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We considered the coupled motion of an electron described by a one-dimensional (1D) tight-binding
Hamiltonian, whose diagonal matrix elements have a spatial variation incommensurate with the lattice,
and a harmonic 1D lattice. The coupling was taken to be of the deformation-potential type. We studied
numerically the time evolution of the coupled system starting with the lattice in its classical ground state
and the electron in various initial states. Depending on the initial energy of the electron, on how close to
the mobility edge it is and the strength of electron-lattice coupling, we found different types of localized
and apparently extended (large) polarons. Near the mobility edge even a very weak coupling suffices to
create a localized polaron even for high initial electronic energies. In many instances and even for very
long times the electron does not seem to transfer much of its energy to the lattice.

I. INTRODUCTION

The question of polaron formation has been studied ex-
tensively over the last decades (for a recent review of the
formal aspects of the problem, see Ref.-1). The emphasis
has been on three-dimensional (3D) ordered systems. For
these systems Emin and Holstein,?> by omitting the kinet-
ic energy of the lattice, have shown through a simple and
elegant argument that the ground state of the coupled
electron-lattice system is either an extended Bloch-type
function (when the coupling strength is below a critical
value) or (if the critical value of the coupling is exceeded)
a collapsed atomic size state where the electron has been
trapped permanently by a strong local lattice deforma-
tion. This basic result follows from the observation that
the kinetic energy of the electron is proportional to
1/R?, while its interaction energy with the lattice goes as
—1/R“ (assuming a short-range electron-lattice interac-
tion), where R = a characterizes the linear extent of the
electronic ground state, a is the lattice spacing, and d is
the dimensionality. Thus, for d =3, the minimum total
energy is obtained either for R = « or for R =a, depend-
ing on whether E (a)20, where E(R) is the total elec-
tronic energy. Hence, Emin and Holstein’s basic results
follow immediately. From the above argument, it follows
also that for d <2, there is always a finite value of R,
R =R, at which E(R,) has an absolute minimum. R,
varies continuously from infinity towards the atomic size
as the strength of the coupling increases from zero. It
must be noted also that the above simple arguments
break down if the interaction is long range as in polar
crystals. In such cases intermediate size polarons appear
for three dimensions as well.>»* If the lattice kinetic ener-
gy is turned on, one expects that the Ry= oo (or the very
large R,) electronic states would excite lattice vibrations
and as a result would surround themselves by a cloud of
phonons. The net result according to this picture would
be a lowering of electronic energy by afiw; (where a is a
measure of the electron-lattice coupling and #w; is the
characteristic energy of the longitudinal phonons sur-
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rounding the electron) and an increase of the electronic
effective mass by a factor of 1 +a /6.

This almost Bloch-type electronic state, together with
the associated cloud of phonons, is referred to as a large
polaron. The turning on of the lattice kinetic energy in a
perfect periodic system, allows in principle the small po-
laron to move from site to site and to form a very narrow
band. In practice, even a small amount of disorder is
sufficient to keep the small polaron immobile and only at
rather high temperatures thermally activated hopping al-
lows the small polaron to move. The polaron formation
picture outlined above, besides the various approxima-
tions involved in the relevant quantitative calculations,
leaves out some very important aspects of the problem, as
follows.

(i) The explicit role of the disorder: Of particular in-
terest is the behavior near the so-called mobility edge,
where the electronic states (in the absence of el-ph in-
teraction) change from extended to localized. This prob-
lem has been addressed by Cohen et al.,> they found, by
making use of the fractal character of the eigenfunctions
near a mobility edge and by following an approach simi-
lar to that of Emin and Holstein,? that intermediate size
localized polarons are formed in the vicinity of the mobil-
ity edge even for very weak short-range el-ph interaction.
This result, if it is proved correct, has significant conse-
quences because it effectively shifts the mobility edge into
the region of extended states and thus changes the char-
acter of the metal-insulator transition from a power law
to a discontinuity for the conductivity; the net result’® is
to restore the concept of a minimum metallic conductivi-
ty championed by Mott and Davis®’ and supported by
experimental evidence. It should be mentioned that
Phillpot et al.® have studied the effects of isolated impur-
ities in the framework of the Su-Schrieffer-Heeger (SSH)
Hamiltonian,’ Anderson!® also considered the case of
electron-intramolecular phonon coupling in the presence
of a site impurity.

(ii) The transient behavior: Of particular interest is the
time evolution of a single electron initially photoexcited
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or injected in an otherwise empty band as it interacts
with the lattice. The response of an already formed pola-
ron to the sudden or gradual application of an external
electric field is also of great interest. Even if the el-ph in-
teraction is so strong as to collapse a whole electronic
band into a very narrow small polaron band, the latter
obviously does not exhaust the Hilbert space available to
the combined electron-lattice system. The initial unper-
turbed band is an excited subspace of the system. One
main question is through what processes, if at all, initial
spaces belonging to this excited subspace end up in the
small polaron subspace. The possibility that the system
may reach, under certain conditions, novel long-lived
metastable states is an intriguing one, which may have re-
markable physical consequences.

In the present work, we attempt to give some answers
to these questions by examining a very simple system of
an electron moving in and interacting with a 1D harmon-
ic classical lattice. The 1D feature was chosen, in spite of
its obvious shortcomings, because it greatly simplifies the
numerical work. The electronic part of the Hamiltonian
is a tight-binding model with the diagonal matrix element
€, given by g, =eqcos(2mon), where o is an irrational
number. This choice of g, allows both extended and lo-
calized electronic eigenstates (depending on whether or
not g, is below a critical value). From this point of view
our 1D model mimics the behavior of electrons in 3D
disordered systems. The classical treatment of the lattice
is an approximation, the consequences of which on the
polaronic behavior are difficult to estimate. The coupling
is typical for nonpolar materials.

