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Elastic electron backscattering from surfaces: Prediction of maximum intensity
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In the present work, systematic Monte Carlo simulations were applied to calculate the intensity of
elastically backscattered electrons as a function of energy and exit angle for 27 elements in the energy
range from 50 to 2000 eV. By comparison to available experimental data, it is found that the applied
theory accounts well for the shape of the energy dependence as well as for the absolute values of the elas-

tic reAection coe%cient. As a function of energy, the intensity of elastically backscattered electrons is

usually found to pass a maximum. For each element, the energy position of this maximum and the cor-
responding intensity has been determined as a function of the direction with respect to the surface nor-
mal. It is found that the results for all 27 elements can be summarized by division into five characteristic
groups corresponding to a difterent number of maxima or to distinctly di6'erent intensities. These groups
can be defined by separate ranges of the atomic number. Representative results for each of these five

groups are shown in detail. Knowledge of the position of the maximum and its value may be important
to optimize such experimental surface-sensitive techniques that make use of elastically backscattered
electrons in the energy range 50—3000 eV.

I. INTRODUCTION

The effect of elastic electron backscattering from sur-
faces plays an important role in a number of experimental
techniques. Elastic backscattering from surfaces of single
crystals is a basis of low-energy electron diffraction
(LEED). The phenomenon of elastic backscattering con-
tributes to the signals of disappearance-potential spec-
troscopy (DAPS) (Refs. I and 2) and high-energy
appearance-potential spectroscopy (HEAPS). Further-
more, maximization of the elastic peak intensity is a stan-
dard procedure for bringing the sample to the focus of
the cylindrical mirror analyzer (CMA). The acronym
EPES (elastic peak electron spectroscopy) has been pro-
posed for the experimental techniques which relate the
effect of elastic backscattering with the surface properties
of the studied solid. ' A very useful application of this
technique is determination of the inelastic mean free path
(IMFP) of electrons in solids from the measured intensity
of the elastic peak. " ' Use of the elastically backscat-
tered electrons in scanning electron microscopy (SEM)
has important advantages. Schmid, Gaukler, and Seiler'
have shown that the contrast in SEM images produced by
elastically reflected electrons is better, by more than one
order of magnitude, than the contrast achieved with
backscattered electrons. Moreover, smaller depth of
analysis by SEM and better resolution is obtained with
elastically reflected electrons or electrons with small ener-
gy loss. "

The effect of elastic backscattering is usually described
by two parameters:

(I) The reflection coefficient, which is the probability
that an electron of the incident hearn will leave the solid
without energy loss; this parameter, for practical reasons,

is usually measured within a certain solid angle.
(2) The angular distribution of the elastically backscat-

tered electrons.
These parameters were determined experimentally in

numerous studies made for different polycrystalline solids
and energies. ' ' ' ' " The elastic backscattering
probability is related to the elastic scattering cross sec-
tions corresponding to the scattering centers of a given
solid. Since the total elastic scattering cross section al-
ways decreases monotonically with energy, one would
expect that the reflection coefficient should diminish with
energy increase. However, Bronshtein and Pronin and
Schmid, Gaukler, and Seiler, ' who both provide very ex-
tensive experimental material, have shown that a max-
imum exists in the energy dependences of the elastically
backscattered current. The position of this maximum de-
pends on the atomic number of the target material. Simi-
lar observations were made by other authors. ' ' The
existence of this maximum was also confirmed by
theory. ' It seems to be due to a complex structure of
the differential elastic scattering cross sections in the con-
sidered energy range (50—3000 eV). The general informa-
tion on the energy position of the maximum intensity of
elastically backscattered electrons may be useful for the
experimental techniques which rely on the phenomenon
of elastic backscattering. The objective of the present
work is then to analyze the behavior of the energy depen-
dence of the reflection coefficient for a wide range of
atomic numbers and for different experimental
geometries.

II. THEORY

Generally, the theoretical model of the electron trans-
port in solids may be formulated analytically or may be
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described by the Monte Carlo model. In the analytical
models, simplifying assumptions concerning the process
of multiple elastic collisions are necessary. These
simplifications are not needed in the Monte Carlo ap-
proach, for which reason it does provide a more realistic
and accurate description of elastic backscattering from
surfaces. Actually, any theoretical model describing
the electron transport is based on a number of assump-
tions specifying the structure of the solid and the interac-
tion of an electron with the solid. The following three as-
sumptions are usually made:

(1) A given solid is a set of randomly distributed
scattering centers corresponding to atoms constituting
the considered solid.

