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Capillary length of a planar interface from low temperatures to the critical point:
An Ising d =2 strip
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The correlation length controlling the long-range decay of the density-density correlation function in

the direction parallel to the interface is computed exactly, for T T„ in the two-dimensional Ising
MX (x) strip periodic in the long direction with a (+/ —) boundary condition in the other direction
which creates a planar strongly fluctuating interface. A crossover from long-range capillary-wave-like

behavior to short-range bulk correlations above T„a new scaling function, and corrections to scaling at

T, are found.

I. INTRODUCTION

Fluctuations of the planar interface between two coex-
isting phases are described at low temperatures by
capillary-wave theory. ' The lat ter correctly predicts
long-range correlations in the direction along the inter-
face. The decay is exponential and the relevant correla-
tion length is known.

It is a matter of conjecture as to what happens to this
correlation length if we raise the temperature and ap-
proach the critical point. The capillary-wave theory
deals with two incompressible bulk phases separated by
an instantaneous mathematical surface; the bulk density
Auctuations in either phase are neglected entirely. There
is no recipe for incorporating the density Auctuations into
the capillary-wave picture. Clearly a quantitative descrip-
tion of the crossover from the low-temperature capillary-
wave regime to criticality can come only from a theory
which does not neglect "compressibility, " i.e., density-
density Auctuations in the bulk. For a discussion of the
present status of the theory the series of papers by
Sengers and van Leeuwen may be consulted.

Some understanding may be gained by studying simple
models yielding exact results, and in the present paper we
study the interface in a particular version of the d =2 Is-
ing model. Our system is an Ising M X ~ strip described
fully in Sec. IV and depicted in Fig. 1, for which we cal-
culate the correlation length g along the interface. Com-
parison with the known results for the solid-on-solid
(SOS) model (recalled in Sec. III) is interesting and is
given in Sec. IV.

A, 2/A. , =exp( —I/gi) . (2.3)

An anisotropic object such as a planar interface ought to
produce two correlation lengths gi and

g~~
controlling the

decay of H in the x and z directions, respectively. In ad-
dition to these two lengths, there is the ubiquitous bulk
correlation length gb. The density profile p(z), or the
magnetization profile m (z) =2P(z) —1, has its own length
scale 8' the width of the interface. If the interface is
held in place by an external gravitational potential, the
scaling relation predicted by capillary-wave theory is

gi=2PI W' (2.4)

in which the external potential does not appear explicitly.
Here P=1/kT is the inverse temperature and I is the
stiffness of the interface. We remark that if we were to
study the adsorption at the wall it would be customary to
denote gi as "parallel" to the wall, but here we keep to
the well-established terminology used for floating inter-
faces which become planar only under the inhuence of an

(-) PHASE

with n ) 1, Ex&0 where the index n labels the eigenval-
ues of the transfer matrix A, &)X2) . . If we keep M
finite A,2/A,

&
dominates at large hx ))M' and then quite

generally we may identify

II. THE DENSITY-DENSITY CORRELATION FUNCTION IN l ~FACE

For a two-dimensional strip infinite in one direction
the lattice model can be treated and often solved with the
aid of the transfer matrix. " The density-density correla-
tion function z=0

(+) PHASE

+ + + + + + + + + +

H(1, 2):—& p(1)p(2) &
—

& p(1) & & p(2) &

can be expressed as

H(1, 2) =H(z „z~;bx ) =X„A„(z,,z~ )(A,„/A, , ) ",

(2.1)

(2.2)

FIG. 1. The M X ~ strip with (+/ —) boundary conditions,
i.e., with two rows of fixed spins at z =0 and M with (+ ) spins
below and (

—) spins above. The x direction is along the walls.
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external field V(z) and so gi "along" the planar interface
is then transverse with respect to the field.

It is important to remark that the ratio (2.3) gives the
ultimate rate of decay of H(. . . , bx ), i.e., after all terms
related to higher eigenvalues in the sum (2.2) have died
out and (2.3) dominates. As M increases, the eigenvalues
are separated by smaller and smaller gaps and therefore
condition on hx ))M" is more and more stringent; e.g.,
for the SOS model the exponent r given above is r =2.
The function H as defined in (2.1) is equal to —,

' of the
spin-spin correlation function discussed in Sec. IV.