The time evolution of our coupled model is described
by a nonlinear system of differential (in time) —difference
(in space) equations. As the ionic mass tends to zero, or
for steady states, this system is reduced to the so-called
discrete nonlinear Schrodinger equation.!'!? The latter
is known to sustain soliton solutions that are the analogs
of intermediate or small polarons in our model. Given
the complex behavior of the discrete nonlinear
Schrodinger equation and the additional essential compli-
cation due the introduction of a new time scale character-
izing the ionic vibrations, one expects that our model
would exhibit a very rich behavior, which makes almost
mandatory the use of numerical solutions. In all of our
simulations we have taken the lattice as having initially
zero kinetic and potential energy consistent with our pic-
ture of the electron having been injected or photoexcited
in an otherwise empty and undisturbed band at very low
temperatures. By following the time evolution of such in-
itial states of the coupled system, we found, besides con-
ventional large and small polarons, other more compli-
cated steady states as well as situations where a steady
state has not been reached. This rich variety of behaviors
depends not only on the strength of the electron-phonon
coupling, but very strongly on the initial electronic ener-
gy and on how close to the mobility edge the system is.

It must be pointed out that our approach can easily be
extended to handle the problem of two electrons interact-
ing with each other and with the lattice. Thus it allows a
more accurate and detailed treatment of the question of
bipolaron formation, especially in the poorly understood

case where electron and ion masses are of similar magni-
tude or in the presence of anharmonic vibrations. This
case may be relevant to narrow-band high 7, super-
conductors (see, e.g., Micnas, Ranninger, and
Robaszkiewicz!?) or to the newly discovered fullerides. '

In Sec. II we present our model and comment on its
advantages and shortcomings. In the next section we in-
troduce and discuss several quantities that seem useful in
characterizing the morphology of the various types of po-
larons. We present also a brief outline of our method of
numerical calculations. In Sec. IV we present and discuss
our results and in the final Sec. V we summarize our main
conclusions.

II. MODEL
The Hamiltonian describing our model is

H=H,+H,+H

e—1 *

(2.1)

The electronic part H, is taken to be a tight-binding
model with diagonal matrix elements €, and nearest-
neighbor matrix elements — ¥V (V' >0), i.e.,

H,=3¢,In)Xn|=V3 |n)m]|, 2.2)
n nm

where the sites {n} (n =1, ..., N) form a 1D lattice with
lattice constant @ and periodic boundary conditions
IN+1)=[1); |n) is the local atomiclike orbital centered
at the site n (n =1, ..., N); the prime in the summation
in (2.2) indicates that #» and m are nearest neighbors. The
quantities €, are given by

€, =gqcos(2mon) , (2.3)

where o is an irrational number taken as the golden
mean: o =(V'5+1)/2. Since o is not a rational number,
the Hamiltonian H, is not periodic. This Hamiltonian,
defining what is usually called a quasiperiodic model, has
been studied extensively.!>”!® Its main characteristics
are: (i) The spectrum develops infinitely many gaps,
which become wider and wider as g, increases (see Fig. 1),
creating thus a pointlike structure; (ii) all the eigenfunc-
tions are extended (i.e., nondecaying) for €,/V <2 and lo-

calized for €,/V >2; (iii) as the critical point (the so-
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FIG. 1. Energy-level diagram for the quasiperiodic one-
dimensional Hamiltonian as a function of the strength of the in-
commensurate term. The number of sites N is taken as 377.
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called mobility edge) €,/V =2 is approached from below,
the eigenfunctions develop strong fluctuations character-
ized by a length &, beyond which the eigenfunctions look
uniform; (iv) in the localized regime (g, > 2¥), one defines
an average decay length /;; both £ and /; blow up at the
critical point as 1/[(gq/2V)—1|; (v) for length scales L,
such that a <<L <§,l; the eigenfunctions are fractal
(more correctly, multifractal) objects!®?® characterized
by at least one fractal dimension D. The existence of mo-
bility edges as well as the properties (iii)—(v) appear also
in three-dimensional disordered systems. From this point
of view our 1D quasiperiodic model simulates a real 3D
disordered model. However, one should keep in mind
that the “emptiness” in the spectrum of the present case
does not appear in 3D disordered systems.

The lattice part of the Hamiltonian H, is a simple clas-
sical harmonic one with acousticlike eigenvibrations

H=—= S p2 416 (uy 1 y—u,)? 2.4)
2m < »
where p, =mu, and u, are the momentum and the dis-
placement, respectively, of ion r, m is the ionic mass, and
K is the “spring” constant between nearest-neighbor ions.
The maximum eigenfrequency of this Hamiltonian is 2w,
and the sound velocity is ¢ =wqa, where wo=V'k/m.

The electron-lattice interaction H, _, is taken as a sym-
metrized deformation potential, i.e.,

He~1:X2|n><n|(un+1_“un_1). (2.5)

The quantity Y is the strength of the coupling (2a is the
so-called deformation potential). The Hamiltonian (2.5)
couples the diagonal part of H, with the lattice vibra-
tions, in contrast with the SSH Hamiltonian,® which cou-
ples the off-diagonal part of H,.

If the electronic wave function is written as

Y= c,()|n, (2.6)

with 3, 1c,,(t)2| =1, the equations of motion for the cou-
pled electronic-lattice system become

ihén Z[En +X(un+1—un——l)]cn - V(Cn +1+cn*1) 4 2.7
mijn :K(un+l+un—1_2un )+X( !cn +1|2_ |cn—1|2) ’
(2.8)

while the electronic energy E,(t)={v,H,|¢,) and the
interaction energy E, _,(t)={v,|H,_,|¢,) are given by

E,=3 cfc,e,— VY cic, 2.9
n hm

E,_;=x3cyc,lu,y—u,_1), (2.10)
n

the lattice energy E,; is simply the Hamiltonian H,.

The parameters of our problem are #, V, and g, for the
electronic part, m and « for the lattice part, and x for the
interaction part. If we choose V, m, and V'm /k as the
natural units of energy, mass, and time, respectively, then
we are left with the following three parameters: (i) #

(measured in units of ¥V'm /k, or equivalently the di-
mensionless quantity #/VV'm /k=(#/V)/V'm /k=t,/t,,
where t,=#/V and t; are the characteristic electronic
and lattice times, respectively); (i) ¥ (measured in units of
V'V, or equivalently the dimensionless quantity x /v Vk,
which is the square root of the quantity A=y2/kV, ap-
pearing in the theory of superconductivity); and (iii) g,
(measured in units of V, or equivalently, the dimension-
less quantity €5/%). In our natural system of units, the
unit of length is V'V /k. In the results reported here we
have kept ¢, /t; constant ~1/81.8 and we varied x/V Vk
over a range from about 0.2 to about 3. (Typical values
of ¥/V' Vk for metals vary from about 0.3 to about 1.3).
The third parameter g,/V was varied from zero up to its
critical value 2. (Typical values for our natural units are
V=1 eV, m=Am,, where A4 is the mass number and
m, the atomic mass unit, and k=50 N/m). The value of
t,/t; chosen here is typical for most metals; however, in
vary narrow-band materials, this ratio may approach or
even exceed unity. The behavior then could be consider-
ably different; we shall report on this case in a separate
publication.

