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It is known that the kinematical and dynamical theories of diffraction by perfect crystals predict the
same values for the intensities scattered into the vicinity of the Bragg peaks whenever those intensities
are low. Here we address the question of whether this is also true throughout the region between two
Bragg peaks. We show that the two theories give equivalent results for the weak intensities in the far
tails of the Bragg peaks provided better approximations for both the shape of the dispersion surface and
the boundary conditions are used: One needs to take into account the asymptotic sphericity of the
dispersion surface and the difference between electric and displacement fields. This results in a nontrivi-
al transmission coefficient for the diffracted electric field as it leaves the crystal. By explicitly showing
the equivalence of kinematical and dynamical results, this work provides additional theoretical support
for the kinematical approach usually adopted to describe the so-called truncation-rod scattering.

I. INTRODUCTION

The theories traditionally used to study the scattering
of x rays by crystals are usually referred to as being either
kinematical or dynamical theories of diffraction.! ™ * The
former group of theories is based on the premise that if
the scattered intensity is low, then a single scattering or
first Born approximation should be accurate. The
kinematical theories may therefore fail at the Bragg
peaks where high scattered intensities are not uncom-
mon. This limitation is overcome in the dynamical
theories by explicitly taking multiple scattering into ac-
count. The basic assumption made in these theories is
that the dielectric susceptibility y(r) of the crystal is very
small (about 10™°) and this allows one to make various
simplifying approximations. The most important con-
sists of neglecting all but a finite number n of the
diffracted beams; this reduces the problem to a practical-
ly manageable size. But other simplifications are routine-
ly made such as neglecting terms of order y?, using ap-
proximate forms of the boundary conditions, and restrict-
ing oneself to the close vicinity of the Bragg peaks, to
name a few. Thus, various modified dynamical theories
have emerged to treat the special cases where one or oth-
er of those approximations fail, such as, for example, for
grazing incidence when the reflection by the crystal sur-
face is not negligible,’ or for Bragg angles close to 7/2
when more accurate forms of the dispersion surface have
to be considered.®

It is widely believed that whenever the scattered inten-
sities are low the kinematical and dynamical theories of
diffraction give the same results. This has been shown to
be the case when either the Bragg reflection is very weak
or when the crystal is sufficiently thin, but only in the
close vicinity of the Bragg peaks. The question of wheth-
er this is still true throughout the region between two
Bragg peaks has not been addressed. In fact, several ap-
proximations of the dynamical theory fail in this region
and they have to be appropriately corrected.

The purpose of this paper is to develop improved ap-
proximations to the dynamical diffraction theory in order
to describe accurately the far tails of the Bragg peaks.
We find that it is necessary to take into account the
correct asymptotic sphericity of the dispersion surface
and the correct electromagnetic boundary conditions.
The expected agreement between the reflectivities accord-
ing to the kinematical and the presently modified dynam-
ical theory is obtained, but the way in which this comes
about is quite unexpected. In fact, the kinematical and
dynamical descriptions of the diffracted fields within the
crystal are so different that the eventual agreement is ac-
tually rather surprising.

The interest in the study of the diffraction in the far
tails of the Bragg peaks is not purely academic. One pos-
sible practical application is in the so-called truncation-
rod scattering (TRS).” Modern x-ray-scattering tech-
niques allow the measurement of the scattered intensity
from just a few layers of atoms. This has led to new
methods for the study of surfaces based on the idea that if
the intensity scattered from an ideal crystal with an ideal
surface is known, then any observed deviations can lead
to information about the structure either of the bulk or of
the surface. In the vicinity of the Bragg peaks the waves
scattered from different bulk atoms interfere construc-
tively leading to large diffracted intensities that prevent
the observation of the small contribution of the surface
atoms. Thus, in order to observe the scattering from the
surface atoms with the least possible bulk interference
one has to go far away (perhaps a degree or more) from
the Bragg peaks. These studies have traditionally been
carried out using the framework of the kinematical
theory of x-ray diffraction,” which is justified, correctly if
somewhat vaguely, by the small scattered intensities.