III. THE SOS STRIP

The correlation length for the x direction (parallel to
the interface) can be extracted from the exact results ob-
tained for the SOS semi-infinite strip. Consider an
M X ~ strip, such as that depicted in Fig. 1, of the plane
square lattice with an Ising spin o. =+1 on each lattice
site. In the SOS model the dense phase contains o.=+ I
(plus) spins only and the other, cr = —1 (minus) spins
only; overhangs of the dividing line between the two
phases are excluded. It follows that the microscopic
configuration is given by a collection of heights th;],
where i numbers the columns and in our case 0 ~ h; M
for each i. The column-column transfer matrix in the x
direction,

Pgf =K,XXo.(x,z)o (x + l,z)+KiXXcr(x, z)o (x,z + 1)

+K2XXcr(x, O)cr(x, 1), cr(, ) =+1
P= 1/kT, z =1, . . . , M —1, x =1, . . . , L

(4.1)

=Aaexp( —y, —y, — ) (4.3)

(each is doubly degenerate) and the set
~L ) = ~1, , 12, lz, . . . ) specifies which y's enter with a
minus sign. The +~ ~

—case corresponds to an odd
number of such exp( —

yk ) factors multiplying A0. Since
f ] & p 2 & j 3 & the largest eigenvalue is
A, , =ADexp( —y, ) and the next is 12=ADexp( —yz) at all
temperatures T & T, . Hence the ratio of the eigenvalues
1s

(cyclical, L ~ ~ ) . (4.2)

The column-column transfer matrix in the x direction is
easily constructed; it has been diagonalized by Abraham
and Martin-Lof; Ref. 6 treats the case we need in which
all cr(x, z =0) are equal, as are all o (x,z =M). The solu-
tion in Ref. 6 contains all four cases: +

~

.
~ +,

' '
I
+ and +

I I

—.We extract the
last case for which o(x,O)=+1 and o(x,M)= —l. In
the general solution the eigenvalues are

T„i, =exp[ —2K~h —h' ],
has been diagonalized and its eigenvalues are

sinh2K
cosh2K —cos( n m. /M )

(3.1)

(3.2)

X, /A, ,=e, G=yi —y, =l/g'i (G—:G+ ) . (4.4)

As explained in Sec. II, this ratio controls the ultimate
decay (in the x direction) of the two-point spin-spin or
density-density correlation function.

Expressions for yk are known from Ref. 6, e.g.,
The interface stiffness is pI =2 sinh K =cosh2K —1. Us-
ing now the relation (2.3) we obtain

PI'+ 1 —cos(rc/M )
1 / sos =lil

PI +1—cos(2m/M)
(3.3)

1/g =(3m. /2PI )M + . , PI XO, M ' 0 . (3.4)

Expanding in powers of 1/M while keeping pI constant
we obtain

coshy„=cosh(u~ —u, )

+sinh(u2)sinh(u, )(1—coscok ),
u2 =2K2, v ) =2K ), sinh2K) sinh2K*, = 1,

and m is a solution of

5'(cv) =Mcv —(k —1)~, sin5'sinhy =since sinhvi

(4.5)

(4.6)

Since the width of the interface was found to be
W=~/M, we obtain agreement with the scaling relation
(2.4) of capillary-wave theory. Even though the interface
is localized only by the finite size of the strip in the z
direction, the form of (2.4) is preserved. The numerical
coefficient is altered [note the factor of 3 in (3.4)]. We
still have gi- I and gi- W . The SOS model has no crit-
ical point and pI, gi, and all other quantities vary mono-
tonically with K. At the critical point of the isotropic
[K—:Ki =K2 in (4.1) below] Ising model with the same
value of K, Pl =i/2 —1 and gi takes the value given by
(3.3) exactly or by (3.4) approximately.

IV. THE ISING INTERFACE IN THE ( + / —) STRIP

Consider an Ising strip periodic in the x direction
x B [1,L], L ~ ~, z E [O,M], with two boundaries
cr(x, O)=+1 and o(x,M)= —1, as depicted in Fig. l.
The Hamiltonian is

tan(Mco) =sincv/(a bcoscu), —

a = bsi/nh ,uzb—:coth—(v, ) .
(4.8)

(k=1,2, . . . ),
(4.7)

cos6'sinhy =coshv2sinhu, —sinhu2coshv, cosh& .