In our studies we followed the time evolution of our
coupled system starting with an initial state, such that
the lattice is at rest and undeformed and the electron is in
one of the following states.

(i) Single site (ss) state: %,(0)=|ny), with n, close to
N /2 and such that E,(0)=0. _ _ _

(i) Five-site state: ¢,(0)=1/V'5, —1/V'5, 1/V5,
—1/V'5, 1/V'5 for five consecutive sites around the mid-
dle of the specimen and E,(0)=0.

(iii) Eigenstate of H, with E,(0)~=0. -

(iv) Gaussian wave packet: c,=(1/V27o )exp[ —(n
—no)?/20%], with 0 =3, ny=~N /2, and E,(0)=—1.949.

(v) Uniform state: ¢,=1/V'N for each n; the initial
energy is very close to —2.

(vi) Various eigenstates of H, with energy near the bot-
tom of the electronic band.

The above variety of initial electronic states allowed us to
examine the dependence of our results on the initial ener-
gy as well as on the shape of the initial electronic wave
function.

It is interesting to study the same problem when the
lattice is not initially at its ground state, but in internal
thermal equilibrium corresponding to a finite tempera-
ture T. In this case one can examine, through our model,
what is happening at elevated temperatures (TR Op,
where @, =2wfi/ky is the Debye temperature), at which
our classical approximations for the lattice vibrations are
fully justified. Furthermore, at low temperature
(T <<®p), one can mimic approximately the effects of
the lattice zero-point motion by taking T'=T,p where

NkgTzp =213 #w, ,
k

which gives

Tp=—0p . .11

1
T
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Results for a finite initial lattice temperature will be re-
ported elsewhere.

III. QUANTITIES OF INTEREST
AND METHODS OF CALCULATION

Our first interest is to find the morphology of the pola-
ron as a function of time. At each instant z, this mor-

phology is characterized by {lc,(¢)?}, n=1,...,N
(which gives the shape of the electronic wave function)
and by {d,(1)}, n=1,...,N, where d,=(u,,,

—u, _1)/2 (which gives the deformation of the lattice).
We would like to find out whether or not the polaron is
localized, i.., whether or not [c,_.(1)[*>0 as
|n —7|— oo sufficiently fast (e.g., exponentially) for all
values of ¢ larger than a certain number.

The quantity 7 =7 (t) is defined as

a)=3 lc,(t)]*n . (3.1)

We would like also to see how the polaron is spreading
out, if at all; for this purpose one may consider the quan-
tity

x2)=3 le,()|*n —7)? (3.2)

or the quantity
x3()=3 le, ()’ [n —7(0)] . (3.3)

However, if the transient phenomena last much longer
than ¢;, as it happens in many instances, to extract useful
information from x, or x about the steady state one must
consider extremely long specimens (very large N), which
makes the numerical procedures extremely laborious.
Furthermore, because of large fluctuations with » and ¢ in
Icn‘,_l(t)lz, very large N is required in order to find out
unambiguously whether or not the wave function decays.

A very convenient quantity to characterize the elec-
tronic wave function is the so-called participation num-
ber P, which is by definition

—1
P(t)= lz ic,,(t)l“} . (3.4)

Since the wave function is normalized, P =1 if the wave
function is completely confined at a single site and P =N
if the wave function is uniformly extended over the whole
length of the specimen. Thus P(¢) is a measure of how
many sites participate at a given instance in the wave
function. We found that when P <N /5 the state is quite
probably localized.

One may also define a lattice participation number P,
as follows:

P/(1)=

-1
1 2

—_— (1) , (3.5)

EX1) %8'" ]

where g,,(¢) is the symmetrized local lattice energy

en(O=1mul +tc[(u, o —u, P+ (u, _—u,)?]. (3.6

For t 2 ¢;, P/(t) is expected to follow P () very closely.

The various energies E,(t), E;(t)=E; (t)+E;(t), and
E,(t) are also very important in their own right as well
as very useful in providing indirect information about the
nature of the polaronic states. If the concept of the pola-
ron as a well-defined quasiparticle is valid, one would be
able to separate the total energy E(t)=E,(t)+E,(t)
+E, _,(2) into a polaronic part, which would include E,,
E, ,;, and part of E;, and the rest of E;, E;, which
represents the energy transferred to the lattice in the pro-
cess toward total thermodynamic equilibrium. E; is the
energy that would remain in the specimen if the polaron
(i.e., the electron together with the associated lattice vi-
brations) is driven out of the specimen by, e.g., an exter-
nal electric field. When the initial electronic state is a
ground state, E; is obviously equal to zero. But for
higher initial electronics it is not clear how to isolate E;
out of E;.

In our numerical simulations N was chosen as a Fi-
bonacci number (N =377 or N =610) in order to satisfy
the boundary condition €, _y=¢, — 5 as accurately as pos-
sible. The time integration is based on the fourth-order
Runge-Kutta method with a step equal to 2X 107 %,
where to=t,(t,/t,). The size of the step was such that
during the numerical simulation, energy is conserved to
an accuracy of 1077 or better. The lattice subsystem
satisfies periodic boundary conditions (uy,,=u;). The
time ¢, was introduced, because it turned out that many
interesting phenomena occur for ¢ of the order of ¢, or
larger.