(2) The high-energy electron is interacting with only
one scattering center during the scattering event. Poten-
tials of other centers are neglected.

(3) Each considered scattering center of a solid is ap-
proximated by the potential of the corresponding isolated
atom.

The theory of elastic backscattering from surfaces
presented here was very successfully used to explain ex-
perimental observations made in a wide range of energies,
solids, and for numerous experimental geometries.
This theory will be briefiy recapitulated in the following
sections.

A. Elastic scattering of electrons: Nonrelativistic approach

In view of the above assumptions, an accurate descrip-
tion of the two-body interaction, electron-scattering
center, is required in any theoretical model of electron
transport. Elastic collision of an electron with an atom is
a well-known problem in quantum mechanics. Tedi-
ous calculations are usually associated with the solution
of this problem, and in practice a number of additional
assumptions are made to simplify the numerical pro-
cedure. Unfortunately, in the energy range of the
surface-sensitive electron spectroscopies (50—3000 eV)
the usual simplifying approaches (first-order Born ap-
proximation, screened Rutherford cross section), are not
valid and the accurate solution of the scattering problem
is required.

The interaction between an electron and the central
field potential V(r) is described by the Schrodinger equa-
tion

amplitude, which is related to the elastic scattering cross
section der ldII:der�/do=

I
f(8}12 . (3)

l(I+1)
df 2

p
2

2m
V(r) u, =o. (4)

The boundary conditions are the following:

ui(0)=0,

ui(r) ~ sin(Kr le/2+—5i),

where 6& is the so-called phase shift. It is the shift of the
function ui(r) at certain large values of r with respect to
the solution of Eq. (4) obtained in the absence of poten-
tial, i.e., obtained for V(r)=—0. One can prove that the
scattering amplitude f(8) is expressed in terms of the
series of phase shifts 5i,

oo

f(8)= . g (21+1)[exp(2i5i ) —1]Pi(cos8) .X ~=0

Calogero proposed the so-called variable phase method
for determining the phase shifts. This method involves
transformation of the second-order radial Schrodinger
equation into the equivalent first-order differential equa-
tion. As a result of this transformation one obtains the
equation

Thus knowledge of the function f(8) is sufficient to
determine the differential elastic scattering cross section
and, on integration, the total elastic scattering cross sec-
tion.

The partial-wave expansion method, which is the most
general method for solving the scattering problem defined
by Eqs. (1)—(3), had been proposed in 1927. ' It consists
in expanding the wave function 1'(r) into the series of the
Legendre polynomials since the scattering problem is axi-
ally symmetric with respect to the direction of the incom-
ing electron.

1
g(r) =—g Aiui(r)Pi(cos8),

1=0

where A& is a constant depending on l, and the functions
ui(r) are solutions of the differential equations

b, +K — V(r) P(r) =0,
$2

dr K
V(r) [ji(Kr)cos5i(r)

—6'i(ICr)sin5i(r) ] (7)

where E is the length of the wave vector describing the
incoming electron and the remaining notation has the
usual meaning. At large distances from the scattering
center the solution g(r) should approach a superposition
of the plane incident wave and the outgoing spherical
wave

g(r) ~ exp(iK r)+ —f(8)exp(iICr) .1

p' —+ QO 7"

The functional dependence on the scattering angle 0 is
accounted for by the function f(8), called the scattering

with the initial condition

5i(0)=0,
where ji(x) and 8'i(x) are the Riccati-Bessel functions
and 5i(r) is the so-called phase function. This function
asymptotically approaches the lth phase shift

lim 5,(r)=5, .
p" —+ 00

Thus integration of Eq. (7) provides a direct relation be-
tween the potential V(r) and the phase shift 5i at
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different distances from the nucleus.
The variable phase method was successfully applied in

calculations of elastic scattering cross sections for
numerous elements and in a wide range of energies.
This method makes it possible to calculate the phase
shifts for the quantum number l reaching 100. Actually,
it turned out that this large number of phase shifts may
be necessary to calculate the differential elastic scattering
cross section from Eqs. (3) and (6) at energies characteris-
tic for the surface-sensitive electron spectroscopies. The
variable phase method provides always the absolute
values of the phase shifts with good accuracy, even in the
case of small values of 51. However, the corresponding

I

cos[ y&(r) +Kr]j&(Kr) si n[
—
y&(r) +Kr]j I(Kr)

tann, (r)
cos[yr(r)+Kr ]&&(Kr) sin[y—&(r)+Kr ]8' 'I(Kr)

calculations may require a considerable amount of com-
puter time. This arises from two reasons:

(1) Numerical integration of Eq. (7) requires a large
number of steps to maintain a certain reasonable accura-
cy.

