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One-dimensional exciton in a two-band tight-binding model with long-range interactions
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The nature of an exciton in a one-dimensional system is clarified from numerical solutions for the
electron-hole attraction varied from the weak (Wannier) limit to strong (Frenkel) limit by making use of
a two-band tight-binding model having 1/r as well as on-site interactions. "Large" and "small" excitons
are shown to respond to an increase in the strength of the long-range interaction relative to the on-site
interaction in opposite manners: the size of an exciton is found to shrink for weak interactions, whereas
the extension increases for strong interactions. This property is explained both intuitively and from an
exact solution for a simplified model. We further show that the crossover between the large and small
excitons should be observable in the optical properties.

A standard practice in studying excitons in semicon-
ductors' is to classify them into Wannier and Frenkel
excitons. The picture of the Wannier, or large, exciton,
has been thought to be valid when the spatial extension of
the exciton, R, is much larger than the dimension of the
unit cell of the crystal, a. The Frenkel, or small, exciton,
represents the opposite limit of strongly coupled excitons.
There the exciton is regarded as an intra-atomic excita-
tion which can migrate in the crystal, so that the model
applies to the case of R «a. However, on the one hand,
it is not obvious whether there is a clear theoretical way
to distinguish the two models, and, on the other, the exci-
tons observed in real materials should be somewhere be-
tween these extremes. Thus it becomes an important
question to ask how the Frenkel exciton crosses over to
the Wannier exciton as the coupling is gradually de-
creased.

A second essential factor in considering excitons is the
dimensionality. The wave function of an exciton becomes
spatially more strongly confined as we go to lower dimen-
sions, so that the physical properties of excitons become
intriguing as the dimensionality is reduced. Specifically,
the problem of the crossover between Wannier and
Frenkel excitons becomes particularly interesting in one-
dimensional (1D) systems. Recently it has become exper-
imentally possible to fabricate "natural" 1D semiconduc-
tors, i.e., o.-conjugated polymers as exemplified by polysi-
lanes. Several theoretical models have been introduced
to study excitons in 1D systems. '

In the present Brief Report, the crossover of Wannier
and Frenkel excitons in 1D systems such as polysilane is
explored from first principles, by which we mean that we
obtain numerical solutions of finite systems in a model
with 1/r as well as on-site interactions in a crystal
represented by the tight-binding model. Since the spatial
extension of an exciton becomes extremely small, i.e., of
the order of the lattice constant, in 1D, we consider that
the employment of the tight-binding model on a discrete
lattice should be adopted, as contrasted with continuum
models. In a discrete model, the problem of the 1/r

singularity in the Coulomb interaction does not arise ei-
ther, while the singularity causes a catastrophe in 1D
continuous models. Such a difficulty is circumvented in a
different manner in quantum wires, which are another
class of quasi-1D systems, i.e., one may consider that the
electron-hole potential has a cutoff momentum arising
from averaging the quantized envelope function in the
transverse direction of the wire. ' In contrast, we ad-
dress ourselves to the problem of the Wannier/Frenkel
crossover in lattice structures, in which the divergence of
the electron-hole potential is inherently absent.

Here we employ the two-band model with long-range
Coulomb interactions between electrons and holes. The
long-range interaction is essential if one wishes to discuss
the excited states of excitons, since only one exciton level
(the ls state in the Wannier picture) appears when the
long-range electron-hole interaction is absent.

The Hamiltonian then reads

t, g (a;+,a;+H.—c. ) —tt, g (b;+,b;+H. c. )

—g U(i j)a; a;b b—
—

Vd y (a;+/b;+$b;a;+H. c. ),

where a; and b, represent the annihilation operators of an
electron and a hole at the ith site, respectively, and t, and

tI, are the transfer energy of electrons and holes, respec-
tively.

