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Nonlinear evolution of a terrace edge during step-flow growth
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The nonlinear evolution of a terrace edge during growth in the step-flow configuration is investigated.

Starting from the constitutive growth equations of Burton, Cabrera, and Frank [Philos. Trans. R. Soc.
London Ser. A 243, 299 (1951)],we show that the dynamics of an isolated terrace edge, i.e., in the ab-

sence of any kind of step-step interaction, is described, close enough to the morphological instability

threshold found by Bales and Zangwill [Phys. Rev. B 41, 5500 (1990)],by a nonlinear partial differential

equation. This equation, although it emerges physically in a somewhat disguised manner, can be simply

interpreted as representing the growth with an effective negative line tension, a stabilizing line

diffusionlike process along the edge, and a quadratic nonlinearity restoring the Galilean invariance. This

nonlinear equation, despite its apparent simplicity, manifests a variety of dynamics, ranging from simple

steady-cellular structures to spatiotemporal chaos. When the system size is large enough, chaotic dy-

namics always prevails. We argue here that when the step-step interaction is important, however, one

expects "regular" solutions, such as steady-cellular, broken-parity-traveling, and oscillatory modes, to be

stable over a finite range of control parameters.

I. INTRODUCTION

The feasibility of microscopic resolution imaging of
solid surfaces, such as those provided by tunneling micro-
scope and electron microscopy, has stimulated increasing
interest in structural and dynamical features of sur-
faces. ' ' In particular, the study of equilibrium step
fluctuations of vicinal surfaces is a branch of investiga-
tion where these techniques can bring to bear their
specific advantages. Another important ambitious issue
where microscopic techniques should constitute crucial
tools pertains to nonequilibrium features during the
growth of solids from their vapor phase. Growth by
molecular-beam epitaxy, for example, is a topic of much
current technological and fundamental interest. On the
one hand, the ability to grow single-crystal materials with
essentially monolayer comp ositional control is of
paramount importance in fabricating atomically abrupt
interfaces for specific applications. On the other hand,
this problem provides us with a fascinating and rich ex-
ample where one is often faced with both statistical prop-
erties and out-of-equilibrium features, inherent to the
growth process.

The most obvious feature of the steps is their meander-
ing (or waviness). The meandering has often been
thought of as being associated with equilibrium proper-
ties, such as, for example, thermal fluctuations. There is
experimental evidence, however, where manifestly none-
quilibrium features are observed. ' ' There the steps
seem to exhibit roughness of a decidely nonrandorn na-
ture. Recently, Bales and Zanbwill' showed from a
linear stability analysis that a terrace edge growing from
the vapor phase —in the so-called step-flow model—
undergoes a morphological instability if the growth rate
exceeds a certain critical value. This instability is intrin-
sic; it is driven by diffusion of atoms along the terrace.
The stabilizing effect is due to the line tension of the step,

which prevents short-wavelength deformations. The in-
stability can thus take place only if the characteristic
diffusion length (to be defined below) becomes smaller
than the typical "chemical" atomistic length determined
by the ratio of the line tension to the thermal excitation
energy.

The linear stability analysis is the first step towards the
understanding of the mechanisms by which a new pattern
can be formed. The main benefits of a linear stability
analysis are the determination of the critical condition of
the onset of the instability, and the range of wave num-
bers of those perturbations that are likely to grow first.
However, if the long-time behavior of a growing instabili-
ty is to be ascertained and/or the final stage (if any) of the
dynamics to be determined, then a nonlinear analysis is
necessary. At arbitrary distance above the instability,
threshold dynamics might involve highly nonlinear
effects that make the theoretical analysis rather difficult.
The analysis, however, is often facilitated by concentrat-
ing on the situation close to the instability point. We can
thus hope to extract from a set of rather complicated
dynamical equations only that part that is relevant to the
dynamics close to the critical region. Our main objective
in this paper is to develop a nonlinear theory for the ter-
race edge evolution during step flow. An important point
in our analysis is that, close enough to the instability
threshold, the most dangerous fluctuations found from
the linear stability analysis of Bales and Zangwill' corre-
spond to the long-wavelength (on the scale of the
diffusion length) domain. We have taken advantage of
this fact and shown that the growth dynamics are de-
scribed by a "simple" nonlinear partial differential equa-
tion for the terrace edge. In our treatment, although we
have in mind a uniform vicinal surface topology, we will
confine ourselves in a first level to a situation where a sin-
gle step is advancing, thus disregarding a11 kinds of step
interactions. In this limit the equation describing the
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step dynamics can be set in the following (canonical)
form:

~t ~xx xxxx+ 2 x ~

where h represents a dimensionless position of the terrace
edge, which is a function of dimensionless space x and
time t variables. This equation is free of any parameter.
Equation (1) intervenes in many contexts in physical and
chemical phenomena; ' it is known as the Kuramoto-
Sivashinsky (KS) (Refs. 22 and 23) equation. The striking
feature of this equation —a feature which still attracts ex-
tensive work —is that, despite its apparent simplicity (the
only nonlinearity is quadratic), it manifests exotic dynam-
ics ranging from ordered cellularlike structures to spa-
tiotemporal chaos. When the system size (e.g., the lateral
step extent) is large enough, spatiotemporal chaos always
prevails. In that situation the terrace edge would exhibit
an erratic dynamics of a completely deterministic origin.