(2) In each step of numerical integration the Riccati-
Bessel functions must be determined. This increases con-
siderably the amount of computations.

Thus high-accuracy calculations may become extreme-
ly slow. For such cases a much more effective method
has been recently proposed.

Let us make the following substitution into the phase
equation (7):

where y&(r) is a new function of the distance r. We ob-
tain a simple first-order differential equation,

d Yt(r) '1 1(1+1) 2m+ V(r) sin [y&(r)+Kr ] .
dr K r2 A)2

This equation, as one can see, does not contain the
Riccati-Bessel functions. The functions yl(r) must satis-
fy the initial conditions

y, (0)=0,

I

reliable description of the elastic backscattering
ffect 24, 26, 27

B. Elastic scattering of electrons: Relativistic approach

The Dirac equation for an electron interacting with the
potential V(r) may be also reduced to a first-order
differential equation, as shown by Lin, Sherman, and
Percus and Bunyan and Schonfelder. This equation
describes the functions 4&+—(r), which are related to the
phase shifts. For each quantum number l we have two
solutions denoted by plus (spin-up case) and minus
(spin-down case) signs:

y, (r)
lim

o r
dy, (r)

dr r=0
= —Kl/(1+1) .

d&I—(r)
Gr

sin[24&—(r)]+ [ W —V(r)] —cos[241—(r)],

(12)
The details concerning integration of Eq. (10) can be
found elsewhere.

In the present work the potential V(r) was described
by the Thomas-Fermi-Dirac (TFD) potential. ' The
simplicity of this potential considerably facilitates the
calculations. Nonetheless, this potential leads to a very

where 8' is the total energy and k = —l —1 for the spin-
up case or k =l for the spin-down case. The system of
units is such that energy is measured in units of moc and
the distance in units of A/moc. Two phase shifts 5I for
each l are calculated from

+ &
Kj &+,(Kr) —j&(Kr)[( W+ 1)tan@&—+(1+1+k )/r]—

5(—=tan
Kn&+&(Kr) —n&(Kr)[( W+1)tan&PI—+(1+1+k+—)/r]

(13)

where K = W —1, j&(x) and n&(x) are the spherical
Bessel functions [note that xj~ (x ) =j~ (x) and
xni(x) =8'q(x)], and

41—= lim 4&I
—(r) . (14)

The initial condition for integration of Eq. (12) is calcu-
lated from the series expansion

@(—(r) =@0+@,r+ @2r +4&3r + . (15)

with coefficients No, N&, W2, and N3 derived by Bunyan
and Schonfelder.

As in the case of nonrelativistic calculations, the

I

scattering center was approximated in the present work
by the Thomas-Fermi-Dirae potential. The same numeri-
cal procedure as in Ref. 27 was used for integration of
Eqs. (10) and (12). This procedure made it possible in
both cases to maintain the accuracy of eight decimal
places in the range of integration.

C. Monte Carlo scheme

The electron trajectory in a solid is considered as a
"random walk" in which the direction is changed only as
a result of the elastic scattering event. To develop the
corresponding algorithm, it is sufficient to specify the rule
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I,, =(Xo, ) (17)

where 1V is the atomic density of the solid and o., is the
total elastic scattering cross section.

At the end of the linear part of the trajectory, the elas-
tic scattering event occurs. This event may be described
by two angles: (i) the polar scattering angle, i.e., the an-
gle between initial direction and the direction after col-
lision, and (ii) the azimuthal scattering angle, i.e., the an-
gle measured in the plane perpendicular to the initial
direction. The polar scattering angles are simulated ac-
cording to the probability density function given by the
equation

do /d8 (d II/d 0)(d o. /d 0)
Ot

2' sin8(do. /d0)

This requires knowledge of accurate elastic scattering
cross sections. As a consequence of the cylindrical sym-
metry of the scattering problem, the azimuthal scattering
angles are assumed to follow the uniform distribution.