IV. RESULTS AND DISCUSSION

Our numerical results suggest that polarons can be
classified in three broad categories:

(1) Apparently extended or large polarons character-
ized by (i) an electronic wave function that extends over
all sites of the specimen without a pronounced peak, (i) a
large participation number ( * N /3), and (iii) a very small
value of |E,_,| in comparison with E; (this implies that
—8E,=E,, where 8E, is the change in the electronic en-
ergy). (2) Localized or self-trapped polarons character-
ized by (i) an electronic wave function that has one or
more pronounced peaks and seems to decay away from
them, (ii) a participation number that decreases with time
(apart from short-time fluctuations) and reaches, at
steady state, a small value ( SN /5), and (iii) a relatively
small or ever positive value of 8E,. (3) Intermediate reso-
nancelike polarons: This third category is intermediate
between extended and localized polarons and may disap-
pear altogether in an infinite system and for an infinite
time lapse. The main characteristics of the intermediate
resonancelike polarons as they appear in our finite sys-
tems are (i) the electronic wave function has one or more
peaks but it does not seem to decay as one moves away
from the peak(s), (ii) the participation number, besides its
short-term fluctuations, exhibits long scale oscillations
and consequently it does not seem to reach a steady state;
and (iii) the values of —8E,, E, _;, E; are all of the same
order of magnitude. For a finite system and for finite in-
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tervals of observation the boundaries between intermedi-
ate resonancelike and localized polarons or between reso-
nancelike and extended polarons are not well defined.

The time evolution of our coupled system exhibits very
interesting features. (1) In most cases, strong short term
fluctuations appear (at a scale comparable to ¢;), which
seem to be chaotic. There are also longer time variations
(of the order of to=t?/t,=81.8¢, up to 10t, or even
longer). Thus, although our system in most cases seems
to be at a chaotic regime, some long term regularities in
most cases seems to be at a chaotic regime, some long
term regularities may also appear. (2) The process of
equalizing the electronic temperature to that of the lat-
tice appears to be either nonoperational or very slow and
dependent on the initial electronic wave function.

Our results are strongly dependent on g (i.e., on how
close to a mobility edge we are) and on the initial elec-
tronic energy. Below we describe specific cases starting
with those where the initial electronic energy is near the
center of the band.

In Fig. 2 we show results for ¢,=1, A=0.86, N =3.77,
and a single site initial state with E (0)~=~0.015. For an
initial period (¢ <5¢;) the lattice cannot respond to the
electron and the latter propagates ballistically with
x2~1? [Fig. 2(a)]. During this period the participation
number grows roughly linearly (with some fluctuations)
until it reaches a rather large value of about 190, indica-
tive of an electronic state extended over the whole length
of the specimen. After this initial period the electron-
lattice interaction becomes operative but it is unable in
the present case to self-trap the electron, which remains
clearly extended, as can be seen in Figs. 2(b) and 2(c),
where the unit of time ¢, is taken as t?/t, ~81.8t,. It is
interesting to notice the seemingly chaotic fluctuations of
P(t) around its average value of P=~180. These fluctua-
tions do not decay with time. On the contrary, some
larger and larger short term excursions towards smaller
values of P appear as we follow the evolution of the sys-
tem over long times. In Fig. 2(d) we show the E, versus t.
The first thing to notice is that only a small fraction of
the available electronic energy (about 5%) has been
transferred to the lattice in spite of the rather strong cou-
pling (A=0.86) and the extremely long running time
(350t,~ 3% 10%,;). One can use Fermi’s golden rule to
obtain the electronic collision time due to its interaction
with the lattice (assuming that the electron and the lattice
vibrations are quasiindependent degrees of freedom)

1_2r

—===AU, , 4.1
T 'ﬁ L ( )

where U, is the time-average lattice energy per site

7 — 1 LY ’
UL——N—tfodt E/(t") . 4.2)

For t=2380t,=3.1X10%,, our results show that
U,~1.86X107% 7=12.2t,, and t /7~2550. In spite of
this very large ratio of /7, the quantity
A(t)=[E,(t)—Eg]/[E,(0)—E], where Ejy is the lower
band edge (Ez = —2.18 for ¢,=1), is only 0.845. Assum-
ing that A4 (¢)=exp(—t/7;,), where 7, (¢) is the inelastic

electronic relaxation time, we find that ¢ /7;,=0.055 or
Tin/T=~4.6X10* This extremely long effective inelastic
relaxation time (which seems also to increase with time)
is a very surprising result, since one would expect 7, /7 to
be at most of the order to ¢, /t,=81.8. One possible ex-
planation for this result is that part of the lattice energy
is associated with the lattice vibrations dressing the bare
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FIG. 2. Extended (large) polaron formation for a system with
go=1, A=0.86, N =377. The initial electronic state is a single-
site one with E,(0)=0.015. The unit of time is
to=t}/t,=81.8t,, length is the lattice spacing, and energy is V.
Panel (a) shows Inx? vs Int (the saturation at V' x?=~ 128 is due to
the finite size of the system). The time evolution of the electron-
ic wave function is also shown (b), as well as the participation
number (c), and the lattice energy (d). P,(t)=/|c,(2)]|%
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electron to form the polaron. Once the polaron is formed
it may interact perhaps very weakly with the lattice
through a renormalized coupling Ay <<A. This assumed
weak coupling, together with a reduction of the effective
U, (due to the fact that the polaron is not scattered by its
own cloud of lattice vibrations) may possibly account for
the surprising result of very slow and very weak transfer
of energy from the electron to the lattice. Another mech-
anism for this slowdown of the relaxation of the electron-
ic energy may be associated with the breakdown of the
spectrum in subbands separated by rather large gaps (see
Fig. 1). The electron, according to this explanation, re-
laxes until it reaches the bottom of the subband(s). Fur-
ther relaxation would require nth order processes, where
n is a large number of the order of E, /2%w, and E, is the
relevant gap. These higher-order processes are extremely
slow if AE;(#)/E, is much smaller than unity. This ex-
planation may account for the fact that ss initial electron-
ic wave function transfer energy to the lattice at a much
slower rate than the eigenstates of the same energy (mid-
dle of the band). Indeed, the ss state is a linear combina-
tion of all eigenstates of the system and consequently the
slowdown must start when the bottom of the narrowest
band is reached and proceed in a hierarchy of slower and
slower relaxation times as the bottoms of wider bands are
reached; on the contrary, the eigenstate with E, =0 is as-
sociated with the central band, which is the widest, and
consequently, the slowdown there will be delayed. How-
ever, detailed examination shows that the time depen-
dence of E,(t) and E,(¢) does not quite fit the above ex-
pectations (e.g., a case of e,=1, A=9,6) and the ss initial
state seems to saturate at E;~=0.4, for which
AE;/E; nax=~4.3, and as a result one expects that the
fragmentation of the spectrum does not really matter
since higher-order processes would proceed as fast as the
first-order ones. Furthermore, for the same values of g,
and A but for an initial eigenstate with E;~0, E, equals
0,8 already at ¢t =10t and continues to increase, while
the half bandwidth of the central band is only 0.35. Pos-
sibly a combination of the dressing mechanism (men-
tioned before) and the fragmentation of the spectrum is at
work in the present model to prevent the expected relaxa-
tion of the system.

