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Statistics of light-ion-induced kinetic electron emission: The sum of Poisson distribution
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A model on the statistics of ion-induced kinetic electron emission is presented. The model is primarily

designed to describe light-ion bombardment at energies not too far above the threshold for kinetic-

electron emission. We use an invariant-embedding approach, which includes angular scattering and

stopping of the ion, electron excitation, and elastic and inelastic scattering. A particularly simple pic-
ture evolves when the ion travels on a straight line in the vicinity of the surface: Then the emission

statistics is simply a sum of two Poisson distributions, where the ion reQection coefficient determines the

weight of the Poisson terms. Comparison to experiment is favorable. Extensions with respect to ion tra-

jectory, energy dependence, and recoil contribution are discussed.

I. INTRODUCTION

When a solid surface is bombarded by energetic ions,
secondary electrons may be emitted. ' The potential
energy set free when the ion is neutralized may lead to
potential electron emission. In the present article, howev-
er, we shall be interested in kinetic electron emission in
which the kinetic energy of the bombarding ion is used to
emit electrons from the solid. This mechanism is active if
the ion energy exceeds a threshold. Already, some time
ago, the statistics of electron emission was measured.
Interest in this question stems in particular from the
needs of single-particle counting with ion-electron con-
verters and secondary electron multipliers. Quite recent-
ly, measurements of emission statistics could be extended
to much lower ion energies. ' These data were used to
obtain information on the threshold behavior of kinetic
emission, and thus a clear distinction of potential and ki-
netic emission in the threshold regime was obtained.

Existing theories of ion-induced electron emission view
the phenomenon as a three-step process: ' '' ' (i) gen-
eration of energetic electrons inside the target, (ii) trans-
port of electrons to the surface, and (iii) escape of elec-
trons into the vacuum. The main differences between the
existing theories lie in the level of sophistication with
which the individual steps are incorporated. Thus, in the
first step, electron excitation may occur in direct col-
lisions of the ion with conduction or valence electrons, by
the ionization of target inner shells, and for fast heavy
ions, by electron loss from the projectile. A number of
secondary processes may also contribute to electron exci-
tation, such as electron cascade multiplication, recoil ion-
ization, and plasmon decay. In the second step, excited
electrons usually undergo a sequence of elastic and inelas-
tic collisions with the target ionic cores and electrons, re-
spectively, before some of them may reach the surface.
In its simplest form, this transport process is modeled as
an exponential attenuation. ' ' In the third step, elec-
trons must overcome the surface barrier in order to es-
cape into the vacuum. This process is important for the
energy spectrum of emitted electrons.

So far, existing theories have been used to calculate
average quantities such as, for instance, the mean elec-
tron yield y. In this article we present a model of the
statistics of ion-induced kinetic electron emission. We
shall focus on light-ion bombardment with energies not
too far above threshold. In this case, target atoms will
recoil with comparatively small energies in collisions with
the projectile ion, and hence the contribution of recoil
atoms to kinetic electron emission can be safely disre-
garded; this simplifies the analysis considerably. Further-
more, the multiplication of secondary electrons in elec-
tron cascades can be disregarded. We note that similar
considerations apply for all projectile ions in the thresh-
old regime.

The basic idea of this paper is that the ion excites
secondary electrons along its trajectory in statistically in-
dependent events. The probability that exactly n elec-
trons make it to the surface and are emitted thus obeys a
Poisson distribution with average y,

n

P„(y)= n!
However, different ions will move along different trajec-
tories, and to each trajectory belongs an individual value
of y. Hence, ions which stay longer in a near-surface re-
gion where excited electrons have a good chance to be
emitted will be characterized by a larger average electron
yield y.

A great simplification results if the length scale for the
ion motion is much larger than the corresponding length
scale for the secondary electrons. In this case, only two
classes of ion trajectories need to be distinguished, name-
ly, those where the ion is implanted and those which lead
to reAection. The respective average yields may be denot-
ed by yo and y„and the probability 8' that exactly n

secondary electrons are emitted is given by a weighted
sum of Poissonians,

W„=(1 R)P„—(yo)+RP„(y i),
where R is the ion reAection coeKcient.
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The main part of the present paper serves to justify the
sum of Poisson distribution. Indeed, its ad hoc formula-
tion leaves a number of questions open. While the excita-
tion process can be described by Poisson distributions,
not all excited electrons are actually emitted, and we may
wonder whether the above distribution also applies to
emitted electrons. Furthermore, if the average yields yo
and y, are not simply to be regarded as fit parameters to
be obtained from experiment, one would like to obtain a
microscopic interpretation in terms of the electron exci-
tation, and elastic- and inelastic-scattering cross sections.
Finally, one needs to discuss the limits of this model in
order to delineate its regime of validity more clearly.