Of course a single step advancing without any interac-
tion with its neighbors is far from being realistic. We
therefore intend to discuss how the step dynamics would
be modified in the presence of interactions. We restrict
ourselves here to a phenomenological picture where the
interaction is modeled by adding a stabilizing linear term
to Eq. (1), which mimics a repulsive interaction. The
presence of this term is very important: the terrace edge
should develop a periodic cellular steady structure which
may be stable even for very extended lateral dimensions.
When the importance of this term is reduced, the cellular
structure becomes unstable. We will refer to these insta-
bilities as secondary instabilities (we use the primary in-
stability denomination by taking the straight step as
reference). The loss of stability leads to the creation of
new patterns: broken-parity-traveling cells, vascillating-
breathing modes where the width of each cell oscillates in
phase in opposition with its neighbors, or a complex mix-
ture of these modes. When the step interaction is negligi-
bly small, we recover KS dynamics.

We would like to mention here that our theory is, by
its very nature, expected to be valid close enough to the
instability threshold. It turns out, however, from prelim-
inary lattice-gas simulations, ' which handle in principle
situations far from the threshold, that our treatment cap-
tures all the essential features.

The strategy of this paper is as follows. In Sec. II we
write down the basic version of the step-Aow model of
Burton Cabrera, and Frank, and comment on them
briefly. We begin with an isolated step. For complete-
ness, we reconsider in Sec. III the linear stability analysis
of Bales and Zangwill. ' Section IV is devoted to the
derivation of the nonlinear evolution equation for the ter-
race edge. We shall then give a brief report on the basic
properties of this equation in Sec. V. In Sec. VI we at-
tempt to include phenomenologically the step-step in-
teraction and present the overall picture of the terrace
edge dynamics. In Sec. VII we sum up our results.

the following situation: a single atomic step on a close-
packed face of a crystal is advancing in the z direction at
the expense of the gas atmosphere. An adatom impinges
from a gas atmosphere with a frequency F, migrates on
the facet with a diffusion constant D, and evaporates with
a lifetime ~. It is widely admitted' that most of the ada-
toms that contribute to the growth process come from
the terrace that is ahead (the lower one in Fig. 1) of the
advancing step. Without loss of generality we will con-
sider the following extreme limit: we assume that the
growth is governed only by adatoms on that terrace.
This corresponds to the so-called one-sided model. The
density c of adatoms obeys the mass conservation law,
which takes, for all practical purposes, the following
form:

DV c —c!w+F=O . (2)

The amount by which each point on the step advances in
the normal direction (see Fig. 1) is determined by the con-
centration gradient in the same direction. More precisely
the normal velocity U„ is proportional to the normal
derivative of c

v„hc, =Dn Vc, (3)

v„= [ Vo+ g(x, t) ]/[1+g ]
'i (4)

According to von Neuman theorem, Eq. (2) with the nor-
mal derivative of c given by (3) has solutions in a steady-
state situation, for arbitrary boundary shapes g(x). How-
ever, not all the solutions will be physical. Indeed there
is another physical condition to be satisfied at the bound-
ary. While Eq. (3) guarantees mass conservation across
the step, we do not yet know how the mass current at the
step is related to the chemical potential difference be-
tween the growing solid and gas, Ap. In other words we
should specify how dissipation at the step proceeds. This
question is handled by making use of the second principle
of thermodynamics. In a picture like that of Onsager, the

where Ac, is the difference between the areal density of
atoms in the solid phase and the corresponding quantity
on the terrace immediately adjacent to the step. Since
the density of atoms in the solid phase is much higher
than in the gas atmosphere, we can write Ac, =1/0,
where 0 is the atomic area of the solid. n is a unit nor-
mal out of the solid perpendicular to the step riser (see
Fig. 1). Since the basic state will be a straight step ad-
vancing at a constant velocity Vo in the z direction, we
find it convenient to measure the z coordinate in the
frame of reference moving at velocity Vo, undetermined
for the moment. Let z =g(x, t) denote the instantaneous
position of the step. The normal velocity takes the form

II. BASIC EQUATIONS

Since the step-How model has been described else-
where, ' we shall keep its discussion brief. We consider

FICx. 1. Schematic view of a vicinal surface during step flow.
n designates the normal to the step riser.
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normal velocity (or equivalently the mass current) is pro-
portional to hp. We will assume there that the step is
rough, in that it acts as a continuous capture center for
adatoms. More specifically, we consider the extreme situ-
ation where kinetics are fast enough on all time scales of
interest, so that the step can be viewed at instantaneous
chemical equilibrium. The "kinetic" relation then simply
reduces to hp=O. By expanding Ap about a reference
point, we show in the Appendix that this condition
amounts to [at z =g(x, t) ]

where c.c. stands for complex conjugate, q is the wave
number, co is the amplification (or attenuation) rate that
we wish to determine, and c& and g& are small quantities.
Note that because the Fourier modes do not couple in the
linear problem, it suffices to consider one Fourier com-
ponent. The scheme consists now in inserting Eqs. (10)
and (11) into the three basic equations (2), (3), and (5) and
the boundary condition (7) and linearize the resulting
equations in c& and z&. The diffusion equation is linear,
and c, is easily found to be

c =c, [1+I ~], (5) c, =A, e ', A =Qq +1/x, , (12)

where I=yQ/k~T (which has a dimension of a length),
with y the line tension, kz the Boltzmann constant, T the
(fixed) temperature, c,„ the equilibrium concentration,
and ~ the step curvature counted to be positive for a con-
vex profile:

~= —g„/[1+( ]'~ (6)

We should mention that crystalline anisotropy (which
can enter the diffusion coefficient and the line tension) is
not accounted for in this work.