In any case, our results suggest that even for relatively
long times [of the order of (10°~10%)¢,] an electron excit-
ed near the center of the band would transfer very little
of its energy to the lattice at very low temperatures (a few
degrees K), assuming, of course, that the quantization of
the lattice vibrations would not change this conclusion
qualitatively. Although equipartition of energy between
the electronic and the lattice degrees of freedom did not
occur in the present case, the lattice itself seems to be in
internal thermodynamic equilibrium because the lattice
kinetic and potential energies are equal (apart from short
term chaotic fluctuations, which are quite appreciable of
the order of 20%). Very strong and growing with time
chaotic fluctuations appear also in E, _;(¢), which on the
average remains very small [E, _;(#)= —0.002, i.e., about
2% of E;, while |8E,_,|/E,_;~1]. Thus the case of
Fig. 2 presented above has all the characteristics of an ex-

tended or large polaron. It is worthwhile to note that the
E, versus t exhibits several characteristic times
(t,=2t,=160¢t;,, t,~45t,~3680¢;, and possibly ¢,
=~250t,=~20000¢,), at which the slope of curve changes
to lower values. A possible interpretation of this result is
that the dressing of the bare electron occurs at discrete
steps and that the interaction of a partially dressed elec-
tron (i.e., a partially formed polaron) with the lattice is
only partially reduced. An alternative interpretation of
this hierarchy of relaxation times may be relaxed with the
fragmentation of the unperturbed spectrum as mentioned
before. Note, however, that this steplike polaron forma-
tion becomes quite obvious in cases of localized polarons,
where the electronic energy E, remains almost constant
and consequently, does not reach a band edge.

In Fig. 3 we show a weak interaction resonancelike
case near the boundary with the extended regime. The
electronic wave function exhibits occasional pronounced
peaks, which are mobile and not permanent. The partici-
pation number after its initial fast growth to a value of
about 190 remains constant on the average, up to
t =t,=~20t,~1600¢; a behavior typical of extended pola-
ron. However, for ¢ > ¢, a reduction in P appears accom-
panied by an increase of |E, _,(¢)|, and a change in the
average slope of E;(t). This behavior is due to the forma-
tion of a pronounced (mobile) peak in the wave function.
The gradual dissolution of this peak for
t>1t,~40t,=3300¢;, brings the values of P and E,_,
back to 180 and —0.015, respectively. However, both E|
and E, appear to have reached saturation for
t 230t,=2500t; (E;~0.235 and 8E,=—0.22, while
E,_,~=—0.015). This apparently complete termination
of energy transfer from the highly excited electron
(effective temperature of the order of 20000 K) to the
low-temperature lattice degrees of freedom (effective tem-
perature 7 K) is totally unexpected; one may be tempted
to attribute this surprising result to a reverse flow of ener-
gy from the lattice to the electron during the dissolution
of the pronounced peak. This reverse flow may tem-
porarily compensate the natural flow of energy from the
electron to the lattice. However, this possible explana-
tion cannot be of general validity because we have stud-
ied another case [g,=1.5, A=0.38, N =377, ss initial
wave function with E,(0)=0.0245] exhibiting all the typ-
ical characteristics of an extended polaron [P (¢)~=170 for
all t>10¢,, E;~—8E,, |8E,_,|/E,~1%)] without any
pronounced peak(s), which nevertheless shows saturation
of E; and 8E, at 0.032 and —0.032, respectively, for
t>1t,~32t,=~2600t;. Notice also that the short term
fluctuations are much more pronounced and chaotic for
the electronic quantities (P,E,,E, ;) than for the total
lattice energy (although the lattice kinetic and potential
energy exhibit also strong chaotic fluctuations). We point
out that the saturation value of E;, and E, of the case
shown in Fig. 3 are comparable to the half bandwidth of
the spectrum, supporting thus the idea that transitions
between subbands are practically forbidden.

In Fig. 4 we show a case that can be characterized as
borderline between resonancelike and localized [g4=1,
A=9.5 (extremely large), N =377, ss initial state with
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E,(0)=0.015]. The time evolution of the wave function
is shown in Fig. 4(a); the two characteristic pronounced
peaks, in spite of their changes in intensity, seem to be a
permanent feature of the wave function. For middle of
the band polarons, as opposed to band-edge polarons, the
appearance of more than one peak in the wave function is
a rather common feature. Figure 4(b) shows that the lo-
calized or resonancelike polaron is formed in steps (in the

Participation number

50

030y T T

©

o o © 9
— — N I\
o %)) (o] [$)]
T T T T
1

=3

(Lattice energy)/V
¢ o
g 88 &

(Coupling energy)/V
=
8 —

—04F
—.%,
—-.08! ] I
0 10 20 30 40 50
Time

FIG. 3. Intermediate resonancelike polaron formation for a
system with €,=0.5, A= 6 (very strong coupling), N =377, and
ss initial electronic state with E,(0)=0.008. The unit of time is
to=t7/t,~81.8t, and energy is V. The time evolution of the
electronic wave function is shown (a), together with the partici-
pation number P (¢) (b), the lattice energy E,(t) (c), and the in-
teraction energy E, _,(¢) (d). P,(t)=]c,(2)|.

present case the steps occur at t;~10t;~=~800¢, and
t, ~18t3=1500¢,); these steps show more clearly in the
E, _, versus t plot [Fig. 4(c)]. The rise in P and E, _,; for
t >25¢ty is due to the reduction of the strength of the
peaks in the wave function. In the present case the lat-
tice energy seems to saturate to a value of 0.4%0.02,
while 8E,~ —0.21+0.04. We have also checked the
dependence of the various features on the length of the
specimen by repeating the calculation for N =610. We
found that P /N is roughly independent of N as expected
for an extended or resonancelike state. It takes a longer
time for a steady state to be reached for N =610 (about
three times longer) as compared with the N =377 case.
At the steady state E,;, 8E,, and E, _; seem to be indepen-
dent of N. The time delay for the larger N case may be
attributed to the ballistic (x2~¢?) spread of the initial
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FIG. 4. Strong resonancelike polaron for a system with
go=1, A=9.5 (extremely strong coupling), N =377, and ss ini-
tial electronic state with E,(0)=0.015. The unit of time is
to=t}/t,~81.8t,. The time evolution of the electronic wave
function (a), P(¢t) vs t (b), and E,_,(t) (c), are shown.
P, (1)=|c, ()]
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electronic wave function over the entire length of the
specimen before the electron-lattice interaction has the
time to respond. Thus effectively when the interaction
becomes operational the initial conditions are different
for different N’s, the quantity x(|c, 4+ ,|*—lc, —|?) (which
acts as an external force on the lattice) is smaller for the
longer system and consequently the longer system will re-
quire more time to reach a steady state. According to
this argument, one expects that the N dependence may
disappear or become much weaker if N >>10¢,; /¢, = 1000,
because in this case the electron-lattice interaction will
become fully operational before the electron has a chance
to reach the edges of the specimen.

