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Effective interface Hamiltonians for short-range critical wetting
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The derivation of effective interface Hamiltonians on the basis of an underlying noncritical bulk
order-parameter theory is critically examined for use in studying critical wetting transitions in (d =3)-
dimensional systems with short-range forces. A crossing constraint on the interfacial profile is used to
define the fluctuating interface location l (y) and exact general expressions are obtained for the effective
wall-interface potential W[l(yi] and for the wall-modified interfacial stifFness X[1(y)] in terms of a con-
strained planar order-parameter profile. Previous discussions in the literature are shown to be inade-
quate. Explicit formulas for W and X are obtained when the bulk thermodynamic potential for the
wetting-layer phase is purely parabolic. Novel terms varying as le ' ' (j =2, 3, . . . ) appear in the decay
of X(l ) to the free-interface limit X„;here, 1/a. —:g& is the true correlation length of the bulk wetting-
layer phase. General nonparabolic bulk potentials are analyzed perturbatively, leading to terms in W(l)
decaying as tu l e ' ' for 0 ~ k ~j= 1,2, . . .. An alternative, generalized adsorption definition for l(y)
can be solved exactly for a y bulk potential and yields closely similar results for W(l). On approach to
critical wetting at T= T,a the important coeKcients to, q for k ~ 1 vanish rapidly with

~
T T,~~; henc—e

previous renormalization-group (RG) treatments of critical wetting remain essentially unchanged. How-
ever, these treatments neglect the variation of X(l) with l which, under RG flow, is seen here to destabi-
lize wetting criticality; further analyses reported elsewhere, show that first-order transitions then arise in

many cases.

I. INTRODUCTION AND SUMMARY

In the theory of wetting transitions an extensively stud-
ied but still quite controversial topic is the nature of the
critical wetting transition' in a (d =3)-dimensional sys-
tem with short-range interactions in the bulk system and
between the wall and the bulk. Renormalization-group
(RG) theory predicts striking nonuniuersality for
d =3, which is the marginal dimensionality' for this
transition. Specifically, all the critical properties should
depend strongly on the dimensionless parameter'

~ =km T,w/4~X(T. w )gp'( T,w )

where X(T) is the sti+ness of the free p~a interface be-
tween the bulk wetting phase p and the bulk phase a. At
bulk a —p coexistence the p~a interface delocalizes from
the rigid wall when T~T,~—,for T & T,~ the interface
is free at a macroscopic distance from the wall. The
(finite) bulk correlation length of the wetting phase p is
denoted g& and enters the theory' as the basic length
scale. It will follow from our analysis and the RG
theory that

hatt
is to be taken as the true correlation

length which determines the exponential decay of correla-
tions and, hence, of the tail of the interfacial profile in the
direction normal to the wall and interface.

When co is negligibly small, local mean-field or classical
square-gradient theory' should apply. When cu increases
from 0 the exponents gain nonclassical values. For in-
stance, the exponent v~~ of the diverging interfacial corre-
lation length

g~~
(parallel to the interface) increases first as

1/(1 —co) for co& —,
' (regime I), then as 1/(V2 —v'co)2,

which diverges when co~2 —,for —,
' &co &2 (regime II).

Finally, vl= Oo for all co) 2 (regime III).' ' '

Experimental tests of this theory are not yet available
for Auids, where it should most directly apply, because of
the ubiquitous inhuence of long-range van der Waals or
dispersion forces. ' (For that case see Dietrich and
Napiorkowski. ") However, extensive Monte Carlo simu-
lations of critical wetting have been performed' ' for a
semi-infinite, (d = 3 )-dimensional simple cubic Ising
model above its roughening temperature Tz. Initial esti-
mates of co(T) for the observed critical wetting tempera-
tures (which depend on the surface field h „etc.) indicat-
ed m+1.0. ' Thus regime II behavior was expected.
More recent estimates' ' (using numerical data for the
true bulk correlation length in place of the second-
moment correlation length g, ) indicate co(T) ~0.60 for
T) Tz, again pointing to regime II and hence v~~) 2.
Surprisingly, however, the Monte Carlo data were found
to be consistent merely with classical mean-field theory'
which predicts vl = 1 (as for co =0)!

This discrepancy has, of course, attracted further atten-
tion. ' ' In particular, a new Monte Carlo simulation'
of the solid-on-solid limit of the simple cubic Ising model
and a reanalysis' of the original data of Refs. 12(a)—12(c)
have been interpreted as indicating nonclassical critical
wetting behavior corresponding to co=0.25 in the simu-
lated Ising model. Evidently the discrepancy between the
RG predictions and the simulations remains significant
and disturbing. Various explanations have been ad-
vanced ' ' however, few seem to be viable and the
issue remains unsettled.

Accordingly, it is appropriate to undertake a careful
examination of the foundations of the RG theory, '

which is based on an effective interfacial Hamiltonian,
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where m = Vm (r) while 4[m (r)] is the noncritical bulk
free-energy density. The effect of the wall with short-
range, wall-bulk interactions is accounted for by 4&,(m, ),
where m, (y) =m(y, z =0) is the surface order parameter.
For a bulk system near a-I3 coexistence, one may normal-

ly take

4(m; T, h) =4&o(m; T) —hm, (1.3)

where No(m) has the standard double-well functional
shape with two equal minima at rn =m 0 (0 and

m &0, while the bulk thermodynamic field h measures
the deviation of the chemical potential from precise coex-
istence (or, equivalently, represents the external ordering
field). ~e adopt a sign convention such that h (0—sta-
bilizes the a phase at z =+ ~. For the effective surface
potential it is adequate to take the truncated expan-

n1, 2, 9, 20, 21

4, (m, ) = —h, m, —
—,'gm, , (1.4)