Finally far away from the step —that is, for a distance
larger than the diffusion length to be introduced
below —the density c should reach a constant value c
given by

c(z~oo )=—c„=rF . (7)

Vo =Ax, (F F,q ), — (9)

where F, =ac, . The quantity F —F,q
measures the dis-

tance from equilibrium; it is the driving force for the
growth process.

This condition simply expresses the equilibrium between
deposition and evaporation.

The set of equations (2)—(7) completely describes the
growth dynamics. This set supports a simple solution: a
straight step (which we take at z =0) moving at a con-
stant speed Vo. Let co(z) denote the corresponding con-
centration profile. Equation (2) is solved by

co= Aoexp[ z/(Dr)'~ ]+r—F,
where Ao is an integration factor. The concentration
profile extends over a characteristic distance x, =&Dr, —
which we usually call the diffusion length. Inserting ex-
pression (8) into (5), we obtain Ao=c, rF. The use o—f
Eq. (3) determines the growth speed as a function of the
control parameter,

where use has been made of Eq. (7). A, is an integration
factor. Inserting (12) into the linearized version of Eqs.
(3)—(5), we obtain two algebraic equations for ( A, , g, ),

A, —[I c, q rb,F /x—, ]g, =0,
Aq A, +[coDQ,+rbF/x, ]$,=0,

(13)

(14)

where AF =F—
Feq The condition that this system have

a nontrivial solution leads to the dispersion relation

~=nD[ qrc, A—+(raF/x, )(A 1/x, )] .— (15)

This is the dispersion relation derived by Bales and
Zangwill. ' The first term inside the brackets, which is
always negative, expresses the stabilizing effect due to
line tension, while the second one is always positive and
represents the destabilization of diffusion. The straight
step is stable if co &0 for all q's. Conversely it is unstable
if there exists at least one wave number q for which co & 0.
The critical condition is attained when co=0 for a partic-
ular value of q, say q„while it is negative for all other q's.
This occurs when the two conditions

w(q, ) =0, [Bw/Bq ]~ ~
=0 (16)

q, =O,
I c,~

x, rbF 2
(17)

It can be checked that co (0 for all q's if g) —,'. If g( —,',
however, there exists a band of wave numbers corre-
sponding to unstable modes. This band, Aq, is given
close to criticality by

are met. These two equations determine the critical con-
dition on the onset of instability and the wave number of
the bifurcating mode. By using the dispersion relation
(15), we obtain from (16) that the bifurcation is character-
ized by

III. LINEAR STABILITY ANALYSIS
bq =(1/x, )[4(1—2g)/3]' (18)

c (x,z, t) =co(z)+c, (z)e'~" '+c.c. ,

g(x, & ) =g, e '~" +"'+c.c. ,

(10)

In this section we brieAy consider, for completeness,
the linear stability analysis of Bales and Zangwill' and
present some preliminaries to prepare the nonlinear
analysis. We study the regression of Auctuations by set-
ting

a relation which is obtained by expanding co(q) to leading
order about the critical point given by (17). Figure 2
shows w(q) in the stable and unstable regimes. The
linear stability analysis tells us then that if g( —„there is

a band of active modes that grow exponentially in the
course of time and that therefore the linear approxima-
tion will cease to be valid. The nonlinear terms will then
intervene to saturate the linear amplification, and drive
the system to a finite amplitude deformation. If the dis-
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4

2

Since the bifurcation occurs for g= —,
' and we are interest-

ed in a situation close enough to the onset of instability,
we introduce a small parameter e defined as

1

2 (24)

-2 which measures the distance from the threshold. Then it
is easy to show that the cutoff wave number q,„, [defined
by co(q,„,) =0] is given by

q,„,= (8e/3)' (25)

0.5 2.5

tance from the threshold of instability is finite, then a
resort to a numerical study seems unavoidable. If this
distance is small enough, however, we can carry out an
analytical treatment that permits us to get important in-
formation about the nonlinear evolution.

FIG. 2. The growth rate vs the wave number in the stable
(g) z), critical (g= 2), and the unstable (g( —') regimes. bq
designates the band of active modes.

This means that the band of wave numbers correspond-
ing to the active modes scales as e' . The corresponding
length scale for modulations of the structure in real space
is of the order of e ' . We therefore introduce a new
variable X related to x by

X=e' x (26)

In the new variable X the structure will evolve on the
scale of unity. The advantage of introducing X is simply
that e will appear explicitly in the governing equations
and that therefore our perturbation expansion can be
made systematic. Now in order to determine the time
scale for the dynamics, we consider a typical wave num-
ber of order e', and expand the resulting growth rate
(23) to leading order in the small parameter. The result is

IV. NONLINEAR EVOLUTION EQUATION co=I O[2eq —
—,'q ], (27)

Before developing our program, we would like first to
rewrite the basic equations in a dimensionless form. For
that purpose, we take x, and ~ as space and time units,
and introduce u =(c rF) as a n—ew concentration func-
tion. Equation (2) takes the form

Au u =0

subject to mass conservation [Eq. (3)] at the step
[z =g(x, t)],

I /g'+ (=0 [u, —g„u, ],
to the chemical equilibrium condition [Eq. (5)]

(20)

(21)

and to condition at infinity

u(z~ ~ )=0, (22)

[t/1+q —1]—AI q t/1+q2 .

where r =rc,q/x, is a quantity having the dimension of
c,~. Note that we have kept for the spatial (g and x) and
temporal (t) variables the same notations. This should
not be confusing since we will use exclusively, from now
on, only dimensionless variables.