The statement that the kinematical theory is valid
whenever the reflectivity is low is a very valuable rule of
thumb, of very wide applicability, but it is not universally
valid. Known examples of its failure include x-ray
diffraction by multilayered structures® and the scattering
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by surfaces at grazing incidence for which corrections to
the kinematical theory, which go under the name of the
distorted-wave approximation, are required.® Thus,
while there is no reason to doubt the validity of the
kinematical treatment adopted in Ref. 7, an alternative
dynamical treatment may be of value. In a recent contri-
bution, Colellal® has shown that some of the basic
features of TRS can be reproduced by the dynamical
theory. He used a numerical approach that avoids most,
but not all, of the approximations normally made in the
dynamical theory (this is still an n-beam calculation with
finite n, and one has to consider which is the best set of n
beams to be included in the calculation). He showed that
if one scans reciprocal space in a direction transverse to
the kinematical truncation rods the dynamical theory
predicts a peak at roughly the same position as the
kinematical theory. The question of whether the dynami-
cal intensities are in numerical agreement with the
kinematical ones was not, however, addressed.

A second situation where the modified dynamical
theory described here will find application is in the
diffraction of x rays by periodic multilayered structures®
at low Bragg angles. In this regime many Bragg peaks
are crowded close together, and one does not have to go
very far away from the peaks in order to reach the far
tails where the usual approximations fail. Both applica-
tions will be studied in more detail elsewhere.

In order to establish the notation and define the prob-
lem we calculate, in Sec. II, the reflectivity of a crystal ac-
cording to a kinematical theory that includes the effects
of absorption, index of refraction, and of the Fresnel
reflectivity. The same reflectivity is then calculated ac-
cording to the usual Laue dynamical theory drawing at-
tention to the various approximations made. The two re-
sults are compared in the case of CuKa diffraction by the
(111) planes of a silicon crystal and found to disagree ap-
preciably in the far tail region. The various improve-
ments of the dynamical theory required to bring about
agreement with the kinematical theory are discussed in
Sec. III. In order to avoid complications that would un-
necessarily obscure the issues at hand, we have focused
our attention mainly on the special case of diffraction of
TE polarized radiation by a semi-infinite crystal with an
idealized abruptly terminated surface. Some of the ex-
pressions below are, however, of more general validity.
In Sec. IV, we summarize our conclusions.

II. A DISAGREEMENT BETWEEN THE KINEMATICAL
AND THE DYNAMICAL THEORIES

A. A kinematical diffraction theory

Consider a crystal slab with plane parallel surfaces,
thickness L, and dielectric susceptibility

X(r)= xge'®r, 2.1
H

where H are the reciprocal lattice vectors. The use of
such a highly idealized mathematical model with ideally
abrupt surfaces at z=0 and z=L (see Fig. 1) is justified
because it provides a simple testing ground for the ap-
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FIG. 1. Geometry of kinematical diffraction in the sym-
metric Bragg case.

proximations involved in the various diffraction theories
(and not because it is a realistic model of surface struc-
ture).

For symmetric Bragg case diffraction (Fig. 1) we need
to consider only those H vectors lying along the z direc-
tion, which are those on the truncation rod passing
through the origin in reciprocal space. Let us first
neglect the effects of absorption and refraction. Accord-
ing to the Fresnel diffraction theory*!! an incident plane
wave E(,e"ko'r is scattered by a layer of matter of suscepti-
bility x(z'), thickness dz’ and located at depth z’ into the
crystal into a plane wave of wave vector k given by

—iK
2sin6’

2oy (2)dz R X (R X Egle ™™

SE(z')= (2.2)
where K =w/c and the wave vector k is obtained from
the incident k, by specular reflection:

|k|=|kol , and k,=—k,, . (2.3
The total electric field scattered by the crystal is obtained
by integrating in z' from O to L and the reflectivity is
given by the ratio |E|?/|E,|%:

2iKL(sing’ —sin6 ) 2

P 1

e
R
K 1 4sing’ 2,, Xn

, 2.4
sinf’ —sinfy @4

where 0y is the Bragg angle corresponding to the vector
H, €' is the angle of incidence within the crystal, and the
factor P is 1 or approximately cos26 for TE or TM polar-
ization, respectively. Expressions similar to (2.4) have
been routinely used in surface diffraction studies.’

