-
tance and slowed down the movement of structural ele-
ments in the crystal.** ™% Since by starting stress relaxa-
tion we were abruptly increasing that distance, the mobil-
ity of the structural elements had to rise rapidly at the
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L5 2. 25 3 4 5 6 7 89
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15 2

FIG. 3. An example of a stress relaxation curve in the stress
vs log (reduced time) coordinates for an ideal (defect-free) lat-
tice; T=0.31, a rectangular central cell with 100X 150 atoms.
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FIG. 4. View of a lattice at the stage of reaching the approxi-
mately horizontal part of the stress vs the log time curve when
stress ~ internal stress. The original lattice was an ideal one.

same time.

The stress relaxation curve obtained for the lattice in
Fig. 5 is shown in Fig. 6. It is apparent from the latter
that the time span of relaxation is significantly larger
than that for the ideal lattices—this by several orders of
magnitude; again see also Fig. 2. We recall that, except
for some “degenerate” cases such as whiskers, real metals
and other crystalline materials as a rule contain definite
concentrations of defects—zero dimensional as well as
those of higher dimensionalities including dislocations.>!
Analysis of changes of shape and size of our lattice de-
fects during the simulations showed that the microscopic
mechanisms  underlying stress relaxation  were
significantly different from those in lattices without im-
perfections. We found consistently that stress relaxation
is mainly caused by plastic deformations, which occurred
in the vicinity of defects. In other words, there was a cer-
tain similarity between crystal nucleation from a melt
and “nucleation” of cracks. In the ideal lattice, relatively
large forces were needed to create a crack, but then the
same forces were sufficient for quick propagation. In lat-
tices with defects, relatively small forces caused atomic
movements, but the movements were mainly of the duc-
tile or flow type, rather than brittle crack propagation;

FIG. 5. A major part of a 30X 30 atom lattice with defects
before strain application.
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FIG. 6. The stress relaxation curve obtained for the lattice
shown in Fig. 5; T=0.31.

this is the main factor determining the time span of the
relaxation in these two series of simulations.

The deformations we saw resembled the regions of in-
homogeneous atomic movement observed by Srolovitz,
Vitek, and Egami.!> While they simulated amorphous
metals to obtain stress-strain curves, there were several
similarities to the behavior of our crystals during stress
relaxation. They observed nucleation of cracklike defects
caused by loading, as well as localized viscous flow, and
concluded that the material behaves as viscoelastic. They
noted that flow is caused by a large number of microscop-
ic deformation events—just as we saw movement of
dislocations and other flow units during relaxation. They
inferred that there is no single activation barrier for the
defect formation but rather a distribution of the activa-
tion energies. Such a distribution is predicted by the
cooperative theory [Eq. (2)] for stress relaxation as well as
observed in our simulations. Moreover, they also con-
cluded that local flows are controlled by multiaxial
atomic-level stresses rather than by the applied stress;
similarly, we observed movements not necessarily in the
direction of the applied strain. An interesting
phenomenon, observed in Ref. 15, called mechanical an-
nealing, consists of mutual annihilation of regions with
low (n-type) and high (p-type) local density, apparently as
a consequence of the stress field assisting the flow of
atoms from compressive to tensile regions. This means
that the stress field affects the detached free volume v,
[see Eq. (17)] rather than the other way around. By con-
trast, the bound free volume v; might be little affected in
the mechanical annealing process.

We note that the cooperative theory did predict® that
“the flow units... during the stress relaxation pro-
cess. . . induce transitions of other unrelaxed flow units,”
exactly as we see every time in our simulations. The
necessary condition for obtaining stress relaxation curves
similar to the one shown in Fig. 6 is a relatively uniform
distribution of defects and the absence of high internal
stresses. A similar condition holds for real materials.3

In Fig. 7, as in the experimental results,* we see a pro-
portionality between the slope of the linearly descending
part of the relaxation curve and the initial effective stress
od. Equation (6) of the cooperative theory predicted the
same result, so theory, experiment, and simulation are all
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FIG. 7. Slope F of the central (linearly descending) part of
the stress relaxation curve plotted as a function of the initial
effective stress obtained for a series of simulations of the same
sample subjected to different strain levels; T=0.31, the central
cell of 30X 30 atoms.

in agreement. In this case, the bound free volume [Egs.
(15)—(17)] was relatively low, ~1%, and co; was small.
Consequently, a plot of F vs o is similar to that shown in
the figure. One of us pointed out earlier?! that sometimes
one can get away with neglecting o;. This, however, is
not always the case in experiments, and in our simula-
tions as well; see Fig. 8.