&I [i(y)], where l(y) is the ffuctuating, normal distance
of the P~a interface from the point y on the d'=(d —1)-
dimensional planar wall which we suppose is located at
z =0. A crucial ingredient of this theory is an effective,
wall-interface potential W(l; T, . . . ), which depends not
only on the interface location I, but also in a vital way on
the temperature T and other bulk and surface thermo-
dynamic fields. In a typical critical situation treated by
RG theory, most details of the underlying microscopic
interaction potentials feature only as irrelevant parame-
ters and thus do not affect the critical exponents, critical
amplitude ratios, etc. However, as mentioned, d =3 is
the marginal dimensionality for short-range critical wet-
ting and it thence transpires' that the detailed forms of
decay of the effective potential W(l), in terms of the bulk
correlation-decay factor exp( I/g&)—, play a determining
role in the values and variation of the critical exponents,
etc. For this reason it is important to ascertain the ap-
propriate behavior of W(l;T, . . . ) and of any other
significant ingredients of the fundamental interface Ham-
iltonian &1[l(y)]. That is the issue we address in this ar-
ticle. '

Now in real systems undergoing wetting transitions
(which may be reasonably mimicked by a semi-infinite
lattice system above the interface roughening tempera-
ture, such as the Ising models simulated' '

) the P~a in-
terface appears only as a result of the interplay of local
density variables, say s(r), distributed throughout the
bulk d-dimensional space. The fluctuations of these vari-
ables are clearly described by some more fundamental mi-
croscopic Hamiltonian, say &;,[s (r)], where, in an
Ising-like system, s (r) may be regarded simply as the spin
at position r=(y, z)0). Since wetting transitions arise
(by definition) only in systems that are not at bulk criti-
cality, one may with fairly good justification' hope to
describe the bulk phases satisfactorily at an intermediate,
order-parameter level with s(r)=.m (r) and &;,[s(r)]
replaced by a Landau-Ginzburg-Wilson effective Hamil-
tonian of the form' '
&[m (r ) ]=I I [ —,

' Km + 4&( m ) ]dz +@i( m i ) ]d "y, (1.2)

where h i is the surface field, with b i )0 favoring the P
phase, while g is the surface enhancement parameter.
For the sake of the current discussion we may assume
that g is negative, which corresponds to the typical situa-
tion.

Evidently, the appropriate interfacial Hamiltonian
&1[i] is not obvious a priori but, rather, must be de-
rived' by consideration of the bulk description embo-
died in (1.2) —(1.4) with the given form of 40(m; T) and of
@i(m&). Now the widely accepted conclusion3 6''s of
such an analysis is

~1[i(y)]=f dyI —,'X[Vl(y)] + W[l(y)]], (1.5)

where ~1 represents the incremental free energy over a
fiat, isolated ( l ~ ~ ) interface. As before, X is the
stiffness of an isolated, free interface at T=T,~, while
the bare ejfectiue wall interfa-ce interaction is expected to
assume the form

W(l; T, h)=hl+wie ' +w2e '+ (1.6)

in which the reduced ordering field is h ——h(~0+ );
the exponential decrements are given by

~„=nv:—n/g&, n =1, 2, 3, . . . , (1.7)

that is, they are integral multiples of i~= 1/g&, the inverse
correlation length of the wetting layer which,
as mentioned, also controls the exponential decay of the
interfacial profile and of the correlations into the
bulk P phase. The I-independent coefficients
w, (T, . . . ), w2(T, . . . ), . . . are smooth functions of the
controlling thermodynamic fields T, h, h1, and g. In par-
ticular, for h =0 and h 1 and g fixed one has
wi —(T —T,~) where T, ii is the mean-field critical wet-
ting temperature and we may assume that ~2, . . . &0
near the transition.

Nevertheless, as reported previously, ' it appears that
the conclusions embodied in (1.5)—(1.7) are rather poorly
founded. Indeed, we find, as explained below, ' that they
are not, in general, accurate. Rather we show that (1.6)
should be replaced by

W(/; T h, h „g)=hl+(w, 0+w„1~i )e

+ [wzo+ w2iirl+ w22(ill ) ]e

+ 0 ~ ~ (1.8)

with, however, rather special dependences of the polyno-
mial coefficients w, o(T, . . . ), . . . , w22(T, . . . ), . . . on
the thermodynamic parameters near the mean-field criti-
cal wetting transition.

We also show explicitly, as is natural to anticipate, ' '

that for l ( ~ the coefficient of (Vl) in (1.5) picks up
terms depending, albeit relatively weakly, on I, h, h „and
g. In other words, the interfacial stiffness becomes the
function X(l;T,h, h„g) which approaches the stiff'ness

X=2 „(T) of an isolated, free interface only when l ~ ~.
An explicit expansion of X(l; T, . . . ) for large l parallels
(1.8).' ' ' The consequences of these modifications to the
form of W(l; T, . . . ) and of X(l; T, . . . ) for critical wet-
ting and other wetting transitions are discussed in the
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body of this article; the effects of the l dependence of X
can be dramatic. ' ' '

Our derivation of the effective interfacial Hamiltonian
&t[l(y)] is based on the introduction of the "collective
coordinate" 1(y) via a suitable constraint on the micro-
states accessible to the full bulk system. Such a pro-
cedure is, of course, not at all new in condensed matter
physics. Nevertheless the literature ' is fairly sparse as
regards explicit and precise calculations of the sort that
are needed here. In particular, the significance of X(l)
and its analogs seems mostly unappreciated. '"' The dis-
cussion and concrete analysis we present should, there-
fore, have value beyond the particular topic of critical
wetting theory.