The electron trajectory is followed in the solid until the
electron leaves the solid, or until the total trajectory
length becomes so large that the contribution to the ob-
served backscattered intensity can be neglected. The
contribution from the kth electron to the current collect-
ed by the analyzer with the solid angle hQ is calculated
from

exp( —xk/A, ) if the electron left the

solid within acceptance
AIk = ' angle of the analyzer

0 if the electron did not
enter the analyzer,

(19)

where A, is the electron inelastic mean free path in the
solid, and xk is the total length traveled by the electron in
the solid. Finally, the elastic reAection coefficient within
solid angle hQ is estimated from

n

r)~(EQ) =—g bIk,
k=1

where n is the total number of trajectories. To obtain a
reasonable accuracy, a considerable number of trajec-
tories must be generated. This is due to the fact that the
elastic backscattering probabilities are rather small, usu-

for calculating the linear lengths between elastic col-
lisions and the distribution of the scattering angles.

Assuming that the electron trajectory is described by
the Poisson stochastic process, the linear step lengths A
follow the exponential distribution. The corresponding
proof is quite straightforward. In that case we have

f(A) =( I /A, , )exp( —A/A, , ),
where f(A) is the probability density function of the step
lengths and I,, is the elastic mean-free path of the elec-
tron. The latter parameter may be calculated from the
simple expression

ally well below 0.1. ' In the present work, the total
number of trajectories for a given element and energy
varied from 1X 10 to 2X10 . Consequently the accura-
cy of the elastic backscattering coefficients was better
than 1%.

III. RESULTS

The Monte Carlo algorithm described above has been
proven to be very reliable for the simulation of elastic
electron backscattering. ' ' In the present work this
algorithm was applied to determine conditions of max-
imum backscattering efficiency from different solids.
Available experimental data measured at normal in-
cidence of the primary electron beam are, however, first
compared to theory calculated in the geometry of the ex-
periments to provide further tests on the accuracy of the
algorithm.

Extensive experimental data collected at normal in-
cidence were published by Schmid, Gaukler, and Seiler'
and Bronshtein and Pronin. Schmid, Gaukler, and
Seiler' observed pronounced maxima in the energy
dependence of the reAection coefficient within the solid
angle of the retarding field analyzer, qE

" ', and indicated
the shift of maxima toward higher energies with the in-
crease of the atomic number. However, the authors ex-
plicitly stated that they cannot provide a simple argu-
ment explaining such behavior.

All the experimental energy dependences of gE
published by Schmid, Gaukler, and Seiler'" were simulat-
ed in the present work. The calculated reAection
coefficient depends considerably on the IMFP. It seems
that the extensive tables recently published by Tanuma,
Powell, and Penn for the energy range 50—2000 eV are
the most accurate at present, and they were exclusively
used in the present work. Exemplary experimental ener-
gy dependences of the elastic reAection coefficient are
compared with the results of the present calculations in
Figs. 1(a)—1(e). In all cases a reasonable agreement is ob-
served. One should pay attention to the fact that the ex-
perimental and the theoretical plots are not scaled. Thus
the theory well describes not only the shape of the energy
dependence but also the absolute values of the elastic
reflection coefficient. The difFerences between experimen-
tal and theoretical energy dependences are the largest at
low energies. This may be due to two reasons: (1) The
theory becomes less valid at energies below 100—300 eV,
depending on the atomic number of the solid, and (2) ac-
curate experiments are more difficult to perform at low
energies due to increased sensitivity of elastic back-
scattering to surface contaminations.

Dietzel, Meister, and Bauer also observed a max-
imum on the energy dependence of the elastic reflection
coefficient gz " ' measured at normal incidence for amor-
phous silicon. Similar agreement with the present Monte
Carlo calculations was observed.