Let us now include the effects of absorption and refrac-
tion. These effects may be disentangled from those of
diffraction if we imagine the crystal immersed in an
amorphous fluid (see Fig. 1) with susceptibility equal to
the average susceptibility of the crystal [x, in Eq. (2.1)].
The wave vector K incident on the external vacuum-fluid
surface is refracted into the (possibly complex) wave vec-
tor kg, which is continuous across the fluid-crystal sur-
face. After calculating the scattered intensity we may
take the limit of vanishing fluid volume. Thus, refraction
and absorption effects are described by letting

ko=K+KAs# , (2.5)
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where
Ay =sinf—sind
and
sinf= (sin%0+x,)'"? .

The steps leading to (2.2) and (2.4) may be repeated. The
result is an expression for the reflectivity that is identical
to (2.4) except that sinf’ is replaced by the complex quan-
tity sin@ and there is an irrelevant extra factor of
[1+x0/>~1. For future reference, for a semi-infinite
crystal we get

P XH 2

4sind 4 sinfy —sind

(2.6)

K

This expression is accurate everywhere except very close
to the Bragg peaks, where sinfy ~sinf and Ry is large.
In particular, (2.6) fails at grazing incidence where total
reflection (the zeroth-order Bragg peak) occurs. This
may be corrected by replacing the H=0 term by the
correct Fresnel reflection coefficient,

P X 2
Ry=|rp+——o e N— 2.7)
45sinf gfgzo sinBy —sind
where
e Sin0=sind 29
sin@ +sinf
or
(14 x,)sin6 —sind
riM= 9 (2.9)

(1+x,)sinf+sind ’

for TE or TM polarizations, respectively.

B. The usual Laue dynamical diffraction theory

Laue’s approach to the dynamical diffraction theory
consists in solving Maxwell’s equations in a periodic
medium described by the susceptibility (2.1) and match-
ing this internal solution to external vacuum fields
through appropriate boundary conditions. In the two-
beam approximation,’ ~3 the displacement field within the
crystal is a Bloch wave of the form
ikyer

D(t,r)~e "(Dge" " +Dye ") , (2.10)

where k; =k,+H and the amplitudes satisfy the system
of equations

260Dy —Px _yDy =0, (2.11a)
—PxyDo+28yDy =0, (2.11b)
with the resonance defects &; and £, defined by
k3—KX(1+x,)
=_—, (2.12a)
%o 2k}
ki —K*(1+x,)
H= H—ZXO (2.12b)
2k

The wave vectors k, and ky are determined by two con-
ditions: The first is that they are constrained to lie on the
dispersion surface. This is expressed by

§O§H:%P2x2 ’

where x2=xyx_p and P is the polarization factor. As
shown in Fig. 2, this consists of two spheres centered at O
and H and deformed at their intersection, which is where
the Bragg peak occurs. The second is that they are relat-
ed to the incident vacuum wave vector K through a
tangential continuity boundary condition analogous to
(2.5)

k,=K+KAf .

(2.13)

(2.14)

Only two approximations have been made so far: We
have neglected terms of order Y2 and have restricted our-
selves to only two beams. Now we make two additional
approximations that are central to the discussion in this
paper: First we assume that the resonant defects are
small quantities,

&0 Eg=0(X),

the square of which may be safely neglected. This ap-
proximation is very good close to the Bragg peaks but
fails otherwise. Equations (2.12) then simplify to