In outline the paper is set out as follows: In Sec. II the
precise definition of the effective potential is developed in
terms of an explicit level crossing criterion for specifying
the interface conformation l(y). For fixed l(y), this may
be embodied in a constraint on the interfacial profile
m(r). Explicit expressions are thence obtained for the
potential JY(l) and for the effective interfacial stiffness
X(l) in terms of the profile m„(z;l) of a planar interface
constrained to lie at l(y)=l„ fixed: see Eqs. (2.13) and
(2.26). A critique of previous derivations ' ' of the
effective potential, all leading to the simple exponential
form (1.6), is presented in Sec. III and various inadequa-
cies are noted. However, the computation of m„(z;i) to
sufficient precision proves to be difficult in general. Ac-
cordingly, in Sec. IV, a particular, somewhat artificial ex-
pression for the underlying potential C&0(m, T) [in (1.3}]is
adopted, namely an asymmetric double-parabolic form.
The problem then becomes tractable and can be analyzed
completely. At this level, indeed, the purely exponential
form (1.6) is captured with explicit general expressions
for the coefficients h, w„w2, . . . . see (4.20)—(4.22); but
for X(l) the sequence of new terms varying as lej ' for
j=2, 3, . . . already appears: see (4.29) —(4.33).

To proceed further a perturbative approach' "is in-
troduced in Sec. V: the potential well describing the P
phase (which wets the wall) is, in zeroth approximation,
represented by a truncated parabola in m; the neglected
cubic, quartic, etc. terms can then be handled systemati-
cally to yield the asymptotic behavior of W(l) and X(l).
This yields the modified form (1.8), with wz, &0 and
w» =wz2= . =0 (for h =0) and a related form for
X(l ) with corresponding coefficients s,k for all
k~j=0, 1, . . . . '

An alternative integral criterion' " for defining gen-
eralized "adsorption thicknesses" l(y), parametrized by a
power p ) 1, is discussed in Sec. VI: see also Eq. (2.11).
The corresponding constraint equations for the profile
can be solved in closed form for p =2, 3, and 4 with the
aid of a Lagrange multiplier; the case p =2 is studied in
detail via an exact expression for the profile for general T,
h, h „g, and I. The resulting wall potential has, when ex-
pressed in terms of l, a pure exponential form like (1.6).
However, if the thickness is reexpressed in terms of the
corresponding crossing positions l, all terms in the
modified form (1.8) are generated, thus confirming the
conclusions of Sec. V. [The stiffness X(l) can also be ana-
lyzed within the formulation. '

]

Finally, in Sec. VII, the effects of the new form of the
interfacial Hamiltonian on the nature of the critical wet-
ting transition are analyzed using (for d =3) the linear-
ized functional renormalization-group method. If the
stiffness variation is neglected one finds that the terms in
8'(1) of the form w~kl e ~' with k + 1 can in general
lead to significant effects in the critical behavior, at least
in regimes I and II where co &2. ' " However, the new
coefficients wjk( T, h) for k ~ 1 turn out, as a result of the
calculations in Secs. IV —VI, to vanish sufficiently rapidly
as T~T,~ that, except for small terms in the correction
factors to the leading critical behavior, no changes to the
original RG predictions"' resultt' " This situation is
dramatically changed, however, when the leading varia-
tion of X(l) is allowed for. As explained briefiy in Sec.
VII C, the wetting transition in zero field may then be-
come erst order Ho.wever, the somewhat involved
analysis needed to elucidate this is postponed for subse-
quent presentation.

II. DEFINITION OF THE EFFECTIVE
HAMILTONIAN

As indicated in the Introduction, we define the inter-
face Hamiltonian &t[l(y)] via the introduction of a con-
straint which specifies restrictions on the accessible mi-
crostates of the underlying bulk Hamiltonian &[m (y, z)]
that are compatible with the given interfacial
configuration z =l(y). If TrP~„'~' denotes the appropriate
trace (or functional integral) over the bulk variables m(r)
as constrained by the conformation of l(y), then &t is
naturally defined via

exp( —P&t [i(y)])=TrP~„'~'[exp( P&[m (r—)]}], (2.1)

A. Constrained profile

Unfortunately, a direct implementation of (2.1)
represents an intractable problem, typically as difficult as
computing Z directly. In the spirit of previous workers,
we therefore argue that the only dangerous, divergent
fiuctuations at a wetting transition (critical or complete)
arise from the capillary waves on the delocalizing inter-
face. If the interfacial configuration is frozen one has
only the fluctuations associated with the bulk phases a
and P in the presence of a wall. These phases are both
noncritical, their fluctuations being controlled by finite
correlation lengths g and g&', in terms of these, the
effects of any local perturbations must decay at least as—r /g —r /gpfast as e or e ~, respectively; furthermore, in gen-
eral, the effects cannot decay any more rapidly (except for
power-law factors, 1/r'" ",etc.). We thus postulate
that a saddle-point or mean-field treatment of the con-
strained trace in (2.1) will be adequate to describe the
asymptotics of a wetting transition in which l ~~. It is
clear from this discussion that g and g& refer to the true

with P= 1 /k ri.iTaking the complementary trace Tr""'
over the interface configurations then reproduces the ex-
act partition function Z(T, h, h i, g ) =Z[&[m(r)]]. This
step, once At[i] is obtained, is to be the subject of
renormalization-group analysis, etc. '
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correlation lengths as against, say, the second-moment
correlation lengths g, and g».

Consequently, if the interfacia! pro/le which minimizes
&[m (r)] subject to the constraint represented by the in-
terface configuration 1(y) is

Then, without loss of generality [since a uniform shift in
m (r) is always allowed], one may take m =0: see Fig.
1.