Let us denote by g' " ' and E the maximum value of
the reflection coefficient and the corresponding energy,
respectively. Figure 2 compares the experimental and
theoretical values of energies E for a wide range of
atomic numbers. Two conclusions result from this plot:
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Fro. 1. Energy dependence of the reaectlon coemclent for the solid angle of the retarding field analyzer (RFA). Solid line: experi-
mental dependence taken from Schmid, ~aukler, and Seiler (Ref. 14); dashed line: nonrelativistic calculations; dotted line: relati istic
calculations. (a) Carbon; (b) aluminum; (c) iron; (d) silver; (e) tungsten.
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FIG. 2. Atomic number dependence of energy E corre-
sponding to maximum of the elastic reflection coefficient. Tri-
angles: values resulting from the experimental data of Schmid,
Gaukler, and Seiler (Ref. 14); inversed triangle: value resulting
from the experimental data of Dietzel, Meister, and Bauer (Ref.
22); squares: nonrelativistic calculations; circles: relativistic
calculations.

(1) The energy corresponding to maximum intensity of
elastically backscattered electrons increases monotonical-
ly with the atomic number of the target. This depen-
dence is close to linearity.

(2) The theoretical values of E compare well with the
experimental data.

Thus the present theory explains well the shift of E
with the atomic number observed in available experimen-
tal data. It is then expected that the presented theoreti-
cal model is also reliable for predicting energy E for
other materials and other acceptance angles of analyzer.

The dependence of g' " ' on atomic number is shown
in Fig. 3. The monotonic dependence on Z found for E
(Fig. 2) is not observed for g' " ', although again the
agreement of theory with experimental values is reason-
able. The considerable scatter with small variations in Z
of the maximum reAection coefficients is caused by their
sensitivity to parameters, in particular to the IMFP and
the atomic density, which do not vary monotonically
with the atomic number. The close to linear correlation
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FIG. 3. Atomic number dependence of maximum of the elas-
tic reflection coefficient g( " '. Triangles: values resulting from
the experimental data of Schmid, Gaukler, and Seiler (Ref. 14);
squares: nonrelativistic calculations; circles: relativistic calcula-
tions.

between the energy E and the atomic number (Fig. 2)
indicates that the values of E are influenced by the
IMFP to a negligible extent, and seem to be determined
mainly by the elastic scattering cross sections. Similar
effects were observed by Jablonski et ah. They com-
pared the energy dependence of the elastic backscattering
intensity calculated for two different values of the IMFP.
Increase of the IMFP was found to increase the backscat-
tered intensity for all energies; however, the energy posi-
tion of the maximum is not affected.

Bronshtein and Pronin published energy dependences
of elastic backscattering intensity measured for several
elements in a direction of 25' to the surface normal.
These experimental data are compared with the results of
the present calculations in Figs. 4(a) —4(d). The agree-
ment between the experiments and the theoretical calcu-
lations is very good. The experimental curves were plot-
ted in arbitrary units. However, the same factor was used
to scale the experimental data for all elements Th.is
shows that theory predicts quite accurately the shape of
the energy dependence of intensity and also the relative
intensities for different elements.

Very extensive Monte Carlo simulations of elastic
backscattering from surfaces were made in the present
work to study in detail the behavior of the maximum in
the energy dependence of the elastic backscattering inten-
sity. The extent of these calculations is described below:

(1) Simulations were made at normal incidence of the
primary electron beam for 27 elements, i.e., all elements
for which Tanuma, Powell, and Penn published recently
the values of the IMFP.

(2) For each element, calculations were repeated at 30
energies logarithmically distributed in the energy range
from 50 to 2000 eV. At each energy the elastic scattering
cross sections were calculated and then used in the Monte
Carlo simulations.

(3) For elements with atomic number up to 14 the
number of generated electron trajectories was 2X10 .
The number of trajectories for elements with higher
atomic numbers was 1X10 . In effect, the statistical er-
ror of the calculated reAection coefficient decreased below
l%%uo.

(4) The elastic backscattering intensity was calculated
in 20 directions between surface normal and the plane of
the surface.

(5) All the above calculations were made using the rela-
tivistic elastic scattering cross sections. Selected runs
were also made for nonrelativistic cross sections.

Figure 5 shows exemplary energy dependences of the
elastic backscattering intensity calculated for molybde-
num at different escape angles a. One can see that theory
predicts the presence of two maxima in certain direc-
tions. Both maxima shift toward higher energies with the
increase of the escape angle a. For high-atomic-number
elements this picture is even more complex since the
number of maxima increases up to 4.