The linear stability analysis is the first step in any sta-
bility theory. Moreover it is a natural starting point for
the definition of the linear problem. In particular the
linear dispersion relation serves to determine the charac-
teristic length and time scales for the evolution of the
perturbation. We first rewrite the dispersion relation (15)
in a dimensionless form (and keep the same notation),

where q should be retained in the expansion since
q -e'~ . It follows from Eq. (27) that co scales as e . This
entails that the dynamics in the vicinity of the threshold
evolves on a time scale of the order of e . As we did for
the spatial dependence, we also introduce a slow tem-
poral variable T defined by

T=et. (28)

g(X, T)=eH (X, T), (29)

and which is of order unity. We then expand u and H in
power series of e,

u =up+Eu ) +6 u2+. . . , (30)

H =H p +EH
&
+ 6' H2 + (31)

In terms of the new variables (X, T, Z, H), Eq. (2} takes
the form

euxx+ uzz u =0,
subject to the condition

u(Z~ oo }=0,

(32)

(33)

Now we are to understand that the step position depends
only on the slow variables (X, T), while the diffusion field
depends both on these slow variables and on the fast vari-
able z. In order to somehow keep homogeneous nota-
tions, we will use Z instead of z for this variable. Finally
since we expect the step deformation to be of the order of
the distance from the threshold, we find it convenient-
as we did it above for x and t —to introduce a new func-
tion H (X, T) defined as
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while at Z =eH we have [see Eqs. (20) and (21)]

r +e HT=Q(uz —eHxux),1/2 —e
(34)

chemical equilibrium equation (35) provides

u2+Hou Jz+H(uoz+ uozz o (Hoxx 8) (45)I-, Hxx—~'r
e —1/2 [1+e3H2 ]3/2 (35)

while the mass conservation equation (34) yields

2
2ZZ +HO 1XX +H1 OZZ +

p Ho OZZZ (46)

Order 6

To this order, Eq. (32) reads

uozz u 0 (36)

which is solved by uo = Roe . Making use of the
boundary conditions at Z =eH, we obtain

The scheme now is to insert (31) into the basic equations
(32)—(35) and use the resulting equations to deduce suc-
cessively higher-order contributions in powers of e.

Exploiting the solutions of order e and e, we obtain the
expression for A2..

/I = —4H —H —H —2H, —8 .

We can mention that, as in the previous order, the two
equations (45) and (46) give identical results. Still at this
order neither HO nor H1 are determined. The really in-
teresting result emerges at next order where a solvability-
like condition emerges as a constraint on Ho. This con-
straint is nothing but the evolution equation that we wish
to determine.

uo= —2I e z (37)
Order e

This solution is nothing but the straight step solution [see
Eq. (8)] expressed in the new variables. To this order u 3 obeys

Order e'

To this order Eq. (32) becomes

—zu3zz u3 A2xx+
2

e (48)

u1zz u1

whose solution is given by

u1= A1e

(38) the solution of which can be written as

~ 2XXZ ~ 1XXXX
u = A e + e + (Z +Z)e, (49)

(39)

where 3, is an integration factor which should be treated
as a function of the slow variables (X, T), since Eqs.
(32)—(35) are partial di6'erential equations. Equations
(34) and (35) expanded up to order e give

where A3 is an integration factor. Using the boundary
condition (34), we find

16I +0 'HOT= —Hoxxu +u3z+H u2zz+H1u1zz

+H 2 u Ozz +—H Ou 1zzz
2

u1z+Houozz 4I

u, +H, u, = —4r .

(40)
+HoH1uozzz+ 6Houozzzz .3

(41)
Finally Eq. (35) reads at this order

(50)

From now on all the functions entering the boundary
conditions at the step are understood to be evaluated at
Z =0. Using the zeroth-order solution, we find that the
above two equations are identical. The factor 3, is
found to be given by

A (
= —4I —21 Ho(X, T) . (42)

As stated above, A, is indeed a function of the slow vari-
ables. At this stage HO is an unknown quantity.

Order e2

To order e, u 2 obeys an inhomogeneous equation
—zu2zz u2 ~ 1xxe (43)

z+ 1XX zZA
u2= 2e

2
e (44)

where A2 is an integration factor. To this order the

whose solution consists of the sum of a homogeneous
solution and a particular solution

3+HO 2z+H1 1z+H2uoz+ 2Hou lzz+HOH1 Ozz
2

1 3+
6

(51)

After having used the previous orders solutions, both
with (49), one discovers that the above two boundary
equations have many terms in common; in particular, this
holds for all the terms containing H, and H2. A simple
algebraic manipulation of the two equations leads to the
cancellation of these terms. The remaining part is the
sought-after evolution equation

HOT 2HOXX 4HOXXXX+HOX
—1 3 2 (52)

The second piece of information that we can get from the
set of two boundary equations is the determination of 3 3

as a function of Ho, H1. . . . Since we are only interested
in the extraction of the evolution equation to leading or-
der, there is not need to go further in the e expansion.