With this crossing criterion and the explicit form (1.2)
for &[m], minimization yields the bulk equation

m(r)=m-[r;l( )],
we accept the approximation

(2.2) m

Bz2 Bm
(2.8)

&1[1( )]=&[m (r;I-( ~ ))]=min "&[m(r)] .
m(r)

(2.3)

Relaxation of the constraint or, equivalently, minimizing
&1[1(y)], yields the overall optimal (incan-field) pro@le
m(z; T, h, h „g) which, by translational symmetry parallel
to the wall, will describe a planar interface, with no y
dependence, at the optimal location 1=1(T,h, hi, g ). One
must thus have

in which V'~ denotes the d'-dimensional Laplacian opera-
tor in y. This equation must be satisfied by the con-
strained profile m-[r;1( ~ )] both in the wetting-layer or P
region IO~z (1(y)] and in the bulk or a region
tz ~1(y)] . In the wetting layer the wall condition

OmK (z =0)= =4', (m, )
9z Bm

with m, —=m (z =0) (2.9)
m(z) =m-(O, z;1=1),

with

(2.4) must be imposed. Finally, the constrained profile must
obey the asymptotic bulk condition

&I [1=1 ]=&[m (z) ]=&;„. (2.5) m(z~ ac )~m „(T,h), (2.10)

Various possibilities arise in choosing a constraint to
represent the interface. ' We focus initially on the nat-
ural crossing criterion' ' ' specified by

m [y, z =1(y)]=m for all y, (2.6)

m „(T,h)(0(mp„(T, h) . (2.7)

in which m is a fixed reference level lying between the
values m and m&„ that characterize the bulk a and 13

phases: see Fig. 1. For convenience we will suppose

as well, of course, as the constraint (2.6) on the boundary
separating the a and P regions. The optimal profile m(z)
satisfies just (2.8)—(2.10) for all z.

It follows from (2.8) that when the potential &b(m) is
continuous, as is physically desirable, the optimal profile
m(z) is everywhere smooth [even if @'(m) has discon-
tinuities]. On the other hand, the constrained profile
m -[r;1( )] will in general have a kink, i.e. , a discontinui-
ty in gradient, whenever r crosses the interface location
z =1(y): see Fig. 1. (It may be remarked that Fig. 5 in
Ref. 22 is misleading in this respect since no kinks are

wetting layer ~I bulk phase

integral- constrained
profiles

wall region constrained
profile

profile m(z; T, h)

FIG. 1. Schematic order-parameter profiles near a critical wetting transition derived via mean-field theory. Solid curves: (a)
denotes the optimal or equilibrium profile m(z; T, . . . ), which is everywhere smooth and crosses the reference level m =0 at the
equilibrium interface position z =l(T, h, h &,g); (b) —(d) represent constrained profiles m=(z; T, . . . ) with crossings at lb, l„l&@l. All
the constrained profiles satisfy the wall boundary condition at z =0 and approach the bulk phase limit m =m „(T,h) as z~ ~.
More specifically, (b) is constrained by the crossing criterion and has a kink (slope discontinuity) at z =lb. Two profiles derived under
the integral criterion are represented by (c) and (d); they are everywhere smooth (with no kinks). Dashed curves represent the analytic
extensions of (a) —(d) from z ~0 to z ~0. Profiles with l —I small or positive typically diverge to + 00 at z =z*=—l; profiles with
1 —1)&/& have a symmetry about a maximum at z . The wall value m, increases monotonically with 1, but the slope m~ changes
sign.
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shown in the constrained profiles although they must be
present. ) A sharp kink could be avoided by utilizing
some smooth but strongly localized constraint potential,
say 4[m, r; I(. ) ]=%05(m —m ")5[z —I (y) ], to specify
the interface. Clearly, however, the subsequent analysis
would be more complicated. Furthermore, if, as would
be reasonable, %(r) were localized about z =l(y) to
within distances of g, g&, or smaller, the behavior for
I ))g, g&, which is of principal interest, should be negli-
gibly disturbed.

On the other hand, in Sec. VI below we will explore an
integral criterion in which the interface location, which
we now denote by z = l(y), is specified by

T(y)= f ™d[zm(y, )z—m ]~/(m~ —m )", (2.11)
0

with p )0. In the case p =1, the interface thickness I
corresponds to the adsorption (of phase 13 on the wall).
The corresponding constraint can be imposed (for p ) 1)
with the aid of a Lagrange multiplier and leads to a
smooth constrained profile m —[r;I( ~ )]: see Fig. l. (The
difficulties associated with the choice p = 1 are explained
in Sec. VI.)

B. Wall-interface potential and stift'ness

On the basis of the crossing criterion it is natural to
consider, first, planar interfaces for which l(y)=/„ is
constant; as remarked, the optimal interface is planar.
Let us denote the corresponding constrained profile by

l(y)=1 +51(y),
so that Vl(y) =V'51(y), and write

m=(r;I( ~ ))=m„(z;I )+5m(r;I( ~ )) .

(2.15)

(2.16)

Then by (2.8)—(2.10) the correction 5m(r) satisfies the
bulk equation

K V' 5m =N" ( m „(z))5m +0(5m ), (2.17)

with wall and asymptotic conditions

K(85m /Bz), 0=@",(m&&(0))5m &(y)+0(5m
& ), (2.18)

5m (y, z; I( ) )~0 as z ~ ca, (2.19)

for all y, where 4"=(d N/dm ), N", =(d N, /dm&),
and 5m, =—5m(y, z =0). The interfacial constraint (2.6)
now becomes

mii[l +5/(y);I ]+5m [y,z =I +51(y);I( )]=m

(2.20)
(for all y), which may be expanded in powers of 51 to
yield

8m&
5m(y, l;I( ))= — (I;I )5/(y)[1+0(51)], (2.21)

BZ

where we have supposed that (8/Bz)5m (r) is of order 5m
near I =t..