(2.15)

k2=K*1+x,+2&) , (2.16a)

kL =KX 1+x,+2&y) . (2.16b)
The second is to assume that A is small,

A=O(y), 2.17)

and its square is negligible. This is a good approximation
except at grazing incidence where A is of order y!/2. For
the sake of simplicity in the rest of this section we will re-
strict ourselves to the TE polarization (P=1) and the
symmetric Bragg case (@i=H/H). This is sufficient for
our present purposes. Equations (2.13)-(2.17) then imply

vds |

FIG. 2. The dispersion surface in the crystal (cds) in the
two-beam case and in vacuum (vds). The surface normal fi and
the wave vectors in vacuum K and in the crystal k, are related
by Eq. (2.14).
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(1/2)x0+
A= Xot o

~ (2.18)
and
Eo=L[—zH(22—x2)1?] (2.19)
where
Z=Xo—a
and
g=KHHY o (sin0,—sing) . (2.20)

2K?

Equations (2.18) and (2.19) amount to approximating the
dispersion surface (2.13) by a hyperboloid with straight
rather than curved asymptotes. It is also usual! "2 to ap-
proximate the incidence variable a by expanding the
right-hand side of (2.20) to first order in 86=60—0.
This is obviously wrong far from the Bragg peaks.

The last ingredient in the calculation of the reflectivity
consists of matching the fields within the crystal to those
outside. The fact that y is small allows one to neglect the
distinction between the electric (E) and the displacement
(D) fields and to replace the exact electromagnetic bound-
ary conditions of continuity of the appropriate tangential
or normal component of a field by the continuity of its
amplitude. For a semi-infinite crystal the amplitude of
the diffracted field in vacuum is then given by the Bloch
wave amplitude ratio

, :&: 28,
4 Dy, X-y’

with the sign of Eq. (2.19) chosen to minimize |7 4|2 The
dynamical reflectivity, corresponding to the kinematical
Eq. (2.7), is

Ry =lrp+r l?.

(2.21)

(2.22)

In Sec. III we will see that the approximate boundary
condition of continuity of the field amplitudes fails far
from the Bragg peaks and Eq. (2.22) will have to be re-
vised.

C. The kinematical and dynamical results compared

Let us consider the specific case of diffraction of TE-
polarized CuKa radiation by the (111) planes of the ideal-
ly terminated semi-infinite silicon crystal. The reflectivity
calculated according to the kinematical and Laue dynam-
ical theories, given by Eqgs. (2.7), (2.8), and (2.22), respec-
tively is shown in Fig. 3. The close vicinity of the Bragg
peak is shown in Fig. 3(a). We see that the kinematical
(curve labeled KT) and dynamical (curve labeled LT1) re-
sults agree for low values of the reflectivity (say, for
R <107?), while the kinematical result is obviously
wrong where R is large. This is well known. Note, in-
cidentally, that the index of refraction correction includ-
ed in the kinematical reflectivity of Eq. (2.7) provides the
appropriate shift so that the location of the kinematical
peak agrees with the dynamical one.

What is perhaps not as widely appreciated is that as
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FIG. 3. (a) The reflectivity of the ideally terminated silicon
crystal to CuKa radiation according to the kinematical (KT)
and the usual Laue dynamical theories (LT1) in the vicinity of
the (111) Bragg peak. (b) The same reflectivity in the far tail re-
gion with (curves labeled KT+ F and Ltl+F) and without
(curves labeled KT and LT1) the contribution due to the Fresnel
reflectivity.

one goes farther and farther from the Bragg peak the two
theories give diverging results [Fig. 3(b)]. We see that the
reflectivities without the contribution due to the Fresnel
reflectivity (curves labeled KT and LTI, respectively),
which are obtained from Egs. (2.7) and (2.22) by omitting
the rp term, may differ by a factor of 10 or more. Of
course, as one goes away from one Bragg peak the
influence of the tails of neighboring ones becomes impor-
tant. In this particular case the rather large contribution
of the Fresnel reflectivity should be included (curves la-
beled KT+ F and LT1+F) and we see that the disagree-
ment is milder, but it still is large, of the order of 50%.
Let us now address the issue of whether the expecta-
tion that the kinematical and dynamical theories give the
same results whenever the reflectivities are low is a natu-
ral one or not. Notice that quite independently of the is-
sue of the validity of the approximations (2.15) and (2.17),
the two theories necessarily give very different descrip-
tions of the diffracted field within the crystal. The
kinematical diffracted wave vector k is related to the in-
cident wave vector k; by specular reflection, Eq. (2.3),
while the dynamical wave vector ky is given by
k;=ko+H. Asshown in Fig. 4, close to the Bragg peak
these two forms are approximately equal. In the far tail
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FIG. 4. The kinematical k and the dynamical k; diffracted
wave vectors. They are very different except close to the Bragg
peak (the region in which the spheres intersect and the disper-
sion surface deviates from sphericity). kg is the wave vector of
the primary plane wave.