Note that if the nonlinear term is neglected, and if we
set Ho-e '+ ' (with x and t being the original fast
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variables), we immediately recover the linear dispersion
relation (27). Let us now go back to the original disper-
sion relation (23) and make some comments. The first
term on the right-hand side (rhs) represents the effect of
the diffusion (we can easily check that the ratio I /g is in-
dependent of line tension), while the second one
represents the line-tension effect. The expansion, close to
the critical point, of cu [Eq. (27)] can be rewritten as
co =1 Q[(1—2$)q —(3/4)q ], in view of the definition of
e [see Eq. (24)]. The q term is composed of two terms: a
stabilizing term ( —2gq ) coming from the line-tension
contribution in the original dispersion relation, and a de-
stabilizing one ( +q ) which originates from terrace
diffusion. We can thus say that the diffusion causes a re-
normalization of the line-tension effect. We can speak of
an "effective" line tension whose sign is determined by
that of 2g —1. Below the instability threshold the
effective line tension is positive (since g) —,) and it be-
comes negative when g (—„which is the condition of in-

stability met before. Since in our derivation we were in-
terested in the situation above the threshold (by assuming
e &0), we got a negative effective line tension signaled by
the presence of a negative sign in front of Hxx in Eq. (52).
Had we let e have an arbitrary sign, we would then have
obtained a step function multiplying H~~. The fourth
derivative in Eq. (52) is stabilizing. The q term in the
linear dispersion relation can be interpreted as represent-
ing an effective diffusion along the step. Indeed assume
that there is a lack of homogeneity along the step in the
distribution of gas atoms. If that inhomogeneity were the
only effect that causes the growth, then the growth veloc-
ity (-Hr) would be simply proportional to the diver-
gence of the mass current along the step, due to mass
conservation. Since the mass current is proportional to
the derivative of the chemical potential (Onsager's law),
the velocity is proportional to the second derivative (for a
one-dimensional system, and when nonlinear effects,
which enters through the tangential vector, are neglected)
with respect to X, Hz--pzz, p being the chemical poten-
tial. The chemical potential is a function of the deforma-
tion H. For a slowly varying deformation the chemical
potential can be expanded as a function of the derivatives
of H. Due to symmetry Hx is absent. The first term (up
to an additive constant which can be absorbed in Hz ) is

p-H~&, which entails that Hz-- pzz -Hzzzz.
We can attribute to the presence of the nonlinear term

in Eq. (52) a simple meaning. First of all it is clear in or-
der to saturate the linear amplification of the perturba-
tions that the nonlinearity should be taken into account.
What type of nonlinearity could we expect a priori? Two
other candidates could have been Hp or Hp+H, but then
we would break the translational symmetry: the invari-
ance of the governing equation under the transformation
Hp ~Hp +a, where a is a real constant. This breaking is
not physical since the straight step position can be taken
anywhere; as a consequence these two candidates are im-
mediately disqualified.

There is in fact a more enlightening way —and a more
robust condition —from which the nonlinear term in Eq.
(52) follows. Let us first rewrite that equation in a canon-
ical form,

h] = h~~ hxxxx +
~

h (53)

where the new variables (h, x, t) are related to (HO, X, T)
by

h =Ho, x =X+—' t=16I QT/3 . (54)

The evolution equation thus reduces to a universal one in
the sense that all the parameters scale out. This feature is
more general: if we multiply all the terms in Eq. (52) by
different constants, it is always possible to find a transfor-
mation of the type (54) such that the resulting equation
becomes free of any parameter.

Let us now pursue our remark on the nonlinear term in

Eq. (52). For that purpose we find it convenient to set

hx = u and write the equation for v:

vt vugg
= uxx vxxxx (55)

an equation that is directly obtained from (52) upon
differentiation with respect to x. Equation (55) is remin-
iscent of the Navier-Stokes equation with a negative
viscosity and with higher-order "viscous" terms (the term
proportional to U „„„).Note that the presence of a minus

sign in front of the nonlinear term is unimportant, since
that sign can be changed upon the transformation
u ~—u. As is the case with the Navier-Stokes equation,
Eq. (55) is invariant under the transformation

u v +up x x upt (56)

V. A SHORT REVIEW OF THE PROPERTIES
OF THE EVOLUTION EQUATION

It would be extremely ambitious to review in this short
paragraph all the properties of the KS equation. We will

simply present brie Ay only those properties that are
relevant for our purposes.

First, our experience of patterning instabilities, such as
those encountered in Rayleigh-Benard and Taylor sys-
tems, or interfacial instabilities in crystal growth (which
is a closer system to the one we are concerned with), may
lead one to think that above the instability threshold, the

where up is a constant. This is nothing but a Galilean
transformation. In order to check this invariance it
suffices to realize that under this transformation u, trans-
forms into u, +vpv„. , and uv„ transforms into
u'v„. +vpu, while the other terms remain invariant. We
see thus that the nonlinear term is necessary to restore
the Galilean invariance that would be broken by the u, —
term in the linear regime.

It should be added here that v, by its definition, is a
parallel transported quantity, in the sense that it is every-
where tangential to the real step profile, therefore making
the similarity between the Kuramoto-Sivashinsky equa-
tion and the "Navier-Stokes" equation apparent.

We will see in the next section that the Galilean invari-
ance, obvious as it may appear, has nevertheless a strong
consequence on dynamics.