As noted above, Eq. (16) takes into account effects of
temperature changes upon v/ but does not involve the
original concentration of defects. In view of this, we per-
formed a series of simulations for the same sample and
subjected to the same strain level but at different temper-
atures. Two effects of increased T and v/ were observed.

0.840
0.768 |
0.696
0.624
0.552
0.480

Stress

0.408
0.336
0.264

0192 Free volume=6% \‘!
I
00120 b e YR

o 7 g 2 102 27 e %

reduced time

FIG. 8. Three stress relaxation curves for the same sample
obtained under constant pressure conditions and with the same
free volume but subsequently subjected to different strain levels.
Symbols pertaining to strain values in % are indicated in the in-
set; T=0.31, the central cell of 30 X 30 atoms.

First, the initial stress level o, decreased along with in-
creasing v/. Second, the time f; to reach the internal
stress level o; decreased somewhat with increasing v/.
Both findings are consistent with our earlier understand-
ing of the role of free volume on the atomic and molecu-
lar mobility. We recall®® the results of the Voronoi-
Delaunay tessalation of several computer-generated sam-
ples: both solidlike (high density, low mobility, nearly
regular structure) and liquidlike (low density, high mobil-
ity, irregular structure) percolative clusters are possible.

We have also performed stress relaxation simulations
for samples with defects prepared by the procedure in-
volving imposition of an external nonzero pressure. We
have already shown in Fig. 2 stress curves for systems ob-
tained by random creation of vacancies. In all three
series, the results were similar. In other words, the pres-
ence of defects affects the results, but the origin of defects
does not.

Some further results obtained with the procedure in-
volving an external nonzero pressure are shown in Fig. 8.
We display three curves, all corresponding to the same
v/, but with different values of the initially imposed strain
(inset in the figure). The strain values were relatively
high as compared to those imposed in experiments on
metals. One infers from the figure that high values of
strain € correspond to low values of internal stress o;, as
well as vice versa. This is readily understandable: Impo-
sition of a higher strain destroys the internal stress to a
higher extent. While this is not an unexpected result,
once again our simulations provide a verification pro-
cedure for concepts developed on the basis of macroscop-
ic experiments.

VI. CONCLUDING REMARKS

Experimental determination of stress relaxation consti-
tuted one of the main procedures of prediction of long-
time behavior from limited-time testing. It is for this
reason that so much attention has been paid to it, and so
many approaches describing it have developed. Simula-
tions provide, first of all, insights at the atomic and
molecular level into the nature of the phenomenon. At
the same time, computer modeling provides the capabili-
ty of evaluation of the validity of these various ap-
proaches and assumptions made in interpreting experi-
mental results.

Lattice systems simulated in this work are, of course,
akin to crystalline metals. We found that lattice defects
played an important role in stress relaxation. Time scales
were affected, as can be seen by comparing Fig. 3 with
Figs. 2, 6, and 8; there was an approximate proportionali-
ty between the length of the descending part of the curve
and the defect concentration. Real crystals are charac-
terized by equilibrium concentrations of defects such as
vacancies and methods of calculation of those concentra-
tions exist; see, e.g., Sec. 7.4 in Ref. 51. It is, therefore,
not surprising that experimental stress relaxation curves
for different materials at comparable temperatures have
comparable linear descending parts. Details of each
curve depend on the free volume present in the system (as
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imposed by the temperature) and on the strain € via the
initial stress o or, more accurately, via 0.

It was concluded in the preceding section that the
atomic mechanism of stress relaxation involves to a large
extent nonelastic deformations, which take place in the
environment of the defects, a collective phenomenon. We
have seen that certain events known to appear in stress-
strain computer experiments on amorphous solids or on
ideal lattices take place also in our crystals with defects
during stress relaxation. Studying stress-strain behavior
of amorphous solids, Vitek, Egami, and collabora-
tors’>7°>1>  have defined structural defects as
configurations of several neighboring atoms that are col-
lectively subjected to high atomic-level stress values.
Similarly, uniaxially stretched ideal solids!? seem to show
localized collective behavior leading to void formation.
In the beginning of this paper we pointed out experimen-
tal evidence that stress relaxation curves for different
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kinds of materials exhibit common features. We intend
to find out whether simulations of stress relaxation in
molecular chain systems will exhibit features reported
above.
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