region, however, they are so different that any agreement
between the dynamical and kinematical reflectivities
would actually be rather surprising.

III. AN IMPROVED LAUE DYNAMICAL THEORY

A. The dispersion surface

In Sec. IIC we saw that approximations (2.15) and
(2.17), which amount to neglecting the asymptotic spheri-
city of the dispersion surface, are not valid in the far tail
region. A quartic equation for the dispersion surface that
is exact (within the approximations of keeping only two
beams and neglecting y?) is obtained by eliminating &,
and &5 from Egs. (2.12)—-(2.14). This leads to

A*+C,A M+ C,A2+C A+ Cy=0, 3.1)

where
c,=21-K 1+% , (3.2a)
2 A D2 X0+x2
C,=2 a+;(n-K) i (3.2b)
—X
A +x2
c,=2-R [2a— 1“;" )‘;° ~ 1., (3.2c)
—X
X3—2x0a —xX1+2a)
Co= , (3.2d)

1—x2

with a given by Eq. (2.20) and b, the asymmetry parame-
ter, by

b=:‘—l‘l‘£‘— . (3.3a)
n-(K+H)

These equations are valid for arbitrary orientation of the

crystal surface. In the symmetric Bragg case the parame-
ter b becomes

sinf

sinf—2sinfy - 3.35)
Notice that the usual approximation of taking b=~ —1
fails in the far tails of the Bragg peaks.

The four roots A; (i =1 to 4) of the quartic Eq. (3.1) are
shown in Fig. 5. In the symmetric Bragg case (1 =H) the
reflection symmetry of the dispersion surface can be ex-
ploited to calculate these roots exactly. As shown in the
Appendix we obtain

A 4=0g—(ALB)? (3.4a)
and
A, 3=Ay+(AEB)'?, (3.4b)
where
Ay=sinf—sinby , (3.4¢)
+x2
4 =sin28+sin29H+z(o——2— , (3.4d)
—X
and
2 172
+x?
B= [ [25in9sin9H+Xlo - ] ~C°1 . (349
—X

The choice of signs in (3.4a) and (3.4b) should be made so
that ReA; > ReA, and ReA; > ReA, (see Fig. 5).

For asymmetric Bragg cases the A; can be easily calcu-
lated without neglecting the asymptotic sphericity of the
dispersion surface if one notices that the roots A; and A,
are sufficiently far away from the Bragg-peak region that
the dispersion surface may be approximated by a sphere.
These solutions are given in the Appendix.

FIG. 5. The four roots A; (i=1 to 4) of the quartic equation
for the dispersion surface.



47 DIFFRACTION OF X RAYS AT THE FAR TAILS OF THE . .. 81

B. The boundary conditions

The boundary conditions used in Sec. II B neglected
the distinction between electric E and displacement D
fields. In the two-beam approximation the electric field
in mode i (i=1 to 4), E', is obtained from (2.1) and
(2.10):

E(t,r)~e ~9(Ee ""iO"_,_E(Ipe"k"H o, (3.5a)
where

Ey’=Dy(1—x0)—D¥x_x (3.5b)
and

E‘,}’=D}§’(1—X0)—DEI)XH . (3.5¢)

To be specific let us now consider the scattering by a
semi-infinite crystal. In the usual approach (Sec. II B)
only mode 1 is appreciably excited.! > Modes 2 and 3
would only be excited if a second surface were present,
and mode 4 is altogether neglected, which amounts to
neglecting the Fresnel reflection of the diffracted beam as
it leaves the crystal. The use of the correct electromag-
netic boundary conditions requires that this fourth mode
be included.