We performed detailed calculations for the case
K=—K, =K2. The surface tension (free energy per unit
length) is ua=po =v2 —u, whereas the interface stiffness
pI =sinh(ua). The quantity ua is directly related to
the (isotropic) bulk correlation length in the infinite sys-
tem; above T„ 1/g&= ~u0~ and below T„ 1/g& =2ua We.
use these quantities below.

Equations (4.7) reduce to a transcendental equation for
co which is to be solved for each k with the condition
Meek E [(k —1)m., kn. ]. We solve it for two roots cv, and
co2 with 0&co, & m/M &~2&2+/M. The equation can be
written as
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The right-hand side (rhs) of (4.8) does not depend on M;
at each temperature it is a smooth function of co. A de-
tailed discussion of the behavior of the solutions allows us
to distinguish diFerent regions of temperature for fixed
M. At low temperatures the rhs of (4.8) is negative and
decreasing for small co and solutions for co, and co2 are
found for vr/2M &co, &m/M and 3n/2M &cu2&n/M,
i.e., where the lhs is also negative. Anticipating the re-
sults to be described below we call this region the scaling
region. As T, is approached from below, the zero of the
denominator cu'( T) approaches ru" =0 and eventually ru2,

and then co&, are found for the lhs and rhs positive. At T,
the equation takes the form

10

10

10 -'-

10

tan(Mrs) =( I/v'2)simo/(1 —costs) . (4.9)

Now the rhs varies as +&2/co for small ru, quite unlike
in the scaling region. Above T, there is a small region
T, & T & T,„(M) where ru, is still real and positive.
Tmax is given by

coth(u, )[I/sinh(uz) —1]=1/M . (4.10)

Above T,„we have a situation mentioned in Ref. 6,
namely co, turns out to be pure imaginary and is not
determined from (4.7) and (4.8). An estimate of co, has
been given there. Recently ~& and the corresponding
eigenvector have been calculated. Here we need only the
condition (4.10), which is exact. As (1/M )~0,
T,„~T,+ as (1/M) .

Thus we have a region of high temperature
T) T,„(M) plus two other regions of temperature that
are of interest to us: (i) near critical where the equation is
solved by positive lhs and rhs of (4.8) and (ii) the remain-
ing region, where (4.8) is solved at negative lhs and rhs.
For region (ii) we derive below the scaling law for gi.
Note, however, that the solutions co, and ~2 vary continu-
ously with T at constant M, in the entire interval
0 & T & T,„(M).

Having solved for cu, ( T,M) and ru2(T, M) we substitute
into (4.5) to find yi, y2, and I/g~ from (4.4). Figure 2
shows a particular example with M=91; the exact I/gi
for the Ising strip is compared with I//sos for the SOS
model given by (3.3). At low temperatures the agreement
is excellent and g'i is very large because of the long-range
capillary-wave fiuctuations. Near T„gi (Ising) begins to
decrease and crosses over smoothly to become indistin-
guishable from bulk gb just above T,„(M). The figure
also shows I/gb above T„strictly speaking the infinite
system value, I /gP. We do not complicate the figure
with data for other values of M; the larger M the sooner

(Ising) deviates from /sos, As the data end at
T,„(M), the curve may not merge with gb(T) before
T,„,but the trend is apparent.

At T, the solutions of (4.9) are found numerically as
everywhere else and also by straightforward expansion in
powers of 1/M. We find

(pi) '=G, (M), G, (M)=G, /M+G2/M +

10 -5
I I I I I I I I I ) I 1 I I I I I I I

i
I I I I I I I I I ( I I I I I I I I I [ I I I I I I I I I ( 1 I I I I I I I I

0.000 0.200 0.4QO 0.600 Q, 800 1.000 1.200

T/Tc

FIG. 2. 1/g~ is plotted vs T/T, for the Ising MX ao strip
(circles j and the corresponding SOS strip (crosses). Here
M=91. The line is I/gb Note .that, far from T„gz already
differs from /sos by several orders of magnitude.