7414 IOANA BENA, CHAOUQI MISBAH, AND ALEXANDRE VALANCE 47

system will develop a cellularlike structure, which will
eventually become more and more complex, ultimately
giving rise to long fingers or even to dendrites. As a first
step, it is natural to ask whether the above evolution
equation (52) may admit periodic-cellular structures, and
if so are these structures stable, and under which condi-
tions? First, it is easy to see that in the frame of reference
moving with the straight step, a frame in which Eq. (52)
is written, a periodically deformed step cannot be station-
ary. Indeed integration of Eq. (53) over a period (and due
to periodic boundary conditions) leads to

(h, ) =-,'(h') &0 (57)

where ho(x) designates the steady solution obeying

j, 2
Oxx Oxxxx p Ox (59)

Equation (59) has been solved by many authors. Before
presenting the results, some preliminary discussion is
necessary. The linear dispersion relation extracted from
Eq. (53) (by taking h -e'~"+ ') is given by ai=q2 —q4.
The cutoff wave number is now given by qo = 1 [obtained
by setting co(qo) =0]. Let us consider a periodic solution
with a basic wave number 9. It is convenient to intro-
duce a parameter A defined by A =1,/A, o, where
A, =2m. /q and A,O=2m. /qo. A can be thought of as an as-
pect ratio, measuring the ratio of the actual periodicity to
the characteristic "stability" length. It is interesting to
plot co as a function of A (Fig. 3). IfA (1 (A, (Ao), it is
clear that the perturbations about h =0 are linearly
stable, and the only solution found is the straight solu-

where ( ) signifies the mean value over a period. In-
equality (57) means that the mean step position is per-
manently drifting. This implies that steady-state periodic
solutions, if they are to exist, move with an additional
constant speed v in the z —direction, given by

(58)

tion. When A & 1 a solution with a finite amplitude
merges. Close to A =1—=Ao, the deformation amplitude
behaves as QA —Ao, as in a usual Landau-Ginzburg-
like transition. This steady solution is called the cellular
solution [Fig. 4(a)]. As A approaches the value 2, the
original cellular solution develops a tip splitting and, ap-
proximately, in the interval A E [2,3] the steady solution
consists in 2-cells of the type shown in Fig. 4(a). On fur-
ther increase of A, a similar scenario occurs; that is (ap-
proximately) in the interval [3,4] a 3-cells solution ap-
pears. An interesting result occurs when A is slightly
larger than 4: a new solution merges, a solution which
has been called a strange solution. Figure 4(b) displays
this solution. On increasing A. a 4-cells solution takes
place, and so on. If the system size L is large in compar-
ison to the basic periodicity A, , then we would see no
difference in morphology between 2-cells, 3-cells, etc. ,
solutions (since each "entity" is the same), but only be-
tween the strange and the cellular solution.

Assume that the system size is a quantity that we can
vary as we wish in a certain physical situation. More pre-
cisely, assume that the system size is exactly the periodi-
city A, . If the size is smaller than the stability length, then
the only solution is the straight step one. By increasing
the size (which amounts to increasing A, as done above),
we would see that our system is composed in total of one
cell at small size; then the number of cells will increase as

(a)

0.4-
-0.4 -0.2 0.2

x/1,
0.4

0. 1

(b)

4

-0. ]
0

FIG. 3. The growth rate as a function of the aspect ratio A.
The hatched part to the left refers to the domain of stability of
the cellular solution, while the one to the right (which is so nar-
row that it appears as a thick line) represents the stability inter-
val of the strange solution (see later in the text).

0.2 0.4 0.6

x/X,

0.8

FIG. 4. The cellular solution (a) and the strange one (b).
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described above, the development of a strange solution
will occur, and so on. It is worth mentioning that since
we are considering only steady-state solutions, we can
neither say that those solutions are everywhere stable
(and therefore admissible in a real situation), nor that
solutions may exist other than the steady ones. Hyman,
Nicolaenko, and Zaleski have integrated the full
dynamical equation by considering moderate aspect ra-
tios going from A = 1 to A =9, and have found, besides
the solutions described above, other small intervals where
rather complex dynamics take place. These unsteady
solutions result from the loss of stability of the steady
solutions.

If one believes —as suggested by experimental
observations —that the width of each cell is small in com-
parison to the system size, one should then in principle
integrate Eq. (53) over a size such that A ))1. I.et us as
a first stage consider the following question. Are the
above steady solutions stable? Under which cir-
cumstances? If a solution is stable against all
infinitesimal perturbations, then we can expect a priori
that this solution would be realizable. If, on the con-
trary, the solution becomes unstable, then the first ques-
tion to ask is about the nature of the instability. Then in
order to investigate the subsequent development of the
instability, a full integration of the evolution equation is
necessary. The linear stability analysis is a very impor-
tant step informing us that something is happening in a
certain region (e.g. , in a certain interval of A). We will
consider here that the system size is large enough so that
all perturbation wavelengths are permissible. The study
of the stability of the steady solutions can be achieved by
linearizing the full equation (53) about the steady solution
ho(x). This results in a linear equation with periodic
coefficients, due to the periodicity of ho. The resulting ei-
genvalue problem is solved by making use of the
Floquet-Bloch theorem. The result that emerges from
this analysis shows that the intervals of stability of the
cellular and strange solution are extremely narrow. More
precisely the cellular solution is stable in the interval
A E [1.195, l. 305], while the strange solution is stable in
a much narrower interval A H [4.22, 4.23]. These stabili-
ty domains are delimited by long-wavelength oscillatory
instabilities. The nature of this instability can be traced
back to symmetry properties. Indeed, if ho(x) is a solu-
tion, then ho(x + P ), where P is a constant, is also a solu-
tion for an infinite system. This means that the transla-
tional (Cxoldstone) mode is a neutral mode. This "pertur-
bation" is of infinite wavelength. If one wants to know
whether such a perturbation would really be dangerous,
one should check what happens to the spectrum if the
wavelength of the perturbation is not infinite but very
large (exactly as if we were doing a linear-response theory
to calculate, for example, the susceptibility of a given sys-
tem). The usual result that emerges is that the instability
that takes place is of the Eckhaus type. This is a phase
instability which manifests itself as a long-wavelength
modulation of the periodicity of the structure, a modula-
tion which induces a phase diFusion (expressed by an
Onsager-like law), and which will ultimately lead to the
creation or destruction of a cell according to whether the