Close to the Bragg peak, the fields EY}) and DY}’ of the
dominant mode 1 are approximately equal because Y, and
Xg are small. In the far tail region, however, they are
very different; the contribution of the second term in
(3.5¢c) is comparable to that of the first and cannot be
neglected. Thus,

E{'~D{" , (3.6a)

but

EV~D{P—Dy,, . (3.6b)

For TE-polarized radiation, the use of the boundary con-
ditions of tangential continuity of the Fourier com-
ponents of the electric and magnetic fields (we assume
nonmagnetic materials) leads to a rather simple result.
There are reflected and diffracted waves. The amplitude
reflection coefficient for the reflected wave is given by the
appropriate Fresnel expression'!

Kn —kIOn

rp=—, (3.7)
R klOn —Kg,
and, for the diffracted wave, we get
Ky —Kgn [ 1 Kitn = Kapn
rp= |-———— | |r ) —x ] ——— (3.8)
b klOn _KRn 4 " KDn -k4Hn

Here K, K[, and K, are the incident, diffracted, and
reflected wave vectors, respectively, k;, and k;y are pri-
mary and diffracted wave vectors in mode i =1 or 4, the
subscript n indicates the component along the normal o
to the crystal surface, and r!}’ is the amplitude ratio
(2.21) for mode 1. These expressions are valid for both
the symmetric and nonsymmetric Bragg case.

Equation (3.7) differs from (2.8) only in the immediate
vicinity of the Bragg peaks where the wave vector k, lies

in the nontrivial part of the dispersion surface. Equation
(3.8) also has a simple interpretation: The first factor on
the right-hand side represents the transmission across the
crystal surface into the crystal, from the incident E am-
plitude to the amplitude of the zeroth component of
mode 1 field D{". This factor is a Fresnel transmission
coefficient; for nongrazing incidence it is very close to 1.
The second factor represents the diffraction from the pri-
mary D{!’ to the diffracted E\}’; as discussed below Eq.
(3.5) for low r'}), the extra term —yj is an important
contribution. The third factor represents the transmis-
sion of the diffracted field E}}’ through the crystal surface
out into the vacuum and, therefore, is essentially also a
Fresnel transmission coefficient. The situation here is,
however, rather peculiar in that this transmission
coefficient may differ significantly from 1, in other words,
the Fresnel reflection of the diffracted beam as it crosses
the crystal-vacuum surface cannot be neglected. This is
traced to the fact that in the far tail region the length of
the wave vector k;y deviates from K considerably (see
Fig. 4) as if there were a large effective index of refrac-
tion.

In the symmetric Bragg case (l=H/H) the reflected
and diffracted beams coincide K, =Ky and the total
reflectivity is the sum of the two contributions

(3.9)

Using Eq. (2.14), Eqgs. (3.7) and (3.8) take the simpler
form

Ry ,=|rg+rpl?.

4 (3.10)
"R D sin0—A, '
and
— |_2sin60 | (1)_
= | 2sin6—a, |74 X#)
AI_A4

3.11
2sinf—2sinfy —A, ( )

C. The kinematical and improved dynamical
results compared

Let us return to the specific diffraction example con-
sidered in Sec. II C. The reflectivity calculated according
to the kinematical and the improved dynamical theories,
including the contribution of the Fresnel reflectivity, is
given by Egs. (2.7), (2.8), and (3.9)-(3.11), respectively,
and is shown in Fig. 6.

We see that the kinematical result (curve labeled
KT+ F) agrees with the improved Laue dynamical result
(curve labeled LT2 + F) over the entire angular range be-
tween the zeroth order (the total external reflection re-
gion) and the first order (the 111 reflection). As expected,
they differ only at the (111) Bragg peak. In this region of
large R the improved dynamical result coincides with the
usual Laue theory [shown in Fig. 3(a)] and, as discussed
earlier, the kinematical result is wrong.