A very interesting strong resonancelike or possibly lo-
calized state is shown in Fig. 5, where a clearly localized
(P =30) polaron is formed at ¢, =0. 8¢, = 65¢,, which sub-
sequently is dissolved with P jumping back to values
around 140. Later on (¢,=5.5¢t,=450¢t;), a less pro-
nounced peak is formed, causing P to drop below 100 and
finally at #; = 12.5¢,~=~1000¢,; the peak becomes more pro-
nounced with P saturating at 50+15. This apparently lo-
calized polaron is not so robust as indicated by the rather
strong fluctuations in P. It is worthwhile to note
that in the present case the lattice energy initially
(5¢; <t <130¢,;) increases linearly with ¢ with an effective
Tin = 30t,~2500¢;, while in this period the average 7 [cal-
culated according to Eq. (4.1)] is about 30¢;, the ratio
T, /7T being about 83, i.e., quite close to the ratio ¢, /¢,, as
expected. At the end of the period (¢ =1.6¢,=130¢;) the
lattice energy is 0.11. However, for 2t,=~150t, <t
< 1500¢t, =20¢t, the transfer of energy to the lattice slows
down considerably (the effective 7, is now 15 times larger
than before), while at the same time 7 decreased by a fac-
tor of 2. If the initial electronic state, instead of being an
eigenstate with E,(0)=O0, is a ss state [again with
E,(0)=0], the transfer of energy to the lattice is much
slower, e.g., for 5¢; <t <250¢t, =4t the increase in E,(?) is
almost linear with a 7;, =~300¢,~24 000¢,, i.e., an order of
magnitude slower rate of transfer of energy. This strong
dependence on the shape of the initial electronic state is
surprising because in the ss case the electron very quickly
spreads over the whole system (already at ¢t =4¢,, P~170,
i.e., about the same as the participation number of the
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FIG. 5. P(t) vs ¢t for an intermediate resonancelike polaron
with g,=1.5, A=0.86, N =377, and initial electronic state, an
eigenstate of H, with E,(0)=0. The unit of time is
to=t?/t,~81.8t,.

eigenstate) and hence one would expect naively that from
this point on both states would behave similarly. Anoth-
er surprising feature worth mentioning is that at the ini-
tial period, t <4¢;,, where the lattice hardly affects the
motion of the electron, the transfer of energy to the lat-
tice takes place at the fastest rate (7;,~ 17¢,~= 1400¢, for
the ss case). All these results indicate that the motion of
the electron is highly correlated with that of the lattice
and that memory of the initial conditions is retained in
spite of the apparently chaotic fluctuations.

A clearly localized polaron [g;=1.5, A=2.4, N =377,
eigenstate with E,(0)=0] is shown in Fig. 6 exhibiting a
multiple peak structure [Fig. 6(a)] common in highly ex-
cited localized (or resonancelike) polarons. Figure 6(b)
shows that the localized polaron is formed in two clearly
defined steps at t; =2t,~165¢; and ¢, =6¢,=500¢t;. For
t>t, a steady state is reached with P=30%5,
E,=0.374+0.03, 8E,=—0.121+0.02, and E, _;=—0.24
+0.04. The second step at ¢, is associated with a rise in
the electronic energy (which continues up to 1.5¢,) due to
a strong increase in the electronic kinetic energy as a re-
sult of the localization.

In Fig. 7 we show results for the critical point g,=2
[and A=0.095, N =377, ss initial wave function with
E,(0)=0.034]. In Fig. 7(a) the x2 versus ¢ is plotted; for
short times (¢ <4¢,), the behavior is diffusive (x2~1), as
expected®!"?? for the critical point without electron-lattice
coupling. For t>4t;,, when the interaction becomes
operative, the motion is subdiffusive (x2~¢# with
=~0.6) up to t =1.2¢,~100¢;, beyond which the curve
bends over and finally saturates. The saturation value of

Participation number

Time

FIG. 6. Time evolution of the electronic wave function (a)

and P vs t (b) for a localized polaron with g,=1.5, A=2.4,

N =377, and initial state, an eigenstate of H, with E,(0)=0.

The unit of time is 1, =17 /t, ~81.8t,. P,(t)=|c,(t)|%.
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In t

FIG. 7. x? vs t and time evolution of the electronic wave
function for a localized polaron at the critical point g,=2
[A=0.095, N =377 and ss initial state with E,(0)=0.034]. The
unit of time is t,=1?/t,~81.8¢t,. P,(t)=|c, ()|

V'x? is about 75 comparable to the saturation value (80)
obtained for A=0. Thus we cannot say in the present
case whether or not the saturation is due to the finite
length of the specimen or the localization of the polaron.
However, when we increased A to 0.38 the saturation is
due to the lattice-induced localization. In this last case

) 01 02 03 04 A

FIG. 8. Saturation value of the participation number P, vs A
for a critical point (gy=2) polaron with N =377 and ss initial
wave function with E,(0)=0.034. The solid line is a guide to
the eye.

there is also a subdiffusive regime with 8~=~0.65 between
t,=4t, and t,~2t,~150t;; beyond ¢, saturation sets in
rather abruptly. In Fig. 7(b) we show the time evolution
of the electronic wave function. An approximate steady
state sets in after roughly ¢t =2¢,~165¢; with P =42%10,
E;=~0.013+0.002, 8E,~ —0.007+0.0005, and E,_,
~ —0.005+0.0015.