original (unstable) state has a large or a small basic
periodicity. If the only symmetry were the translational
invariance along the x direction, we would then be simply
faced with this diffusive instability. There is, however,
another group of symmetry: the Galilean invariance
evoked in the preceding section. As is the case with the
Eckhaus instability, long-wavelength Galilean distortions
are dangerous and also of diffusive type. Since the two
dangerous modes are coexisting and coupled to each oth-
er, the diffusive character of the bare perturbation can
transform into a propagative one, which explains the
possibility for the creation of long-wavelength oscillatory
instabilities in the KS equation. Of course if the system
size is small (say A of the order of a few unities), these in-
stabilities would not manifest themselves, and would be
suppressed by boundary conditions. As a consequence,
the dynamics would be relatively simple. Indeed, we
would get stable steady solutions, and other regular dy-
namics (as simple oscillations). For large sizes, howev-
er, and because the domains of stability of the steady
solutions are extremely narrow, any small perturbation
will easily "push" the system in the unstable region.
Even if the system turns out to have locally a periodicity
in the stable regime, the propagative character of the per-
turbations will easily cause a contamination of local or-
der. What would we then observe? Numerical solution '

of the KS equation has shown that even for moderate as-
pect ratios (say A —10), and for larger values, the dy-
namics are always chaotic in the time and space point of
view.

In concluding this section, we remark that in a system
described by a KS equation with a lateral extent approxi-
mately ten times (or larger) the stability length, obtained
from a linear theory, spatiotemporal chaos will always
prevail.

Finally as our treatment is expected to be valid close
enough to the threshold obtained from the linear theory,
it is important to ask whether this conclusion survives
even far from the threshold or not. Preliminary results
due to Saito and Uwaha„' who investigate the step-How
growth by means of lattice-gas simulation, tend to
confirm this picture even at finite distances from the
threshold.

VI. A NAIVE ATTEMPT
FOR STEP-STEP INTERACTION

In this attempt, we try to include some aspect of the
step-step interaction. We consider that the step is sur-
rounded by steps of the same sign, as in a vicinal surface
topology. We consider, in a first level, that the steps are
moving altogether in the straight regime by a velocity Vo.
Our main assumption here is that we assume that the
steps surrounding the step reference are rigid, in that
during the motion of this step about its original position
in the steady growth, the surrounding steps remain in the
same state. We should mention that in the linear theory
of Bales and Zangwill, ' the steps are supposed to move
in a synchronized way. Of course, in reality there is al-
ways a certain incoherence between the step motion, and
there is no reason that all the steps move together as a
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whole. In this situation, each step will see permanently
its distance from the neighboring steps either increasing
or decreasing. As a consequence, the step reference will
be subject to a net repulsion (in one sense or another)
which tends to reduce its excursion. As an extreme limit
we assume that only the step reference is subject to Auc-
tuations about its mean position. This is not thought of
as being realistic, but simply as modelization to under-
stand the role of repulsion. The interactions can be ei-
ther mediated by diffusion of adatoms, or of other types
such as elastic interaction.

Assume that the step reference moves slightly towards
the (supposed rigid) step that is ahead of it. The elastic
repulsion, for example, will tend to act against such a ten-
dency. The same will happen if the step goes towards the
one which is behind it. The simple way to model this
repulsion consists in introducing a dampinglike term that
stabilizes all perturbations, and, in particular, a homo-
geneous perturbation. To do so we simply introduce a
linear stabilizing term in the original equation (53),

(60)

where a is a phenomenological positive (in order to be
stabilizing) parameter. Note that if we wish the repulsive
interaction to act also on a straight step, this repulsion
should necessarily give a linear contribution in the evolu-
tion equation. It can be easily checked that now there is
no scale transformation which allows us to scale the pa-
rameter a out of the equation.

The linear dispersion relation that follows from Eq.
(61) is given by

basic solution is unstable. The maximum of the curve is
nothing but the bifurcation point expressed by (62). The
situation now is very different from the one where e=O.
Indeed slightly above the instability threshold (a(a, ),
there is a small band, when compared to the bifurcation
wave number q„of active modes. We have seen that
when a=O, the bifurcation wave number is exactly zero.
This means that close above the threshold (say 10' or
20%%uo), if one takes a small enough wave number (in com-
parison to the cutoff wave number) inside the instability
band, then the higher harmonics (2q, 3q, ... ) will be ac-
tive also. This increases quickly the number of degrees of
freedom, thus easily driving the system towards complex
dynamics, which turns out to be chaotic. In the presence
of the a term the situation is quite different. Indeed
slightly above the threshold the only active mode is the
one with wave number q„while the other harmonics are
highly damped. The a term serves as a "Alter" for per-
turbations. We then expect the dynamics to be simple
close enough to the threshold and become more and more
complex as a is reduced. Finally in the limit of a vanish-

ing a, we should recover the spatially and temporally
chaotic solution.