The long-range Coulomb attraction between an elec-
tron and a hole is denoted by U(r), where the distance r
is measured in units of the lattice constant a. Here we
consider low concentrations of excitons to neglect the
screening of electron-hole interactions. Thus we employ
the form

Uo (r =0)
U, /~r~ (rao) (U, & U, &0) .
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Here intracell attraction Uo, which is the interaction of
an electron and a hole within the same unit cell, is a pa-
rameter reAecting the internal structure of the unit cell,
while the coefticient of the long-range part, U„ is basical-
ly dominated by the intercell spacing and the dielectric
constant of the host material.

The last term in Eq. (l) comes from the electromagnet-
ic dipolar coupling between atoms. This term has been
shown to be indispensable for the mobility (dispersion) of
excitons by Heller and Marcus. An exciton in fact be-
comes immobile in the Frenkel limit ( Uojt ~ ~ ) if
Vd =0.

Here we consider a single exciton (one electron and one
hole), while we shall address ourselves to finite concentra-
tion of excitons in a separate paper. Thus we can neglect
the spin of electrons and holes here. We have numerical-
ly diagonalized the above Hamiltonian for finite systems
with periodic boundary conditions. We have taken sam-
ple sizes (L -600) that are large enough to make the re-
sult size independent for each value of the parameters. A
cutofF in the interaction range at I./2 is introduced.

We first define the binding energy of an exciton, E~,
which is the energy gained by turning on the electron-
hole interaction. The result shows that, although the
binding energy is reduced as the transfer energy is in-
creased relative to U(r), E~ never vanishes. Thus we
confirm, in the present model, that an electron-hole pair
is bound in 1D no matter how small the electron-hole in-
teraction may be in contrast to higher-dimensional cases.
For a fixed transfer energy, the binding energy increases
with U&. This result is reminiscent of the result by
Ogawa and Takagahara, " who calculated the binding en-
ergy of an exciton in a continuous space confined in a
tube having a finite thickness.

We now turn to the radius of an exciton, R, defined by
the second moment of the wave function as

+ tI
R (U) =0)=&2

Uo+2 Vd
(4)

1/2
R=— i —j a;ab b

1J

Hereafter we concentrate on the exciton with zero total
mornenturn, k. This is because, first, we would like to
single out the wave function of the relative motion of the
electron and hole, and, second, because optical properties
concern the k =0 states. The relevant parameters in this
case are t, +tz, U„and Uo+2Vd. Hereafter we take
Uo+2 Vd as a unit of energy.

The result (Fig. l) shows that R increases with t, + tz
for any value of U&. Conspicuously, however, the depen-
dence of R on U& becomes the opposite as t, + tz is
varied: For t, + tl, & 1, an exciton expands with increas-
ing U&, while it shrinks with U& for t, +t& ) 1. This is
contrasted with the binding energy, which always be-
comes deeper with U, .

As a reference, we can consider the limit of vanishing
long-range interactions (i.e., U, =0). Then we can readily
obtain an exact solution for the whole range of parame-
ters, ' which gives a linear dependence of R on t,
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FIG. 1. The radius of the exciton, R, is shown as a function
of t, +t& for U, =O (solid line), U&=0. 5 (dotted line), and
U& =0.75 (dashed line).

This happens to coincide with the random-phase-
approximation (RPA) result by Egri for the two-band
tight-binding model with only on-site electron-hole in-
teractions considered in an analysis of Wannier and
Frenkel excitons, although the RPA is only justifiable
for small interactions. As U& is turned on, the curve
shifts above this straight line for t, +t& & 1 and below the
line for t, + tI, ) 1.

We can call the former the Frenkel regime and the
latter the Wannier regime. This behavior is nontrivial in
that, while for the usual 3D excitons the Bohr radius is
proportional to t( ~ llm') for long-range llr interac-
tions, for 1D excitons R ~ t is realized for short-range in-
teractions instead and for the long-range interactions R
depends sublinearly (e.g, R ~ t for U, =0.8) on the
bandwidth.