In Fig. 8 we plot the saturation value of P versus A for
the critical value of €;, e,=2, N =377, and ss initial wave
function with E,(0)=0.034. P initially increases with in-
creasing A and then for A >0.05 decreases monotonically
with A. We attribute this initial increase of P to a
“phonon-assisted”” smoothening of the very fragmented
critical-point eigenfunctions. For larger A the lattice-
induced localization becomes stronger and squeezes the
electronic wave function, thus giving rise to a smaller P.

In Fig. 9 we show a more conventional case of local-
ized polaron in a periodic system (g,=0) starting from a
lower band-edge eigenstate, namely, the uniform one with
¢,=1/V'N (a very small departure from uniformity is
necessary in order to drive the system out of the metasta-
ble state, c,=1/V'N, u, =0 for all n and ¢). The elec-
tronic wave function has a smooth single peak with a half
width that oscillates between about 20 and 30. The parti-
cipation number oscillates between 30 and 43. The local-
ized polaron formation is accompanied by an increase in
the electronic energy (which being purely kinetic in-
creases as a result of the confinement). This increase
(which at maximum is 8E,=0.004) and the increase in
the lattice energy (E;=0.011) are compensated by the
electron-lattice energy, which reaches —0.015 at its
minimum.

In Fig. 10 we show another case of weak-coupling lo-
calized polaron near the bottom of the band but for
€9=0.5 (weak departure from periodicity). The wave
function is not smooth anymore [Fig. 10(a)]. The P
versus ¢ plot [Fig. 10(b)] shows that the polaron is formed
in a nonmonotonic way through the characteristic steps.
A decaying oscillatory behavior, due to a breathing char-
acter of the localized polaron, is shown in Fig. 10(b) and
more clearly in Fig. 10(c), where the sharp peak at 2.6,
7.5ty, 12t,, 16.6t, (with a period of approximately 4.7)
are associated with the maximum contractions of the po-
larons. These contractions appear as sharp dips in Fig.

FIG. 9. Time evolution of the electronic wave function for a
localized polaron in a periodic system (g,=0) with A=0.095,
N =300, and a uniform initial state with energy E,(0)=—2
(i.e., at the bottom of the band). P,(t)=|c,(t)|.



47 POLARONS IN A ONE-DIMENSIONAL QUASIPERIODIC MODEL 749

10(d). It is clear from Figs. 10(c) and 10(d) that other
shorter periods are also present. Furthermore, the cou-
pling energy E, _,(¢) is considerably more noisy than the
total lattice energy. It is worthwhile to mention that the
electronic energy increases (8E, reaches 0.004 at the
maximum contraction and saturates at a value of
0.0018+0.0008) again as a result of the increase of the ki-
netic energy due to the uncertainty principle.

In Fig. 11 we show the transition from a resonancelike
polaron to a localized one as we increase the coupling
constant A. In panel (a) we show a typical case of a rath-

(Lattice energy)/V
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(Coupling energy)/V
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FIG. 10. Localized polaron formation near the lower band
edge [g,=0.5, A=0.095 (very weak coupling) N =377, uniform
initial state with E,(0)=—2.001]: (a) time evolution of the
electronic wave function; (b) participation number; (c) lattice
energy; and (d) interaction energy. The unit of time is
to=t}/t,~81.8t;. P,(t)=|c,(t)]%

er strong intermediate resonancelike polaron with the
characteristic peaks that sometimes become very pro-
nounced, then broaden and tend to disappear and reap-
pear again at different positions. Associated with this er-
ratic long term time evolution is the behavior of the par-
ticipation number, which shows strong short and long
term fluctuations: e.g., for ¢, <t <20t,, P~200%30; for
21ty <t <35t,, P=100150; for 37ty <t <50t,, P~=130
+50, etc. On the other hand, E;, E,, and to lesser
degree E,_;, seem to have saturated (apart from short
term fluctuations) for ¢>21z,: E;~0.0431+0.003,
8E,~ —0.038+0.002, E,_;=~ —0.004+0.003. In Fig.
11(b) we show a case of a marginally localized polaron. It
takes a long time (¢ = 15¢,) for the characteristic peak to
reappear; during this long period P is initially almost con-
stant (for 2,5t, <t <9t,, P~190+40) then drops linearly
with time. This linear reduction continues even after the
formation of the peak up to t=t;~19t,~1500¢.

FIG. 11. Time evolution of the electronic wave function for
£0=0.5, N =377, and (a) A=0.16; (b) A=0.21; and (c) A=1.52.
For cases (a) and (b) the initial wave function is the 27th eigen-
function of H, (counting from the ground state up), while for
case (c) the initial wave function is the 37th eigenfunction of H,.
The unit of time is t,=17/t, ~81.8t,. P,(t)=|c,(¢)|>.
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FIG. 12. Time evolution of the electronic wave function for
go=1.5, A=0.21, N =377, and the initial wave function being
the 95th eigenstate of H, (from the ground state up) with
E,(0)=—1.777. The unit of time is t,=1t//t, ~81.8¢,.

Beyond this point, the peak is sharp and robust and the
participation number seems to saturate (P =~80120).
The lattice and electronic energies saturate at values
comparable with the previous case [Fig. 11(a)], while
|E, _,| is considerably larger (E,_;~—0.01). Finally, in
Fig. 11(c) we show a case of strongly localized polaron.
A clear peak appears first for t =¢, =2¢,~160¢; but it be-
comes extremely sharp at the second step, at
t =t,~10.5t,~850¢,. Beyond this point the participa-
tion number and the various energies clearly saturate:
P=22+2, E;=~0.23%0.02, 8E,~—0.01%+0.01, E,_,
~—0.22+0.03. It is worthwhile to point out that the
electronic energy initially (¢ <t,) drops by about 0.06,
slightly increases in the interval t, <t <t,, and then
jumps back up by about 0.04 at the second step as a result
of the strong localization. Note also that although P and
the various energies have saturated for ¢ >t,, the wave
function still changes with time: The satellite peak moves
towards the main peak and stays at its vicinity for an ex-
tended time interval (30¢y <t <52t,); however, later on
(for ¢>53t,) it moves again, this time away from the
main peak toward its previous position.

Another interesting case of strongly localized polaron
is shown in Fig. 12. In this case the localized polaron is
formed in a single step at t =¢, =31, ~250¢;. Beyond this
point P =22+5.