In Sec. II we shall give a quantitative formulation of
this model, based on an invariant-embedding approach
formulation. This approach allows one in particular to
calculate the parameters entering the Poisson distribu-
tions as a function of the microscopic elastic- and
inelastic-scattering cross sections of the electrons. In Sec.
III the limitations of the approach are discussed, and its
results are compared to experiment. Section IV serves to
discuss several extensions and generalizations of the sum
of Poisson distributions model towards higher ion mass
and bombarding energy.

II. THE SUM OF POISSON DISTRIBUTIONS MODEL:
INVARIANT EMBEDDING

In this section we present a transport theoretic deriva-
tion of the sum of Poisson distributions. This will allow
us to express the average yields yo and y, in terms of mi-
croscopic electron excitation and scattering cross sec-
tions. We shall use the technique of invariant embed-
ding' ' for this purpose.

We include the following microscopic processes: The
electron excitation cross section o.„of the ion and the
number density X of the target define the probability that
the ion excites an electron while traveling a path length
Ax as hxXo. . Since, in particular near threshold, a
correlation between the directions of the exciting ion Q,.
and the excited electron 0, may exist, we write
o. =o.„++o.„,where o. + is the cross section for exciting
an electron in the direction of the ion (Q,.Q, & 0), and cr

in the opposite direction. Furthermore, we need the
inelastic-scattering cross section o.;„, which describes the
stopping of electrons; it is connected to the average range
Z of electrons via Z =1/No;„. The reversal .of the direc-
tion of Aight of the electrons is characterized by the
elastic-scattering cross section o.,&. This quantity is con-
nected to the well-known transport mean free path A,„,
which denotes the length that a monodirectional beam of
electrons needs to travel until it is isotropized; it is
A,„=1/2Xo. ,).

In this section the only information used to describe
the ion transport is contained in the reAection coefficient
R. The elastic and inelastic scattering of the ion can be
included to obtain a complete coupled description of elec-
tron and ion transport. This will be presented in Sec.
IV A below.

It turns out that it is not possible to write down equa-
tions for the probabilities 8 „directly. Rather, one must

Xo„Ax8'„

(2) The ion excites with probability Ncr„+b,x an elec-
tron in layer Ax which travels into the target. The elec-
tron is rejected with probability R, . This process con-
tributes

process

vnruiam Dx l&~rgcL

+ga, in
to W„—loss

+ga. i n

—loss
to W„'
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FIG. 1. Processes contributing in a surface layer of depth Ax
to the joint probability 8'„{8'„')that exactly n electrons are
ejected and that the bombarding ion is stopped in the target
{reAected from the target). In this simplified discussion {Sec.II),
only the electron excitation cross sections o.+ and o.„, the
elastic-scattering cross section o,/, and the inelastic-scattering
cross section cr;„of the electron enter. The icons are meant to
give a pictorial representation of the processes. Solid {dashed)
lines denote ion {electron) trajectories, and the dot represents a
collision event in the layer b,x.

study the joint probabilities W„( W„') that exactly n elec-
trons are emitted and that the ion is stopped in the target
(rejected from the target). Since the ion must sufFer ex-
actly one of these two fates, it is

w =w'+m'.
n n n

Let us first set up an equation for 8'„. We shall use a
one-dimensional approach in which particle motion is
distinguished only between moving into or out of the tar-
get. Furthermore, the energy dependence of the various
cross sections will be disregarded, and we shall only dis-
tinguish between moving and stopped particles.

The invariant-embedding argument goes as follows:
The probability 8'„ that exactly n electrons are emitted
cannot change if a layer of a small depth Ax is added to
the target surface. In this layer, however, the following
processes can occur (cf. Fig. 1).