To solve (2.17) subject to (2.18), (2.19), and (2.21) to
leading (linear) order consider the function

m„(z;I ):—m-(r;I( )=I ) . (2.12) n (z; I)=—m „(z;I) . (2.22)

It satisfies (2.6), (2.8) with vanishing Vim term, and (2.9),
and (2.10). The corresponding value of &t follows from
(2.3) and, by comparison with the presumed form (1.5),
we thence obtain the effective mall potential explicitly as

'2
c)m pW(/;T, h, h„g)= f IC +6@—(m„(z;I)) dz

0 2 BZ

By differentiating (2.8)—(2.10) with m =mii(z;I), with
respect to I we see that n (z) satisfies the full linear homo-
geneous partial differential equation (2.17) [neglecting the
0 (5m ) terms] and the homogeneous boundary condi-
tions (2.18) [again neglecting 0(5m )] and (2.19). Final-
ly (2.6) implies

+@,(m„(0;/)) —W„(T,h, h „g),
m „(I;I) =0, (2.23)

(2.13)
which on differentiation yields the inhomogeneous
boundary condition

where

A@(m; T, h) =N(m; T, h) —@;„(T,h), (2.14)

Bm
n ( I; I) = — (z = /, I)

BZ
(2.24)

in which N;„(T,h) for h (0 denotes the free-energy den-
sity of the bulk a phase. The last term on the right-hand
side of (2.13) represents the I-independent terms; for
h =0 it may be determined simply from the requirement
8'(I;h =0)~0 as I~~. However, one must more gen-
erally have W„=X~~&(T)+X ~&(T, h, h„g) where X~~& is
the tension of an isolated a ~13 interface while X„ti
represents the wall free energy against the P phase. Of
course, both X

i&
and X

I&
will be represented only at the

mean-field level corresponding to &[m]. '

To check the form (1.5) for &t as regards the (V'/)
dependence, and to evaluate the coefficient X clearly re-
quire interface configurations 1(y) that vary with y. We
adopt a perturbative approach and set

5m(r;I(. ))=n(z;I )5/(y)[1+0(51)] . (2.25)

Now we can restrict attention to variations 6l satisfy-
ing J 5/(y)dy=0, substitute again in (2.3), and compare
with (1.5) to obtain

2

X(l;T,h, h, ,g)=K f (z;I) dz .
0 al

(2.26)

at z = I. But, except for a supplementary factor
5/(y)[1+0(51)] on the right-hand side of (2.24) in com-
parison with (2.21), these equations and boundary condi-
tions are identical to those specifying 5m (r; I( )) in lead-
ing order. We thus conclude that the perturbed con-
strained profile is given by
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1@ (m)= —'rm +—um0 2 4)
(2.27)

leads to implicit expressions involving elliptic integrals;
however, these prove difficult to analyze asymptotically.
Furthermore, as we explain brieAy in Sec. III, previous
treatments in the literature prove, on examination, to be
rather unsatisfactory. In particular, the crucial profile
m„(z;1) has not been evaluated adequately. Readers
uninterested in our critique may proceed directly to Sec.
IV. There we approach the problem by choice of a spe-
cial, simplified form of @0(m) for which a fully explicit
solution can be developed. Subsequently, we treat the
general situation as a perturbation around the special
case finding, in fact, new features not present in the fami-
ly of simplified models.

It is to be anticipated that the right-hand side has a
definite, positive limit X„(T), independent of h, and g,
when l ~ Oo with h =0. This limit represents the interfa-
cial stiffness of a free a ~P interface which, since the Ham-
iltonian &[m(r)] describes a system with no spatial an-
isotropy, will satisfy X„=X

~&
(where, as before, the ten-

sion is expressed only at the mean-field level). Note that
higher-order terms in &t[/] proportional to (V'/), (V /),
etc. , also arise and can be computed.

The expressions (2.13) for W(/) and (2.26) for X(/) are
the principal results of this section; the latter is exact for
all square gradient theories and seems to be quite new.
The results rest on the solution m &(z;/), of the variation-
al equation (2.8) for a planar, y-independent profile
l(y)=const, subject to the boundary conditions (2.9),
(2.10), and (2.6) which may be embodied in (2.23).

Although our approach is fairly straightforward, and
seems to have been adopted more or less implicitly or ex-
plicitly by previous workers, it turns out to be tricky to
implement precisely for a general form of potential
4o(m) [in (1.3)], even if one seeks, as we do, only the be-
havior of W(/) and X(/) for large 1. Restricting the cal-
culations to the standard phenornenological form

tential, say,

W(/)=h/+(wio+ w&&v/)e +(w2o+wz&v/)e

(3.2)

which on minimization generates the exact expression for
/, it does not follow that the result found for W(/), as em-
bodied in w, o( T, h, h &,g), etc. , is correct. Indeed, the fact
that quite disparate potentials can have identical minima
is clear on general grounds; but, to be more specific, one
may check directly that the family of potentials given by

w, o =A(1+0)w„w „=AOw, , w2o =X(1+—,
' 8)w2,

(3.3)

m (z; T, . . . ) = —m otanh j —,
' ~[z —/( T, . . . ) ]j, (3.4)

with mo(T)= mtt„(T, h =—0))0 while /(T, . . . ) may, in
fact, be determined from the wall boundary condition
(2.9). Of course, this identification of the interface loca-
tion amounts to a zero-crossing criterion (although this is
not explicitly enunciated). In effect, the next step is to as-
sert that the constrained profile m- is approximated to
sufficient accuracy by the ansatz

w~, =AOw2, A,:—I /[ I +O~l 0( T, . . . )],
with 0 sufficiently small, have the same minima at
/ = /0( T, . . . ) as the pure exponential form given by
0=0. Other more explicit examples, which do not entail
an implicitly defined function like 10(T, . . . ), are also not
hard to find.