An attempt has been made to summarize positions and
values of all maxima for the considered elements and
geometries. At first a simple procedure was elaborated
for determining the exact position of maximum from the
Monte Carlo results. It is convenient to express the in-
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tensity as the reAection coefBcient Ag within a certain
small solid angle AQ divided by this solid angle:

A polynomial of the third degree was fitted to the points
in the vicinity of the maximum in the semilogarithmic
scale (see Fig. 6). From this, the position E of the max-
imum and the corresponding intensity I were calculated
analytically from the fitted polynomial. Such calcula-
tions were repeated for numerous elements and directions

n. It has been decided to plot the position of the max-
imum and the corresponding intensity as a function of
the direction with respect to the surface normal. In this
way it is possible to follow multiple maxima in the energy
dependences. Plots for selected elements are shown in
Figs. 7(a) -7(e).

The calculated results of E and I, as a function of a
for all 27 elements can be divided into five groups, corre-
sponding to different numbers of maxima or to distinctly
different intensities I . These groups can be defined by
separate ranges of the atomic number:
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FICx. 4. Energy dependence of the elastic backscattering intensity I. Solid line: experimental dependence taken from Bronshtein
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calculated values. The experimental values are in arbitrary units; however the same sealing factor was used for all elements (a).
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I t e t w r

Molybdenum
(1) 12~Z ~ 14. One monotonically varying curve cor-

responding to one maximum [example shown in Fig.
7(a)].

(2) 22 ~ Z ~ 24. One monotonically varying curve with
higher intensity I [example shown in Fig. 7(b)].

(3) 26+ Z ~29. Two maxima [example shown in Fig.
7(c)].

(4) 39~Z ~47. Two maxima with distinctly different
intensity I [example shown in Fig. 7(d)].

(5) 72~Z ~ 83. Four maxima [example shown in Fig.
7(e)].

Differences between plots within a particular group are
not very significant. One can see that more than one
maximum is observed for elements with atomic number
exceeding 24. As mentioned above, the theory describes
particularly well the energy dependences of elastic back-
scattering intensity for energies exceeding 100—300 eV.
Thus the maxima at higher energies (indicated by circles
and solid lines) should be predicted more reliably than
the low-energy maxima (triangles and dotted lines).

IV. DISCUSSION

s t I s a & a i asti
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FIG. S. Energy dependence of the elastic backscattering in-

tensity I at different escape angles a calculated for molybdenum
within the relativistic theory. (a) a =7', (b) a =25', (c) a =34',
(d) a=43', (e) a=52', (f) a=70', (g) a=79 . Note two maxima

appearing at certain escape angles. Dashed line indicates the
shift of the maxima positions.
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FICi. 6. Illustration of determining the maximum intensity
I and the corresponding energy E by fitting the calculated
values with the polynomial of the third degree.

The plots in Figs. 7(a) —7(e) may be used as preliminary
aid to determine maximum intensity of elastically back-
scattered electrons for a given experimental geometry
determined by the escape angle u. One should remember
that all the results discussed refer to the normal incidence
of the primary electron beam. Let us consider briefly all
factors affecting the accuracy of these results.

The present calculations are made for a theoretical
model assuming the random distribution of the scattering
centers with density equal to the atomic density of a
given solid. This is an idealized model of polycrystalline
or amorphous solids, and thus the proposed theory
should be applicable to such materials. This statement is
well supported by the agreement with experimental data
shown in Figs. 1 and 4. One can notice in Figs. 1(d), l(e),
4(c), and 4(d) a distinct diff'erence between energy depen-
dence of the reAection coeKcient due to relativistic and
nonrelativistic calculations. This difference increases
with the increase of the atomic number of the target ma-
terial and is obviously due to the difference between rela-
tivistic and nonrelativistic elastic scattering cross sec-
tions. A similar observation was published recently for
gold. The difference cannot be ascribed to the compu-
tational errors. Care was taken to develop an accurate
and stable procedure for integration of the first-order
diff'erential equations [Eqs. (10) and (12)]. This procedure
made it possible to maintain the accuracy of eight de-
cimal digits during integration. A question arises:
Which algorithm, relativistic or nonrelativistic, better
compares with the experimental data? This prob]em can-
not be finally decided on the basis of the present results.
However, the energy dependences of the reAection
coe%cient calculated in the present work from the rela-
tivistic model seem to be slightly closer to the experimen-
tal data than the dependences resulting from the nonrela-
tivistic model [e.g., Figs. 1(e) and 4(d)]. Jablonski made
extensive comparisons of theoretical predictions with ex-
perimental data on the angular distribution of electrons
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As mentioned earlier, deviations between theory and
experiment at low energies may also be due to the experi-
mental difficulties, in particular to an increased sensitivi-
ty of the elastic electron backscattering to surface con-
taminations.