(1) The ion excites with probability No „b,x an elec-
tron in the layer hx which travels towards the surface
and is emitted. This process contributes to 8'„only if
n —1 electrons had been emitted without the layer Ax in-
troduced. Hence, the contribution reads
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No. +AxR, 8'„

The electron reflection coefficient R, can be expressed in
terms of cr„and o.;„;see Eq. (19) below.

(3) One of the electrons excited in the target may be
stopped in the layer b,x (probability No;„b,x). This pro-
cess contributes only if exactly (n +1) electrons have
reached the surface layer. This process contributes

Thus, we have derived the sum of Poisson distributions,
Eq. (2). The mean values

'VO i=i- scil. '

denote the mean number of electrons excited in a near-
surface layer of the extent of an electron escape length
under the condition that the ion is stopped or reflected,
respectively, in the target.

(n+1)N .o;„b, xW„+, . (6)

(4) One of the electrons excited in the target is reflected
back into the target (probability No, ~bx ). This process
contributes only if (n+ 1) electrons have reached the tar-
get surface, and the electron reflected in Ax is not
reflected back in the target towards the surface. This
process contributes

(n + 1)No,)hx (1—R, ) W„+ ) . (7)

Finally, there is a probability that none of the above pro-
cesses occurs in Ax, which contributes

[1 No„b x ——No''+ b,xR, nNcr;„b—x
nNo„hx—(1—R. , )]W„.

Balancing W„with the sum of Eqs. (4)—(8), we obtain

n+1 p
n+1

esc

1 n

mesc LO
(9)

where the backward excitation length of an ion which is
stopped in the target

L, = 1/N(o +cr„+R, )

and the escape length of the electrons

L„,=1/N[o;„+(1—R, )o,&]

(10)

have been introduced.
An analogous equation can be set up for 8'„'. As Fig. 1

shows, in this case two more processes contribute. The
resulting balance equation looks identical to Eq. (9), if L„
is replaced by the excitation length of a reflected ion:

L„'= 1/N[(o „+o+ )(1+R,)] .

We note that 1/L„'=1/L, +1/L„+, where

(10')

L„+=1/N(o. ++cr„R, ) (12)

nP„(y ) yP„,(y ) =0, —

Eq. (9) and its analog for W„' are solved by

W„=(1—R )P„(yo), W„'=RP„(y, ) .

The prefactors stem from the normalization

(13)

(14)

W„=l —R, g 8'„'=R .
n=p n=0

is the forward excitation length of the ion.
Since the Poisson distribution P„(y) obeys the recur-

sion relation

III. DISCUSSION

Let us denote the average yield by y. It is

(n ) =y=(1 —R )yo+Ry, .

R, =1+
oe&

1/2
O ln O ln +2
o el o el

L

(19)

This relation may be derived in a straightforward way
from an invariant-embedding argument. Inserting Eq.
(19) into Eq. (11)yields the electron escape length as

1/L„, =N+o;„(o;„+2o„)
Thus, for negligible elastic scattering, the escape length is
equal to the average range of electrons, 1/No. ;„, whereas
it becomes smaller for non-negligible elastic scattering.
Expressions for the two limiting cases of weak and strong
elastic scattering, respectively, have been derived be-
fore these agree —apart from a numerical factor—
with the corresponding limits of Eq. (11').

The model makes a number of assumptions.
(i) The invariant-embedding approach adopted here

treats the direction of motion of the ion and of the excit-
ed electrons in the target in a rather schematical way. In
principle, this restriction can be given up at the price of
obtaining a system of integral equations instead of the
algebraic system (9). This issue will not be studied fur-
ther here.

The variance of the distribution (2) is

o =(n ) —(n ) =y+R(1 —R )(y, —yo) ) (n ) . (18)

Evidently, the variance of the sum of Poisson distribution
is larger than that of a single Poisson distribution. Fluc-
tuations of the fate of the ion add to the fluctuations in
the electron-yield statistics.

Recently, Monte Carlo simulations were performed to
model the statistics of kinetic electron emission from
ion-bombarded solids. For light-ion bombardment,
their results showed that deviations from Poisson statis-
tics are due to backscattered ions. This conclusion is in
agreement with our study.