FIG. 13. Time evolution of the electronic wave function for
go=1.5, A=~0.024, N =377, and the initial state being a Gauss-
ian with 0=3 and E,(0)=-—1.949. The unit of time is
to=t%/t,~81.8t;. P,(t)=|c,(t)|%

In Fig. 13 we show a case of large (extended) polaron
with initial energy near the lower band edge and very
weak coupling. The participation number shows strong
fluctuations: P ~120%50. The various energies E;, 6E,,
E,_, after a long time (f~=t¢,;~120t,~9800¢;) seem to
saturate: E;~0.01151+0.0005, 8E,~ —0.0115+0.0005,
E, ;= —0.0003+0.0002. Again the transfer of energy
from the electron to the lattice seems to have stopped for
t >t,, in spite of the large difference in the effective tem-
peratures between the electronic and the lattice degrees
of freedom.

V. CONCLUDING REMARKS

The main conclusions of the present work, which may
or may not be applicable to 3D random systems, are as
follows.

1. As we approach the mobility edge, a smaller and
smaller coupling strength is required in order to create a
localized polaron. At the mobility edge an extremely
weak (or even vanishingly small) coupling is sufficient to
localize the electron in a lattice deformation. This behav-
ior is summarized in Fig. 14, where the V'A versus €0
plane is separated into regions of large or extendedlike
and localized polarons by a gray area where the inter-
mediate (I) resonancelike polarons appear. The boun-
daries between large and I as well as between I and local-

3.0 (a)

1.0  LARGE

0.0 0.5 1.0 1.5

FIG. 14. Separation of the V'A vs g, plane into regions where
large or extended intermediate resonancelike (I), and localized
(Loc) polarons are expected to appear. The lower panel (b) is
for initial electronic energy near the bottom of the band, while
the upper one (a) for the middle of the band. The boundaries
between I and Large and I and Loc regions are not sharply
defined and they depend also on the shape of the initial electron-
ic function.
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ized are not well defined. Even the very existence of the I
regime is questionable for an infinite system allowed to
run for an infinitely long time.

If this result is of general validity, one would expect
that the immediate vicinity of a mobility edge would con-
sist of localized polaronic states. The net result would be
to push the new renormalized mobility edge toward the
extended region and to change the critical exponent from
its unperturbed value to a much smaller one or even to
make it zero (i.e., discontinuity) restoring thus the con-
cept of a minimum metallic conductivity.®’ Further-
more, the localized polaronic states near the mobility
edge are expected to be smoother than the unperturbed
ones, possibly with higher fractal exponents.

2. Increasing the initial electronic energy from the
ground state up makes the creation of a localized polaron
more difficult until one reaches the center of the band,
where the ability of an electron to resist trapping by lat-
tice deformation is maximum. This is shown in Fig. 14,
where the center of the band case requires much higher A
for localized polarons than the bottom of the band. This
difference is more pronounced for small g, (i.e., small
departures for periodicity); in this case the center of the
band electrons remains extended for all practical values
of A.

The formation or nonformation of localized polarons
besides A, €;, and the initial electronic energy, depends
also—but to a lesser degree—on the shape of the initial
electronic state. E.g., ss states are more difficult to local-
ize than eigenstates of the same energy; also, uniform
states or eigenstates are easier to localize than Gaussians
of the same energy.

3. In the presence of strong departure from periodicity
and rather strong electron-lattice interaction, and for
very low initial lattice temperature, an initially highly ex-
cited electron (even one with an average energy near the
center of the band) does not remain in ordinary extended
band states while transferring its energy to the lattice un-
til it reaches the bottom of the band. On the contrary, it
may create novel, high-energy, long-lived localized pola-
rons (or metastable resonancelike polarons), which in-
teract very weakly (if at all) with the lattice. This is the
regime denoted by Loc (or I) in Fig. 14(a).

4. The rate of transfer of energy from an initially high-
ly excited electron to the ionic degrees of freedom is slow-
ing down with increasing ¢ and in many cases it seems
that it comes eventually to a complete stop. This prema-
ture termination of relaxation does not occur only in the
localized regime, where it is expected, but also in cases of
extended polarons. A possible explanation for this
surprising behavior is that the electron creates the pola-
ron gradually in successive phases even in the case of
large (extended) polarons. This ““dressing” process leads

to partial renormalization of the coupling constant be-
tween the partially formed polaron and the lattice vibra-
tion. Thus the renormalized A is a decreasing function of
time and it may even become practically zero when the
polaron is fully formed, leading thus to the absence of
further energy relaxation. An alternative explanation,
which may be the dominant one for small A, is that the
relaxation stops as soon as the electron reaches a gap that
cannot be crossed with the available phonon energies in
low order of perturbation theory. Given the fragmenta-
tion of the spectrum (see Fig. 1), this explanation implies
a hierarchy of relaxation times. It is worthwhile to point
out also that in spite of the apparently chaotic fluctua-
tions, memory of the initial state is retained since eigen-
states are transferring energy more efficiently to the lat-
tice than other states of the same average initial energy.

5. The time dependence of the various physical quanti-
ties exhibits an unexpected variety and richness. Many
time scales appear, some of them much longer than the
natural time scales of the problem (7, t;,, Nt,, Nt;). In
addition the behavior of most quantities (with the excep-
tion of the total lattice energy) is very noisy.

6. The length dependence of the characteristic long-
time scales and the time evolution in general of the vari-
ous quantities cannot be easily classified. Some charac-
teristic times are clearly N independent, e.g., the deeps
appearing at t =2.5¢,, 7.5¢, in Fig. 10(d) for N =377
remain at the same instances for N =610. In other cases
increasing the length from N =377 to N =160 smoothens
out the very pronounced features, e.g., the steps at ¢t =2¢,
and t=6¢; in Fig. 6(b), to the extent that they become
unrecognizable. Finally there are cases where there is an
increase of some characteristic times as we change from
N =377 to N =610, e.g., the characteristic deep appear-
ing at t=0.8¢, in Fig. 5 appears (less pronounced) at
t=1.6t, for N =610. However, in general, if a steady
state appears, it takes longer (very roughly by a factor of
2 or even more) to be reached for N =610 rather than for
N =377.

7. The calculation of properly defined correlation
functions as well as the analysis of the noise spectrum of
various physical quantities may reveal some of the impor-
tant hidden correlations that govern the behavior of the
system. This study is currently under way.
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