Among the input parameters in the Monte Carlo algo-
rithm, the values of the IMFP seem to be known with the
least accuracy. Numerous data are available in the litera-
ture; ' " however, they differ considerably. One of
the reasons for this scatter is the differences in definitions
of the IMFP used by different authors. '" In the present
work all the values of the IMFP originate from one re-
cent source, which seems to be the most accurate. Thus
the results of the calculations should be burdened with a
similar systematic error. As shown in the present work,
the inaccuracy in the values of the IMFP affects mainly
the calculated maximum intensity of the backscattered
electrons, while the corresponding energies seem not to
be affected. For this reason, the values E compiled in
Fig. 7 should be burdened with smaller error due to un-
certainty of the IMFP than the values of I

30 60 90

Angle of analysis a. (deg)

FIG. 7. (Continued).

elastically backscattered from gold. This analysis also
favored the relativistic calculations. For this reason, it
has been decided in the present work to use the relativis-
tic algorithm for determining the behavior of the maxima
in the energy dependences of elastically backscattered in-
tensity.

Let us briefly consider the possible sources of the
discrepancies between theory and experiment. Part of
these discrepancies is certainly due to the simplifications
of the theory describing the electron transport. As rnen-
tioned, the assumption of a two-body interaction may be
less valid at low energies, where actually the largest
differences are observed. Furthermore, the approxima-
tion of the scattering potentials by the potential of the
isolated atom may also contribute to the errors. This
problem has been analyzed recently. The angular dis-
tributions of the elastically backscattered electrons and
the reAection coefficient obviously depend on the poten-
tial used in the calculations. However, the corresponding
deviation was found to decay with increasing energy. In
the case of gold, the Thomas-Fermi-Dirac potential pro-
vided results similar to the Dirac-Hartree-Fock-Slater
(DHFS) potential at energies exceeding 200—400 eV.
Thus we may expect that deviations of the TFD potential
from the actual potential of the scattering center do not
significantly affect the results of the calculations at
sufficiently high energy. The fact that the presented
theory does not depend critically on the potential used
explains the good agreement of the calculated parameters
with the experimental observations despite the relative
simplicity of the TFD potential. Similarly, the TFD po-
tential was successfully used by other authors in calcula-

V. CONCLUSIONS

A number of experimental surface-sensitive techniques
make use of elastically backscattered electrons in the en-
ergy range 50—3000 eV. In this energy range the intensi-
ty of elastically backscattered electrons usually passes a
maximum. Knowledge of the position of this maximum
and its value may be important to optimize such experi-
mental techniques.

In the present work, a systematic Monte Carlo simula-
tion, which account for multiple elastic collisions with
randomly distributed scattering centers, was applied to
calculate elastic backscattering intensities from surfaces
of polycrystalline solids with normal incident electrons.
Thus the intensity of the maximum and the correspond-
ing energy were studied under variation of the exit angle
for 27 elements in the energy range from 50 to 2000 eV.
The relativistic elastic scattering cross sections were cal-
culated assuming an electron-atom interaction potential
described by the Thomas-Fermi-Dirac potential. The in-
elastic electron mean free path was taken from existing
theoretical tabulations by Tanuma, Powell, and Penn.

By comparison to available experimental data, it is
found that the present theory explains well the shift of
the energy position of the intensity maximum with the
atomic number. In addition, not only the shape of the
energy dependence but also the absolute values of the
elastic reAection coefficients are predicted with reason-
able accuracy. It is therefore expected that the presented
theoretical prediction of the maximum is reliable also for
other materials and other analyzer acceptance angles.
The present data thus provide useful data for experimen-
tal techniques involving elastically backscattered elec-
trons. Several maxima in the energy dependence of the
elastic reAection coefficient are predicted in certain exper-
imental geometries.
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