Our result, Eq. (2), contains three parameters. Two of
them, viz. , R and y, are experimentally well known. The
third parameter, which may be chosen as y, —yo, may ei-
ther be regarded as a fit parameter to be determined from
experiment, which is easiest done using Eq. (18), or may
be determined from theory [cf. Eqs. (10), (11),and (16)].

Within the present model, the electron reflection
coefficient can be expressed in terms of the elastic and in-
elastic cross sections as
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(ii) The ion is assumed to travel on a straight line in the
vicinity of the surface. If stopping and angular scattering
of the ion in the surface layer are important, deviations
from the Poisson law (14) will occur. This is only of
minor importance for light-ion bombardment and will be
discussed further in Sec. IV A.

(iii) The energy of the refiected ions does not enter in
the simple model presented above, although one might
argue that an ion reflected with higher energy will excite
more electrons on its way towards the surface than at
lower energies. Extensions in this respect are discussed
in Sec. IVB.

(iv) Recoil atoms energized by the light ion do not con-
tribute to kinetic electron emission. This restricts the va-
lidity of the model to light-ion bombardment at not-too-
large energies. More quantitatively, the light-ion energy
E should be smaller than

1.0

0.8

0.6

0.4

0.2

0.0
0

1 keV
0 2keV
0 3keV
x 4 keV
O 5keV

4M, M,
E &E,h (M;+M, )

(20)

where M; (M, ) is the mass of the ion (target atom) and
E,h is the threshold energy for kinetic electron emission
of a target atom. This criterion is somewhat too severe,
since target atoms recoiling with energy (20) will run into
the target and hence do not immediately contribute to ki-
netic electron emission. The situation where recoil atoms
do contribute to kinetic electron emission will be dis-
cussed further in Sec. IV C.

(v) Multiplication of electrons in electron cascades is
neglected. This restricts the validity of our approach to
low bombarding energies.

Comparison to experiment

The secondary electron emission statistics has been
measured experimentally for H+ ~Au. ' These data
are reproduced in Fig. 2 and Table I. For the bombard-
ment energy of 1 keV, we used the data of Ref. 10, since
these were obtained with an improved detector system.
We refrained from including the data measured for E & 1

keV, since here the contribution from potential-electron
emission becomes increasingly important. At 1 keV and
above, this contribution is less than around 20%.'

Figure 2 compares the measured data with the sum of
Poisson distribution, Eq. (2). For calculating the latter,
we took the ion reflection coeScient from Ref. 24 and
fitted yo and y, according to Eqs. (17) and (18). It is seen
that the sum of Poisson distribution fits the data within a
few percent. As is well known ' ' ' a single Poissonian
fails to describe electron emission statistics. Often, the
two-parameter Polya distribution is empirically used to
describe the measured data. However, it has been point-
ed out that there is no theoretical basis for using Polya
distributions in this context. We note that, numerically,
both the sum of Poisson and the Polya distributions de-
scribe the experimental data with comparable accuracy.

Table I lists the parameters describing the electron
emission statistics induced by low-keV proton bombard-
ment of Au surfaces. We observe that yo and y, increase
with increasing ion-bombarding energy. This is plausible
because the electron excitation cross section o, (and o, )

FIG. 2. Comparison of experimental and theoretical results
on the statistics of electron emission induced by keV H+ ion
bombardment of Au. Symbols, experimental data (Refs. 9 and
10): Lines, calculated data, using Eq. (2) and Table I. Calculat-
ed data 8'„have been smoothly splined in order to enhance
readability.

will increase with increasing energy. Also, y, is larger
than 2yo for all energies. This is sensible if we note that
from Sec. II,

y) L o„++o. R,=1+ =1+L+ o +o.+R,
(21)

which is larger than 2 for o. & o.,+.
We may attempt to extract further microscopic infor-

mation on the electron excitation and transport mecha-
nisms from the data. To this end, let us assume —as is
often done —that the main mechanism of kinetic electron
excitation consists in direct knock-on collisions of the ion
with target valence electrons. In such collisions, the elec-
tron is excited in the forward direction with respect to the
ion motion, i.e., o. =0. ' ' With this simplification,
we learn that

70

Vo
(22)

1

2
3.
4

0.124
0.331
0.537
0.724
0.873

0.136
0.409
0.708
0.990
1.151

0.38
0.32
0.28
0.26
0.24

0.037
0.139
0.279
0.418
0.577

0.266
0.739
1.200
1.594
1.812

TABLE I. Parameters describing the statistics of kinetic elec-
tron emission induced by energetic H+ ions bombarding a Au
surface with energy E. Experimental data (Refs. 9 and 10) of
the average yield y and the variance o. , as well as of the ion
reAection coefficient (Ref. 24) R. Parameters yo and y &

calculat-
ed from Eqs. (17) and (18).