We have made a long study of Eq. (60), both numeri-
cally and analytically. We intend to devote a separate
publication to this study. Here we will simply summarize
the results. This is done in Fig. 6. We observe there that

0.3,—

a) = —a+q' —q4 . (61)
0,25

The bifurcation is now characterized by [see Eq. (16) for
the definition of the bifurcation] 0.2

a=—a, =
—,', q =q, = I/&2, (62) 0. 15

n, is the critical value below which the h =0 solution be-
comes unstable. Shown in Fig. 5 is the neutral curve
(defined by co=0) in the (a, q) plane inside which the

0. 1

0.05

0.2 o.a 0.8

0.25-

0.2

0. I5

0. 1

0.05

0

0.2

FIG. 5. The neutral curve in the a —
q plane, inside which the

solution h =0 is unstable.

FIG. 6. An overall picture of the stability domains. Full line,
neutral curve; short-dashed line, Eckhaus boundaries, outside
which the cellular solution is unstable against long-wavelength
phase modulations. The long-dashed line delimits the domain
of stability of the cellular solution against oscillatory modes.
Close enough to the maximum of the curve which delimits the
oscillatory instability, the most dangerous fluctuations have a
periodicity which is double of the basic one. Far below from
the maximum, the periodicity of the perturbation is generically
"irrationally" related to the basic one (see the text}. The
squares represent the boundary below which the steady-cellular
solution with the basic wave number q ceases to exist and
merges with a solution having 2q as a basic wave number (tip-
splitting instability). Before this occurs, a branch of parity-
broken traveling solutions appears below the line represented by
the circles.
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characteristic amplitude dynamics. This calculation
should be crucial to settle the important question pertain-
ing to the role of the step-step interaction in the process
of pattern selection in a out-of-equilibrium situation. Fi-
nally it is noteworthy that our treatment can in principle
be extended to situations where kinetics, crystalline an-
isotropy, and full step-step interaction are included.
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APPENDIX; DERIVATION
OF THE SMOOTHNESS CONDITION

AT THE STEP

In this appendix, we give a simple derivation of the
boundary condition at the step [Eq. (25)]. In the solid
phase the chemical potential p, is approximately given by
the free energy per harmonic oscillator, and the p, U, term
(p, is the pressure and U, the atomic volume) does not
play a crucial role, since U, is small as compared to the
volume occupied by a gas atom. The solid chemical po-
tential is a function of p, and temperature T, and its pre-
cise form is in fact unimportant. Since the step is as-
sumed to evolve in an isothermal environment, we shall
omit the symbol T in the arguments. The gas atoms on
the terrace are well described by an ideal gas potential,
p(c,p ), where c is the superficial density and p the (sur-
face) gas pressure. Let the gas pressure be fixed by the
operator to a value p, and denote by c, the equilibrium
concentration for a straight step. The condition of ex-
tremely fast kinetics implies that the chemical potentials
in the gas and the solid on both sides of the step are (vir-
tually) equal,

p, (p, )=p(ps, c) . (A I)

For a small departure about the equilibrium reference
point (ps, c, ), Eq. (Al) provides to leading order

=(c —c,q )(r)ps /r)c )~ ~, , (A2)ppgcceq

The quantity (r)p, /Bp)=II (recall that 0 is the atomic

area of the solid), which is an exact thermodynamic
equality. Note that it is 0 and not U, which enters here,
since the pressure refers to the reversible adiabatic work
to change the area and not the volume. For the gas, we
take the ideal situation, so that (r)pg/r)c)=k~T/c, q.
Equation (A2) then becomes

c, 0
c —c, = (p, —p).

B
(A3)

For a curved step, mechanical equilibrium implies that
the pressure difference should counterbalance the line-
tension effect. ' This is the Laplace law which takes the
form (p, —

pg ) =yir, where a is the step curvature counted
positive for a convex profile. Indeed a convex profile
means that we have a forward bulge pointing in the Oz
direction. As a consequence the line tension will act on
the bulge by exerting a normal force pointing in the nega-
tive z direction. To preserve mechanical equilibrium the
solid pressure should be higher than the gas one, the
difference being the line-tension effect, y~. By inserting
the Laplace law into Eq. (A3), we obtain

c, 0,
eq

B
(A4)

which is exactly Eq. (5).
There is an enlightening way to understand the sign of

the curvature effect in Eq. (A4). Indeed assume that the
step is straight. Figure 8(a) shows the configuration of
the bonds in the solid phase. If the profile is convex [Fig.
8(b)], then atoms attached to the solid on the step will
have broken bonds that will call for more adatoms close
to the top of the bulge. As a consequence, the density of
atoms in the gas will increase there to reduce the bonds
deficit. This is exactly what Eq. (A4) expresses. Con-
versely, for a concave step IFig. 8(c)], the number of
neighboring atoms in the solid has increased, thus induc-
ing a reduction of the areal density near the minimum.
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