G, =m, G2= n. /&2, —G3=rr[ —,",~ + —,'],—
G4 =~( 13/12m. ——')v'2

G5 =n(121/153. 6m 65/48rr +—,' ) . —

(4.12)

These (Gz, G3, . . . ) represent corrections to scaling.
Fixing the temperature at any value below T, and ex-

panding in powers of 1/M implies M sufficiently large.
Then solutions for co occur for negative lhs=rhs of (4.8).
We find

yk=(1/2PI )(km. ) /M +O(M ),
as found earlier by Abraham and Svrakic. Hence

(4.13)

I/(i=6=(3~ /2PI )M + . , M~ ~ . (4.14)

I/pesos=, '(~/M P/Pr

As 1/M vanishes at constant T below the critical region,
the exact 1/gi (Ising) is reproduced (to the dominant
power of 1/M) by I//sos of the SOS model, obtained
from (3.4), for the same stiffness pl . Therefore we see
that the result expressed in (4.14)—although rigorously
correct for the Ising strip and obtained in a well-defined
limit of (1/M) ~0 at any constant temperature below the
critical point T (T,—pertains to the capillary-wave
class of results.

We note that the interface stiffness pI must be nonzero
otherwise (4.14) and its derivations are not valid. At
T= T, (4.14) is replaced by (4.11). At the next power of
1/M we obtain

with

(4.11)
——,'(m/M) [1/PI +3/(Pl ) ]+ (4.15)

(with, strictly, pI =2 sinh K for the SOS model) whereas



7522 J. STECKI 47

M /gt = Y(M sinhuo ) (4.17)

can be found under the assumptions 1/M ~0,
sinhuo —+O, M sinhuo-O(1). Then yk —1/M (k =1,2),
coshy7, =1+yk/2, and expanding the rhs of (4.5) in
powers of sinhvo, for T & T„we And

1/$2(Ising) =
—,'(7r/M )z/PI

+3(7r /M )/[PI'(a —b)]+ . . (4.16)

with PI =sinhuo and a b—= —PI +. . . . to a first ap-
proximation.

In general g2(Ising) =$1(T,M) and it is compelling to
consider two obvious dimensionless ratios M/gt and
M /gb (remembering that for d =2 Ising models v = 1).
For gb we take the correlation length of the infinite
homogeneous system 1/g6 =uo=uz —u, . Plotting
MG =M/gt vs Mu13 we obtain a very good common
curve. In place of Mv o we can use equally well
M!IT/T, —

1~ or M~JT/T, „(M) l~. R—eplacing uo by
pl =sinh(uo), the interface stiff'ness, i.e. , using the vari-
able X=M sinhvo, an excellent scaling plot is obtained,
shown in Fig. 3. The scaling extends to very large values
of MPl and in this respect it is superior to the plot
against Muo. The corrections to scaling given by (4.12)
are barely visible on the scale of the graph.

The scaling function Y in

Me +k

X+ 0 ~ ~
(k =1,2) (4.20)

or

—X=Zk cot(Zk ) (4.21)

with Zk
—=Mak. If T & T„Z„&0, X & 0, and cotZk & 0

for both k = 1,2. Applying (4.19) twice we find

MG=M/g = Y(X)=(X +Z )' —(X +Z )'

(4.22)

where Z, Zz are solutions of (4.21)—one in the interval
0 & Zi & 7r (but in fact 7r/2 & Zi & 7r) and the other in the
interval 7r &Zz &27r (but in fact 37r/2 &Zz &27r). In this
way (4.22) and these two conditions on the two roots of
(4.21) fully determine the scaling function Y.