E (keV)
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1.5

10-
H'~ Au

In analogy to the elastic- (o.,&) and inelastic- (o;„)
scattering cross sections of the electrons, we introduce
the ion elastic- and inelastic-scattering cross sections X,l

and X;„. We list in Fig. 4 those processes which have to
be taken into account for an invariant-embedding
analysis of electron emission, in addition to the processes
of Fig. 1. From the invariant-embedding analysis, we
hence obtain

0.5
0 n+1 ~0n+1

esc

1 n 1 1

L L„, L;„Lel

0.0
0

E (keV)

Nt XLesc
P R~

and

n+,w„', + w„'+ y w'w„' .
L;n

"
Lel m =0

1+ 5„0
Lin

(24)

FIG. 3. Electron reflection coe%cient R, ( ) and dimension-
less forward excitation cross section No. +L„, (0 ) for H+ bom-
bardment of energy E of Au. Experimental data (Refs. 9 and
10), as given in Table I, interpreted according to Eqs. (22) and
(23).

n+1
n+ 1

esc

1 n 2 2

L„' L„, L;„Ll

n+, w„', + g w'w„' + 5„ (25)

and

+&x Lese=Xi —
XP (23)

IV. EXTENSIONS

A. Generalization to nonstraight ion trajectory

Up to now, we have disregarded the details of the ion
motion in the target. That is, we assumed an essentially
straight ion trajectory in the escape depth L„, of the
electrons. This is certainly not a bad approximation, but
may not appear entirely consistent, since after all, ion
reflection in the target has been incorporated via the ion
reflection coefficient R. In this section we briefly present
how ion transport can be incorporated consistently in the
invariant-embedding approach of Sec. II. This will allow
us to discuss quantitatively some of the limitations of the
sum of Poisson model.

These expressions give us a new interpretation of direct
microscopic interest of the joint average yields yp and y, .

Figure 3 displays an analysis of the experimental data
(cf. Table I). It is seen that No+L„, increases steadily
with bombarding energy. Even though L„, will show
some intrinsic energy dependence itself —according to
Eq. (11) the electron escape length presumably increases
with energy in metals —it may be assumed that the dom-
inant energy dependence stems from o. +, as the data refer
to energies just above threshold. The kinematical thresh-
old for kinetic electron emission of H+ in Au is around
300 eV. The electron reflection coefficient shows also a
monotonous, but softer, increase with energy; this is plau-
sible.

Here, 1/L;„=N X;„, 1/L, l
=XX,&, and 5„0 is the

Kronecker symbol. We note that the improved represen-
tation of the ion trajectory renders the equations non-
linear and inhomogeneous, unlike the simple model of
Eq. (9). Equations (24) and (25) are not solved by Poisson
distributions. In the limit L;„, L,l~~, our old result,
the sum of Poisson model, is recovered. We furthermore
note that the equations describing 8', and 8'„' are now
coupled.

Equation (25) allows us to calculate the ion reliection
coefficient R. Summing Eq. (25) over all n and employing
the normalization (15), we obtain

L,l
R —2 1+ R+1=0 .

Lln
(26)

process

vacuum &2: target

+gain

—loss
to W'

+NE;„Axb„p

-NE;„S~W„'

+0
—NE, IAzWP

NE AxWx

—0

+0
—NE;„KxW„'

+NE, I&xb„p

—NE, )Ax W„'

+0
—NE;„h.z W„'

+NEeIAx Q"
p

W' WP

—0

+NEelAX Q p W W

—NE, IAx W„'

FIG. 4. Processes contributing in the invariant-embedding
analysis of electron emission, if ion scattering and stopping,
with cross sections X,&

and X;„, are taken into account (Sec.
IV A). This list uses the same notation as Fig. 1, which it com-
plements.
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Hence the ion reflection coefficient R can be expressed by
the ratio of the ion elastic- and inelastic-scattering
lengths

R =1+
Lln

Lei Lei +2
in in

1/2

(27)

0.5 - .