Interestingly, the curves for R for various values of U&

cross near, but not exactly at, a single point. Notably,
even in the weak-coupling (Wannier) regime, R is compa-
rable to the lattice constant, so that, first, our definition
of a Wannier exciton difFers from the conventional one,
and, second, a continuum model would be inadequate to
describe the region of Wannier/Frenkel crossover in 1D.

There are two ways to give physical explanations for
the difFerent responses to the variation in U&. To give an
intuitive one, we can reduce the problem of a single
electron-hole pair to a one-body problem in a potential
weil for the relative motion. When the well is shallow,
the wave function for the relative motion will spill out of
the well, and the addition of a long-range potential will
act to shrink the wave function. On the other hand,
when the well is deep enough to confine the wave func-
tion within the well, addition of the long-range interac-
tion will make the wave function spread out of the we11.

This argument can be reinforced from an exact solu-
tion' for a two-band model having on-site and nearest-
neighbor interactions with
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Uo (r =0)
U(r)= U, (r =1)

0 (otherwise) .

) —'pa b +C y e
—

I Jla; b—, ~0),
1

where ~ is determined from a cubic equation,

xyk +(x —y)k +(x+xy)k —x =0,

(6)

In this case, up to three exciton bound states appear, de-
pending on the value of the parameters. The wave func-
tion of the lowest state for U0 ) U& )0 is given as
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with x =(t, +th)/(Uo+2Vd), y =U, /(Uo+2Vd), and
k =e ". The ground-state energy and the radius of exci-
ton are given by

E = —2(t, + th )cosh~,
I /2

C2 1

2(C —1) 2sinh ~1+
e2K+ 1

FIG. 2. Optical-absorption spectra are shown for U& =0.6
and t, + tI, varied from 0.1 to 0.6. The position of the band edge
(separation of the conduction-band bottom and the valence-
band top) is denoted by EG. A Lorenzian width of I =0.01 is
assumed in plotting the discrete absorption lines. The inset
shows the envelope function of the lowest three excited states of
exciton for t, + th =0.2 and U& =0.6.

te+thC=
t, +th —U)e

R indeed increases (decreases) with U, in the strong-
coupling (weak-coupling) regimes. The crossover of the
two regimes is given here by t, + th

=+2+&5/(1+&5)-0.64. The critical value of t in
this model is slightly smaller than that for the 1/r in-
teraction, since, when R is as small as a, addition of the
long-range interaction will expand the exciton, while ad-
dition of the nearest-neighbor interaction alone wiill
compress the exciton.

Although the crossover has also been observed in the
continuous model with a cutoff interaction,
U(r) ~ 1/(r +ra), the physics providing the crossover is
essentially different for the following reason. We can
translate the reciprocal of the reduced effective mass of
the electron and hole in the continuous model into t in
the tight-binding model. The crossover point in the
former model occurs at a much lower point,
(1/m*), —(1/10)U(0), than the present result of
t, —U . Since the spatial extension is of the order of the0'
lattice constant in the strong-coupling regime with
t ( U (0), the discrete atomic structure must be taken into
account there, and the crossover point in the continuous
model thus falls upon the region where the model breaks
down.

As an observable property which can reQect the spatial
extension of excitons we have calculated the optical ab-
sorption. Figure 2 shows the optical-absorption spectra
when t + t is varied from the Frenkel to the Wannier re-w en

6gimes. As is experimentally observed in polysilanes and
is pointed out from a continuous model, the band-edge4

absorption (across the valence-band top and the
conduction-band bottom) is absent or very weak in 1D,
which comes from the property that excitons exhaust the
oscillator strength almost completely in 1D. The present

result (Fig. 2) shows that this holds for the tight-binding
model in both 8'annier and Frenkel regimes.

Another feature in Fig. 2 is a remarkable difference for
the excited states between the Frenkel and Wannier exci-
tons. For the Wannier and intermediate excitons, the os-
cillator strength of the excited states of the exciton is too
small (typically, ~ times of that of the lowest exciton for
t, +t =0.25) to give significant peaks at the energy ofh

those states. Thus only one peak due to the lowest exci-
ton state will be observable. This result for the weak-
interaction regime is consistent with a theoretical result
in a continuous model.