Now both Refs. 3 (hereafter referred to as BHL) and 5
(hereafter referred to as LKZ) consider the standard m
form (2.28) for the bulk potential 4o(m) and use a surface
potential &b&(m

&
) as given by (1.4) although expressed in

different notations). Beyond that, BHL restrict attention
to the case h =0 and it is not clear how to extend their
approach to h&0. Indeed, in none of the works cited is
the method to be used set out in an unambiguous
manner. BHL notes that the optimal equilibrium profile
has the form

III. CRITIQUE OF PREVIOUS DERIVATIONS m-[r;/( )]=m[z b/(y)], — (3.5)

As mentioned above, this section is not needed for the
technical development of our analysis. However, insofar
as there are essentially three distinct previous discussions
in the literature which treat the derivation of W(/)
from %[m (r)] and obtain the simple exponential form
(1.6), it seems appropriate to review the methods used
brieAy and to explain why they are not satisfactory. This
will also bring out some of the physical subtleties in-
volved.

An elementary observation is worth making. If one
has correctly derived the effective potential W(/), then
solving the equation

(3.1)

must yield the exact optimal location /(T, h, h „g) of the
equilibrium planar interface that follows from the origi-
nal bulk Hamiltonian &[m(r)]: see (1.5) and (2.3)—(2.5).
This, in turn, yields the full wetting phase diagram.

'

Conversely, if some calculation yields a form for the po-

where b/=/(y) —/(T, . . . ). This ansatz certainly looks
plausible. In the BHL analysis it leads to the pure ex-
ponential form (1.6) for W(/) which arises, essentially,
solely from the mismatch of m(z —b./) at the wall via
C&, (m, ).

However, this ansatz basically disregards the breaking
of translational invariance by the wall when the interface
is located away from l = l. By relaxing the wall boundary
condition, it ignores the distortion of the constrained
profile induced by the wall-bulk interactions. Thus the
true constrained profile must deviate from the simple
tanh profile whenever /&/. Indeed, as mentioned, the
constrained profile m-(z) must have a break in its gra-
dient at z =1(y) that is obviously not represented by the
ansatz (3.5). The distortion from the translated optimal
profile induces a contribution to W(/) which comes from
the whole region of the wetting layer of "bulk" P phase in
addition to changing the value of the wall contribution
from that computed by BHL. In light of these considera-
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tions there are no good grounds for believing that (3.5) is
adequate; in fact, our calculations reveal that, in general,
it is not.

The defects of the ansatz (3.5) become further apparent
when nonzero h is examined. In this case' the optimal
profile m(z;T, h&0, h„g) which can also be calculated
exactly (see Sec. VI} actually diverges to oo when extend-
ed analytically to negative values of z (see Fig. 1). The
ansatz method then generates unphysical terms in W(l)
varying like he+ '. Indeed, one is led to conclude that
W(l)~+ oo when /~lo, -—2l(T, h, . . . ). In light of this
behavior the ansatz must be considered generally unac-
ceptable in the presence of a wall at a finite distance from
the interface.

The arguments of LKZ are not as transparent or expli-
cit. Following Ref. 23(c), a "collective coordinate" g(y)
is introduced, essentially as g(y) =b, l(y) in (3.4), and an
expression for the potential W(l) is stated. [See LKZ,
Eq. (12b), where V corresponds to W.] Near the wetting
transitions @&(mi)—@i(m& ) is small and an expansion
is made. In addition, an expression [LKZ, Eq. (2)] is em-
ployed which asymptotically relates exp[ —al(T, h, . . . )]
to the surface order parameter value mi =m(z =0). [Al-
though valid to leading order in e ', it is not evident
why this relation should suffice to yield W(l) to order
e .] This procedure leads LKZ to the form (1.6) for
W(l), including an e term [see LKZ, Eq. (13)], al-
though the various coefficients m&, m2, . . . seem not to
have been completely evaluated. Notwithstanding the
differences in the details, we believe that the LKZ
analysis is open to the same basic criticisms made of the
BHL calculation: specifically, the ansatz (3.5) is inade-
quate.

Another somewhat more explicit treatment is present-
ed in Ref. 20(a) (hereafter referred to as L) for the simpler
case in which C&0(m) is represented by a symmetric pair
of parabolas with minima at I =0 and mo. Again a
crossing criterion is implicitly adopted. Because the
profile is just a sum of exponentials in the two regions
defined by m mo and I ~mo, the calculations can be
performed in detail. (See also Sec. IV below. ) However,
the constrained profile m-[r, l( )] is, unfortunately, nev-
er explicitly stated. At one point, L appears to set
l(T, . . . ), as specified by the boundary conditions, equal
to I, which should be free: see L, Eqs. (15) and (16). This
again amounts to improper neglect of the wall boundary
condition: see L, Eq. (18). In fact, the procedure followed
seems to imply that the constrained profile m-, rather
than being always continuous [with a break in slope at
z = l(y)], exhibits a discontinuity of magnitude

(3.6)

when l is close to but no equal to l. This is, of course,
quite unacceptable physically.

The conclusion of L is that W(l} again has the simple
exponential form (1.6). For the special case of the
double-parabolic form for C&o(m), this is also our finding
in Sec. IV, below. However, the detailed form of the
coefficients m &, w2, . . . given by L appears to deviate
somewhat from those we find; the differences imply that

some mean-field critical amplitudes and Auctuation
strengths will differ in magnitude (although qualitative
features will agree).

In summary, previous treatments leading to expres-
sions for W(i) have not been clearly formulated and, in-
sofar as they seem to correspond to the systematic pro-
cedure outlined in Sec. II above, they have used inade-
quate approximations or inadmissable substitutions. By
way of explanation, it should be noted that the main
thrusts of BHL, LKZ, and L were not the derivation of
W(l) but, rather, other features of the critical wetting
transitions. The delicate nature of the analysis needed to
derive W(l), which, after all, is required to the rather
high order e oi.e, was not well appreciated.