0.4

This shows that the improved description of the ion tra-
jectory, Eqs. (24) and (25), introduces only one further pa-
rameter as compared to Eq. (9), viz. , the ratio of a
scattering length of the ion versus that of an electron.
We note that the electron reflection coefficient R, obeys a
relationship analogous to Eq. (27) [cf. Eq. (19)].

Equations (24) and (25) may be solved iteratively. The
solution is achieved using a shooting technique. Consider
first Eq. (25) since it is uncoupled from Eq. (24). A start-
ing value for 8'o is chosen and 8'&, 8 2, etc. , are calculat-
ed recursively from Eq. (25). If W„'(0 for some n or if

OW' ) 1, the recursion is restarted with an ade-
quately modified starting value 8'o. This is repeated un-

til the correct value for Wo, and hence all 8'„', is found.
Then, Eq. (24) is solved analogously. We found that this
solution scheme converges quickly, even for grossly
wrong starting values of 8'o.

We now present results in order to illustrate the effect
of fluctuations of the ion trajectory within the escape
depth L„,of the electrons. To this end, we keep the elec-
tron length scales fixed, including the excitation lengths
L and L'. We also fix the ratio L„/L;„by setting
R =0.25, and vary only the parameter A, =X;„/o;„, i.e.,
the ion stopping length L;„. For A, ~O, we thus recover
the sum of Poisson model.

Figure 5 shows the electron distribution for A, =O 01,
0.1, and 1. A noticeable influence is only seen for A, =1,
i.e., when the ion range becomes comparable to the elec-
tron range. In this case, the probability 8'o that no elec-

trons are emitted is increased. Hence, the average yield y
decreases if the ion length scale becomes comparable to
the electron scale. This is because the ion may stop
shortly after entering the target.

In reality, however, keV protons have ranges of the or-
der of several 100 A, whereas the secondary electrons
have ranges of several 10 A only, and thus in practice
A, =—0. 1. Thus, we may conclude that Fig. 5 validates the
simplified concept of a sum of Poisson distribution. We
note that the situation might be different, however, for
the case of grazing ion incidence.

B. Energy dependence

On its way through the target, the ion loses energy.
Hence, when it is reflected towards the surface, it will
have less energy to excite electrons there. This energy
dependence of the ion can be crucial for near-threshold
kinetic electron-emission processes. It can be included in
the analysis in a straightforward manner, if we ignore the
ion scattering in the layer L„, as in Sec. II. Note first
that the contribution 8'„does not change, since the in-
coming ion trajectory is unaffected within L„, by energy
loss. Let Eo be the bombarding energy and let us further-
more denote by W„'(E)dE the joint probability that n

electrons are emitted and the ion is reflected towards the
surface with an energy between E and E+dE. We have
the normalization

W„'(E)=R (E),
n=0

(28)

where the energy distribution of refiected ions, R(E),
obeys

f R(E)dE=R .

A balance equation in strict analogy to Eq. (9) can be
set up for W„'(E). Including explicitly the energy of the
ion at the electron excitation process in the cross sections
cr+ , we ob'tain an equation of the form (9) with an ion-
energy-dependent excitation length

L'(E)=1/X[o (Eo)+0„+(E)+R,[o (E)+o.+(Eo)]] .

(30)

0.3

0.2

0.1

E;J'cr;„= 1

0.1

0.01

Hence, the electron-emission statistics reads

W„=W„+ f dE W„'(E)

=(1 R)P—„(yo)+ f dE R(E)P„[y,(E)], (31)

where

0.0
0

~ ~

4 5
y )(E)=L„,/L„'(E) . (32)

FIG. 5. Influence of ion stopping cross section X;„on elec-
tron emission statistics O'„. Results calculated from Eqs. (24)
and (25). The parameters are chosen as R =0.25, R, =0.58,
o. =0, and Ncr+L;„=4.53. Calculated data 8'„have been
smoothly splined in order to enhance readability.

W„=P„(yo), (33)

which is obvious in this case.