If we now decrease the transfer energy, the peaks for
excited states grow and become comparable with the
peak for the lowest exciton state, as shown in Fig. 2.
This is because the electron and hole in the excited states
become bound tightly enough to give oscillator strengths
comparable with that of the lowest state. More
specifically, peaks appear when the wave function of the
first excited state of the exciton is confined within the
effective range of the dipole moment. The effective range
of the dipole moment is defined as the spatial separation
over which the matrix elements of the dipole moment be-
tween different atomic orbitals have significant values,
and is of the order of the size of Slater orbitals.

This property provides an observable property specific
to the Frenkel exciton. Noticeably, the critical value of
t ( -0.2), at which the peaks for the excited states be-
come significant, is considerably slower than the cross-
over value of t ( —1) in Fig. 1. Since the crossover for R
is defined only in terms of the lowest exciton state, it is
natural that the crossover for the optical absorption
which involves the excited states (the inset of Fig. 2)
should take place at a lower value of t.

In higher-dimensional systems, the excited states of an
exciton have comparable oscillator strength even in the
Wannier regime, so that the above property in the
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Frenkel/Wannier crossover regime is specific to 1D sys-
tems.

Two-photon absorption (TPA) spectra are also calcu-
lated with conventional perturbational formula. Since
the dominant TPA processes employ the lowest exciton
state as the intermediate state, it is interesting to ask the
relation of the peak value (f) of TPA for Rco=E, /2 to
the ratio of the ground-state energy and the excitation en-
ergy of an exciton, r=Eo/(E, Eo—), where Eo and E&
denote the excitation energy of the lowest exciton and the
first excited state of the exciton, respectively.

We can see in Fig. 3 that f for a fixed value of t, +th
decreases with ~ as the lowest exciton state becomes off-
resonant. For a fixed value of r, the oscillator strength is
peaked at a certain value of t, +tI, that falls upon the
Frenkel regime. This peak arises when the spatial exten-
sion of the relative motion optimally fits into the effective
range of the dipole moment (rd ). Namely, the first excit-
ed state of the exciton has an oscillating wave function
with a node, and its dipole moment reaches maximum
when its size is about rd. Thus the situation, in which the
optical absorption is dominated by the size of the excited
excitons relative to rd, is reminiscent of the appearance of
one-photon absorption peaks for excited states revealed
above. Since the above explanation is valid only when
the size of an exciton is of the order of the lattice con-
stant, it is again an important property of the 1D exciton
in the crossover regime.

If we now apply the present results to polysilanes, we
can determine the value of the parameters by fitting the
experimental results '" to the theory. Namely, the ener-
gy of the lowest exciton is deduced experimentally from
the result for the one-photon absorption, and the energy
of the first excited exciton state from the experimenta1 re-
sult for two-photon absorption. We can combine these
with the present result as well as with theoretical results
for two-photon absorption' and for the bandwidth ( ~ t)
from the band calculation by Takeda and Shiraishi. '

For polydihexylsilane (PDHS), we obtain t, + tt, =2.5 eV,
Up +2 Vd = l. 8 eV, and U, = 1.7 eV. This gives
( t + th ) /( Up +2 Vd ) 1.4, so that the exciton is of Wan-

O
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FIG. 3. The oscillator strength of two-photon absorption
(f,„) is shown as a function of t, +th and r=EO/(E, Eo). —
Here Eo and E& are the energy of the lowest exciton and the
first excited state of the exciton.

nier type in PDHS in our definition. Experimentally,
only one peak is observed in the optical absorption,
which indeed confirms our identification.

When the exciton size is -a, the notion of the charge-
transfer exciton is sometimes evoked, in which the exci-
ton is viewed as a charge transfer over atomic distances.
To accurately discuss the behavior of such excitons, the
effects of lattice distortions and Madelung energies will
be necessary.
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