We can expand Y systematically about X =0 for which
Y(0)=7r and alternatively about 1/X =0 for which
Y( 00 ) =0. Solutions of (4.21) are expanded first. One ob-
tains for small X

and O[sinh(uo)] —at least for k=1,2. Then for small
1/M, 60 is small, and the rhs of (4.8) can be expanded

613k CI3k /3!
tan(Mcu„) = —sinh(uo)+6uk /3/2

y k
= [sinh( uo ) ] +co&,

or introducing the variable X=M sinhvo,

(My k ) =X + (Mcoi, )

(4.18)

(4.19)

MG=AO+AiX+AzX +
Ao=m,

= —4 /7r,1

Hence, if scaling is to be consistent, 613k must be O(1/M)
—

(
2 7rz+ 208 )/~32 3

(
520 2 15488 )/~5
S& 243 (4.23)

10:—

-gQO O gQO 0 ~C

10

10

—
( 26~4 54208 ~2+ 1399040 )/ 7

4 27 729 2187

(
86152 ~4+ 699520 2 141080576 )/~9
3645 729 I 9 683

—( 484 6+ 15354464 4 775943168 2+ 5079130112 )/ 11
6 243 328 05 590 49 590 49

=( . )

Here X & m. Alternatively, for large X,

M/gt=MG =B,X '+BzX +
10

0 -4

10 5
I I I I IIIIJ I I I IIIIIJ I I I I IIII! I I I I IIII! I I I IIIIIJ I I I II III! I I I I IIIIJ I I I I IIIIJ I I I IIIII! I I I lllll! I I I I llll!

10 10 'IO 'IO 1 10 1Q 10 10 ' 10 ' 10 ' 10
MSinh(V0)

82 = —3m

B =7r ( ——"7r + —')
8 2

7rz( 25 7rz 6)2

2( 63 ~4 175 2+ 15
)

~z( 1869 ~4 + 225 2 9 )7T 7T

(4.24)

FIG. 3. The sealing plot for the + / — gap G = 1/g„
M=8 —400, T/T, E [0.1, 1] in variables M/g, —:MG and
X=M sinhu0 with the region 10 ' & X' & 10 ' (where MG is
practically constant) omitted for clarity. The lines represent ex-
pansions of the scaling function, Eqs. (4.23) and (4.24).

Here X' ' & —217r. Ao agrees with G, from (4.12).
It is quite satisfactory that the expansion (4.24) and,

therefore, the scaling function Y contain the earlier result
(4.14) [and 4.13 (Ref. 9)] as a limiting case. Keeping only
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the first term in the expansion for large scaling variable
X, we obtain

M/g~=B, X ' or I/g~=B, M /sinh(vo), (4.25)

thereby recovering (4.14) in view of the (exact) value of
8, . Thus the earlier Ising result and the corresponding
SOS result (including the M size dependence) are now
understood; (4.14) is the large X limit of the scaling func-
tion (4.22), i.e., exactly the first term of the expansion
(4.24). Large X means large M and/or low temperature.

The expansions (4.24) and (4.25), truncated after the
first six terms, reproduce the exact data (plotted in Fig. 3)
very satisfactorily; the two arrows point to their respec-
tive breakdown. The numerical calculation of the scaling
function (4.21) and (4.22) is indistinguishable on the scale
of the graph from these expansions in the respective re-
gions of their validity.

ment, however, must be qualified by the remark that this
is true to dominant order of 1/M. The other
qualification concerns the particular scale of distances to
which our calculation applies. As mentioned in Sec. II
the correlation function decay is ruled by A,2/A, , only
(with neglect of higher eigenvalues) at asymptotically
large distances Ax &&M" where r has been determined
for the SOS model as r =2. A study of distances Ax -M
for the strip considered here is currently under way.

ACKNOWI. EDGMENTS

The author is greatly indebted to Dr. A. Ciach, A. Ma-
ciolek, and A. Poniewierski for several discussions. He
is also grateful to Dr. J. M. J. van I.eeuwen for a very il-
luminating discussion and to Professor R. Evans for a
critical reading of the manuscript.

V. DISCUSSION

For low dimensionality d & 3, obtaining a fundamental
description of the vanishing of the interfacial density
(magnetization) profile as the critical temperature is
reached is an interesting problem in statistical mechanics.
Some partial understanding can be reached by studying
simple models such as the (+ / —) Ising strip considered
in this paper. Before the full spin-spin correlation func-
tion is studied, we have investigated its long-distance
correlation length gj in the direction along the interface.
We find a physically attractive picture of a crossover
from low temperatures, where the correlation length is
practically the same as for the solid-on-solid strip with
the same width and the same coupling constant, through
a region near the critical temperature where g~ is progres-
sively smaller than the SOS value, to temperatures aboUe

T, where g~ crosses over to (small) values practically
equal to the bulk correlation length of an infinite Ising
system.