This distribution is again of a sum of Poisson form.
Let us consider the case that refIected ions have such a

low energy that the excitation cross sections a„+' (E) are
negligibly small. Then it is L„'(E)=L„,and we recover



7452 MARTIN VICANEK AND HERBERT M. URBASSEK 47

C. Recoil contribution

At higher bombarding energy or higher ion mass, the
ion may create target recoil atoms with energies
sufficiently high to contribute to electron emission.
While, for light-ion bombardment at energies not too far
above threshold, such a recoil contribution to electron
emission will be small, it may contribute substantially in
the case of heavier ions. '

Modeling the recoil contribution using the above
methods hardly appears possible. Tentatively, we might
argue as follows: Let the probability of finding exactly m
recoils with sufficient energy in a surface layer of thick-
ness L„,be denoted by R, such that g R =1. Let us
furthermore denote the average electron yield for a cas-
cade with m such recoils by y . Then, in analogy to Eq.
(2), it is

W„=JR P(y ) . (34)

The average electron yield is given by

(35)

and the variance reads

o'= &n'& —&n &'

g R&R (y~ —y ) +JR 1' &&n& .
l)m

(36)

As in Eq. (18), the electron distribution is broader than
in a single Poissonian: Cascade fluctuations add to elec-
tron fluctuations. Decisive for the extra broadening of
the electron-emission statistics is the recoil statistics, i.e.,
the distribution of the number of recoils passing a layer
extending one electron escape length L„, from the sur-

One might wish to include as well the energy depen-
dence of the electron scattering cross sections o.,i and o.;„
and consequently of the electron reflection coefficient R, .
In the present framework, this would necessitate consid-
ering the probabilities

W„'(E„.. . , E„)dE, . . .dE„

of emitting exactly n electrons with their energies in the
specified energy windows. While a set of integral equa-
tions can be readily written up with the methods of Sec.
II, their solution is highly nontrivial. Moreover, the in-
formation contained in these quantities is far more com-
plex than the existing experimental data. We therefore
do not consider electron energy dependence any further.
It appears that Monte Carlo simulations of the type re-
ported in Refs. 22, 28, and 29 are best suited to this pur-
pose.

face with sufficient energy to excite electrons. Such a
recoil statistics is not available. It is known, however,
that the total number of recoils created anywhere in the
cascade shows only small, i.e. , sub-Poissonian, fluctua-
tions. On the other hand, the distribution of recoils
created very close to the surface, within the sputter
depth, is very broad such that its variance is of the same
order of magnitude as its average. ' The recoil statistics
we are looking for is intermediate between these two.

V. CONCLUSIONS

(1) The statistics of light-ion-induced kinetic electron
emission can be explained via a sum of Poisson model. It
makes use of the fact that the ion is either stopped or
reflected. In both cases it emits electrons with a Poisson
distribution. The weight with which each Poisson term
enters the distribution depends on the ion reflection
coefficient.

(2) A quantitative formulation can be obtained within
the invariant-embedding approach to the transport of
ions and electrons in the solid. We include angular
scattering and stopping, electron excitation, and elastic
and inelastic scattering of the electrons. The sum of Pois-
son distribution results if the ion trajectory changes on a
much larger scale than the electron trajectories, and
hence can be assumed to be a straight line in the vicinity
of the surface. We check the influence of a more realistic
inclusion of the ion trajectory on the electron emission
statistics. Allowing for ion scattering and stopping in the
electron escape depth leads to deviations of the electron
statistics from the sum of Poisson form. For a realistic
example, quantitative changes are small.

(3) In our model, the electron statistics is broader than
a single Poisson distribution. It is determined by three
parameters, viz. , the ion reflection coefficient, and the
average electron yields of the ion when it is stopped in
the target, or reflected from the target. We present
analytical formulas which express these parameters in
terms of the microscopic scattering and stopping cross
sections of the excited electrons in the target.

(4) Comparison to experimental data is favorable.
Electron emission statistics data may be used to gain in-
formation on microscopic parameters for electron excita-
tion and transport in solids.

(5) The model may in principle be extended to heavier
ion bombardment and higher energies by including kinet-
ic electron emission due to energetic recoil atoms. As a
consequence of the additional sources of electron emis-
sion, the distribution broadens further.
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