This agreement between the improved dynamical and
the kinematical theory in the far tail region can be
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FIG. 6. The reflectivity of the ideally terminated silicon crys-
tal to CuKa radiation including the (111) Bragg reflection and
the contribution due to the Fresnel reflectivity, according to the
kinematical (KT+F) and the improved Laue dynamical
theories (LT2+ F). The improved dynamical theory agrees with
the kinematical theory everywhere except at the Bragg peak
where the kinematical theory is known to fail. A blowup of the
Bragg-peak region at 14.2° is identical to Fig. 3(a).

demonstrated analytically. Note that sufficiently far
away from the resonance region the dispersion surface is
very close to spherical (see Fig. 5). To calculate A,, we
set £,=~0 in Eq. (2.12a) and combine with (2.14) to get, in
the symmetric Bragg case

A, ~sinf@—sinf . (3.12)

Similarly, setting £ ~0 in Eq. (2.12b) and using (2.14) we
get

A,~sinf—sin—2sinfy . (3.13)

The amplitude ratio r(A” is obtained from (2.12b), (2.14),
and (3.12),

(1) — XH 1+X0
ry — <~ =

28y “Xu 45infy (sinfy —sind)

+11. (3.14)

Substituting (3.12)-(3.14) into (3.10) and (3.11) we obtain
the kinematical expressions (2.7) and (2.8) to leading or-
der in Y, as desired.

IV. FINAL REMARKS AND CONCLUSIONS

We have shown that the expectation that the kinemati-
cal and the Laue dynamical theories of x-ray diffraction
give equivalent results for the weak scattered intensities
in the far tails of the Bragg peaks is justified provided
some approximations employed in the dynamical calcula-
tion are improved. Better approximations for both the
shape of the dispersion surface and the boundary condi-
tions are required: One needs to take into account the
asymptotic sphericity of the dispersion surface and the
difference between electric and displacement fields. This
results in a nontrivial transmission coefficient for the
diffracted electric field as it leaves the crystal.

Our approach has relied on analytical rather than nu-
merical calculations. Rather than scanning reciprocal
space across the truncation rods (as in Ref. 10), the calcu-

lations described here refer to scanning along the trunca-
tion rods, which is more directly relevant for some experi-
ments.” In fact, by explicitly showing the equivalence of
kinematical and dynamical results this work provides ad-
ditional theoretical support for the kinematical approach
adopted in Ref. 7.
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APPENDIX: SOLUTIONS OF
THE QUARTIC EQUATION FOR
THE DISPERSION SURFACE
The four roots A; (i=1 to 4) of the quartic equation
for the dispersion surface satisfy

SA=—C;, (A1)
S AA=C,, (A2)
iF#j

MA,=C, . (A3)

In the symmetric Bragg case the reflection symmetry of
the dispersion surface implies (see Fig. 5) that the A; are
of the form

Ay 4=Bg—h,, (Ada)

and

Ayy=Byg+A,, . (A4b)

Substituting into (A1) and using (3.2a) and (3.3b), we see
that A, is given by (3.4c). Substituting further into (A2)
and (A3), we obtain a quadratic equation for A, ,, which
leads to the desired solution (3.4).

In an asymmetric geometry where fi is not parallel to
H and Eqgs. (A4) are not valid, one may still obtain an ap-
proximation that takes the correct asymptotic sphericity
into account by noting that the roots A; and A, are locat-
ed sufficiently far away from the resonance region that
the dispersion surface is very close to spherical (see Fig.
5). Analytically this is expressed by setting £,~0 in Eq.
(2.12a). Combining this with (2.14) we get

Ay=Ay=—H-K+[(H-K)2+y,]"2. (A5)

Similarly, setting &5 =0 in Eq. (2.12b) and using (2.14) we

get
a2 172
n-K

b

A4:A;=—Eib5— —2a+x, (A6)

Substituting into (A1) and (A3) we get the desired solu-
tions,
A, ,=—LC3+A+AY)

Lic,+ay+ay2—

172
+ 0 .
4 AYA

(A7)
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