IV. CROSSING CRITERION WITH PARABOLIC BULK
FREE-ENERGY DENSITIES

In this section we implement explicitly the program set
out in Sec. II to calculate the effective wall-interface po-
tential W( I; T, h, . . . ), as given in (2.13), and the
perturbed interfacial stiffness X(I; T, h, . . . ), as given
in (2.26). Accordingly, we aim to calculate
m ii(z; l; T, h, . . . ) the constrained interfacial profile for a
planar interface with l (y) =l fixed independent of y.

A. Model bulk free energy

y /yp=m o/rn~ (4.2)

Note, furthermore, that No depends on T via the temper-
ature dependences of the susceptibilities y (T) and y&( T)
of the two bulk phases, and via the coexistence values
m o(T) and miio(T).

Although this model for No has a break in slope, i.e., a
kink, at m =0, it is somewhat more realistic than previ-
ously discussed double-parabolic forms in three ways: (i)
There is no restriction to situations in which the bulk a
and P phases are symmetrically related as implicit, e.g. , in
the m form. (ii) When h&0 the overall thermodynamic
potential &b(m)=4&0(m) —hm [see (1.3)] has local mini-
ma at

m (Th)=m o+g h, m& (T h)=m~+g&h, (4 3)

As a first approach we make the calculations tractable
by treating only bulk free-energy-density functions @0(m )

that can be represented as piecewise parabolic. This
step, which is motivated by prior uses ' of double-
parabola approximations to @o(m) in place of the usual
m form (2.27), enables us to derive explicit, closed ex-
pressions for W(l) and X(l).

Accordingly, consider the asymmetric double-parabolic
(DP) form, see Fig. 2,

(m)=@ (m) —= —,'g '(m —m 0) for m ~0

=4& (I)—= —,'y& '(m —m~) for m ~0, (4.1)

where we impose continuity via the matching condition
(0)=&I&~ (0) which implies



7372 ALBERT J. JIN AND MICHAEL E. FISHER 47

B. Planar profile and effective potential

To obtain the constrained planar profile mii(z;1), we
must solve (2.8) subject to (2.9), (2.10), and the crossing
condition (2.6) with m "=0. For the parabolic form (4.1)
this reduces to a piecewise linear ordinary differential
equation. The solution falls naturally into two parts: the
first describes the a phase for z ~1 (and m & 0) and is sim-

ply

m„=m (z 1 Th)=m „[1—e ]; (4.7)

Xm=0 m
m~o Iii()0

FIG. 2. Bulk free-energy densities C&o(m) at a-P coexistence:
(a) standard, classical m form; (b) asymmetric double parabola
with crossing criterion specified at m =0; (c) asymmetric triple
parabola with matching values and slopes at m* and m&,' (d)
single parabola with arbitrary continuation for m ~ 0.

the second piece describes the /3 phase or wetting-layer
part of the profile for z & 1 (and m ~ 0) and may be writ-
ten

m =m (z'1'T h)=m +B e"' '+B e

(4.8)

The amplitudes B+ and B,which depend on I, T, h h &,

and g, may be determined by imposing the wall condition
(2.9) and the crossing condition (2.6). If, for brevity, we
write

X ( I; T)—:exp( —tel ), (4.9)
which vary appropriately with h. [Previous forms
imposed m „(h)=m o= —mp (h). ] (iii) In using the
crossing criterion one can naturally fix m at m =0
(whereas in the earlier discussions m was shifted with
h).

In mean-field theory using (1.2) the inverse correlation
lengths are and

mp +&XB+=—
1 —QX

(4.10)

which becomes small in the region of critical and com-
plete wetting (1~ Oc ), we obtain

(4 4)

r+ m p„QX
1 —QX

X, (4.11)

a( T):gp
' = (KXp—)

The overall wetting phase diagram for No can be deter-
mined, within mean-field theory, by standard
methods. ' ' As regards critical wetting, quite normal
behavior is observed. ' More specifically, the critical
wetting transition at T = T,~ and h =0—occurs when
~=0—with

r—= [h, +gmp„(T, h)]l[KIr(T) g], —

provided, as we assume henceforth,

g =g/KK=XpIcg & 1

(4.5)

(4.6)

More generally, however, the parabolic form (4.1) leads
to anomalies in regions of the phase diagram that will not
concern us here. For completeness we mention, never-
theless, that in combination with the truncated expres-
sion (1.4) for @i(m i ), the physical region is limited to
g &min(KIr, KIr) and to T below the bulk a-f3 critical
temperature T, . In this combination tricritical wetting
is also unphysical since all the first-order wetting transi-
tions are found to correspond, under the crossing cri-
terion, to jumps in wetting-layer thickness from l (0 to
l =(x). Some of this pathology can be alleviated by
adding cubic and higher order terms to @,(m, ): see also
Ref. 21.

0 g-=-'+ -=-1+g
1 g

1+yp vg

1 gpKg
(4.12)

One ma, y now substitute our expressions for m ti(z;1) in
(2.13) and perform the required integrations on z over the
intervals (O, l) and (1, oo ), the integrands containing only
terms varying as exp(+jkz) with j=0, 1,2. It is impor-
tant to note that both positive, zero, and negative powers
of e ' appear. If the reduced bulk field is defined by

h —=@(mp„)—4(m „)
= —hb, m„(T,h)

h[mpo —m o+ —,'(Xp —X )h]

and the constrained surface order parameter is

miii(l; T h, h ))g)=mp +B+X+B X

the result for the effective potential is

8'(l)=hi+ iKIr[B++X B ](1—X )

(4.13)

(4.14)

—
—,'h, m in —,'gm, „+—,'KIr m „—8'„. (4.15)