The physical significance of this behavior is appreciat-
ed if one realizes that the SOS model is nothing more
than a realization of the capillary-wave model on a lat-
tice. At low temperatures therefore the exact g~ shows
all the properties (attributes) of the capillary length.

It is perhaps relevant that the bulk correlation length
g&(T) above T, enters into the picture whereas the other
branch, omitted from Fig. 2 for clarity, of g&( T) below T,
seems to be entirely unrelated. The only observation one
might make is that, when raising T, gj(T) begins to fall
rapidly about when g~-g& -M or earlier. As we pointed
out in Sec. IV, the exact result expressed in (4.14) per-
tains to the capillary-wave class of results and gb(T) does
not enter there.

We have also determined the scaling relation for g~,
covering an extremely wide range of the scaling variable,
which is the interface stiSness multiplied by the strip
width. The scaling equation is valid near T, and also in
the low-temperature regime where it embraces the dom-
inant M behavior of large strips found both for Ising
and SOS models. Thus there is no correction at low tem-
peratures which the bulk density Auctuations would in-
troduce into the simple capillary-wave gj. The last state-

APPENDIX

Once the quantities y& and y2 for given M and T are
computed one can immediately find the correlation
length parallel to the long edge of an M X 00 strip with
the (+ /+ ) boundary condition. In the general solution
(4.3) the +

I I+ case corresponds to an even number
of exp( —

yk ) factors multiplying Ao. Now the largest ei-
genvalue is A, , =Ao and the next is A,2=Aoexp( —

y2
—y, )

at all temperatures T (T, . Hence the ratio of the eigen-
values is

1 0.00

9.00

7.00

& ~.nn

4.00

3.00

2.00

bo() + „o()+ bo0 + bo&& +
+c)

b b b b b b

I I I I IIII( I I I I IIII( I I I I IIII( I I I I lul[ I I l I Ital( I I'1~~F+41 ~l
10 'lO ' 10 10 1 IO IO IO

FIG. 4. Gap G++ = 1/(++ (stars) for (+ /+ ) boundary con-
dition compared with G~„(triangles) for periodic boundary
conditions and with gap 6+ = 1/g„computed numerically for
M = 8 (stars), M = 12 (circles), M =20 (diamonds), M =40
(crosses), and M =80 (large triangles), for T/T, & [0.8, 1] for
( + / —) fixed-spin boundaries, all plotted against
Mvo=M/2$P. The scaling region near Mvo —1, the correc-
tions to scaling as Mvo~0 where each system reaches its own
critical gap, and the low-temperature region where
X=M sinhvo is a better variable than Mvo are all visible.
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G++
~2/~1 e G++ r2+ vt 1/4++ (A 1)

]/g(++, T„M)=G++ =g, /M+g2/M +

g, =2~, g~= —rrV2, g3=vr( —
—,', )m. +1)

(A2)

Figure 4 shows a plot of MG++ —=M/g(++ ) vs Mvo.
For the sake of comparison the case of periodic boundary
conditions and the (+ / —

) case are also included.
MG++ starts from a value near 2m for T= T, and in-
creases immediately to values corresponding to a micro-
scopic correlation length appropriate for a pure (+)
phase. We can also see the corrections to scaling very
close to T, . G++ at T, can be readily found using the
analytical solution(s) of (4.9) which we already obtained
by systematic expansion in 1/M. Hence

k=O, . . . , M —1 (A3)

where y(co) is given again by a solution of (4.5). Here
m =M/m and there is no transcendental equation to
solve for co. We used (A3) for a numerical calculation of
G „plotted in Fig. 4. It illustrates the fact that the be-
havior of the (+/ —) strip cannot be deduced from
(mostly known) results for other boundary conditions. "
On the scale of Fig. 4 we can also see the corrections to
scaling near and at T, .

These (g2,g3. . . ) represent corrections to scaling, since
Fig. 4 suggests g++ should also scale as
M/g++ =F(M/gb ).

For a strip with periodic boundary conditions in zero
field the gap is given by'

G «=1/gt=Xk[y(2k +1/m) —y(2k/m)],
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