The background term W (T,h, hi, g) here is fixed by the

where for convenience we have introduced, in place of
(4.6), the bounded, positive g-dependent parameter
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conditions discussed after (2.14) which amount to
[W(l) —hl]~0 as I —mao. After further algebra one
finds

1 2 2W~ —
—,Kv~m ~~ —h )m p~

—
—,gm p~

b, (1)=b. (I). Calculation yields

m&„+2'+ 9m&„Xb+= —~ +K~m ~~
1 —QX

(4.24)

+ ,'Kx—mls ,'(—Ka—g)r-
—

X~~&( T, h )+X~y( T, h, h»g), (4.16)

Furthermore, one can show that the effective force on the
interface can be factorized exactly as

(4.25)

where the required free interfacial and wall tensions are

X '~&= 2K~ (T)m (T,h)+ ,'Klr(T—)m& (T,h),
X ~&= ,'Kxr —h,(m—

& +r) —,'g(m—&„+r)

(4.17)

(4.18)

Note that when h ~0 the tension X"~&(T, h) reduces siin-
ply to X ~&(T), namely the (mean-field) tension of an iso-
lated or free planar a~P interface; when hAO, however,
this tension corresponds to a similar interface but with an
imposed crossing constraint at m =0 (and the bulk field
energy removed). As regards the wall tension against the
wetting phase P, one may note that (4.8)—(4.11) imply

m, „(I~ ao; T, h, h „g) =m Ii„+r . (4.19)

Finally, after further reduction, the effective wall-
interface potential itself can be written transparently as

Thus the force vanishes at the minimum of W(1) given by
( I ) =0; hence the kink b. also vanishes at I = I. An ex-

pansion of (4.21) to order X yields

b, (1)=a.[2~+ Qm & (X +X ) ](X—X), (4.26)

C. %all-perturbed interfacial stiffness

By using (4.7) and (4.8) in (2.26) we find that the inter-
facial stiffness in the presence of a wall is given by

g(I)=K dz [/ e«~~ ~+ g e «~z i~]2I

0

+ —,'Ev m

where X=X(l); this is generally small in the vicinity of
the critical wetting transition.

w )X+w~X
W(l; T, h, h „g)=hl+

1 —QX
(4.20)

where

3+ ( I ) = ( BB+/BI ) +aB+, (4.28)

with coefficients given by (4.12), (4.13), and

w, (T, h, h „g)=2K~m&„r,

wz(T, h, h „g)=Kafm&„+Km.r. (4.21)

(4.22)

so that 2+ =O(1) and 2 =O(X ) as I~~. Complet-
ing the calculation yields the explicit result

X(I)= —,'Ka m + ,'K~m—
On recalling X =e ', it is evident that our closed-form
result for W(l) is in full agreement with the generally ac-
cepted form (1.6). Furthermore, as expected,
w

&

7" T —T,~ vanishes at mean-field wetting criticali-
ty while w2 remains positive. One may note that w2 con-
tains explicit positive contributions from the wall, via
~(T, h, h„g), which were not found in previous analy-
ses, ' ' although they vanish near mean-field wetting cri-
ticality. When fluctuations are included via
renorrnalization-group theory, ' ho~ever, the critical
point T,~ deviates from T,~ when co) 2 and these terms
then affect the value of T,~.

The higher-order coefficients w&, w~, . . . in (1.6) can be
read off from (4.20). One sees that the w for j ~3 all
vanish at the wetting tricritical point w

&

=w2 =0. This is
quite anomalous and corresponds to the failures of the
parabolic approximations for 4O near tricriticality that
were alluded to above.

It is of interest to check the smoothness of the optimal
profile m (z)'= m „(z;I) through the crossing level m "=0
and, more generally, to determine the break in slope of
the constrained profile m„(z, l) at z =I when IXI; see
Fig. 1. It proves convenient to define

Bmp Bm
b, +(I;T, h, h „g)= (I —;I)+ (I +;I) (4.23)

clz

so that the magnitude of the break or kink is just

X [(1—X )(1+9 X ) —49~IX ],
(4.29)

where one finds

mp„+2~X+mp„QX
(1 —QX )

For large l this has the expansion

X(I)=X„(T,h)+s, oe "+sioe '+
+s„~le "+s3i~le "+

where the interaction coefticients are

(4.30)

(4.31)

s,o(T, h, h „g)=2Klrm&

s20= —,'Kam&„(69+ 9 —1)+O(r ),
s2, (T, h, hi, g)= —2K~9m&„

$3, ( T, h, h i,g) = —8K' Qmii

(4.32}

(4.33)

so that s2, =O(1) as r~0. As expected, in view of the
special isotropy of the underlying model, the stiffness at
I = DD satisfies X ( T, h ) =X"~&( T, h };see (4.17).

Now the appearance of terms in X(1) varying as le
(j=2, 3, . . . ) is rather unexpected since only pure ex-
ponentials occur in the formula for W(l). The mecha-
nism by which the factor l arises is, however, quite trans-
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parent when the integrand in (4.27) is multiplied out: a
term independent of z, namely 2ICA+(l)A (l), then ap-
pears which, on integration, generates the last term in
(4.29). A similar mechanism also produces the hl term, in
W(l), but, in that case, no net factors of e ' are contrib-
uted by the amplitudes 8+(l). We will see in Sec. V,
however, that this is one mechanism that actually gen-
erates terms like l "e ~ in W(l) for general @o(m).

(m —m 0) about the a minimum, as in the first member
of (4.1), but this will play no essential role.

For such a single-parabola potential the analysis of Sec.
IVB above may be followed closely. Consider, first, the
profile mti(z;l) in the a-phase region. In place of the
simple exponential expression in (4.7) we will have a more
general form, say, m (z —l; T, h) which, by using (2.8) in
the standard way with the condition (2.10) for l~ ~, is a
solution of

D. Triple-parabola free-energy densities
Bm /Bz = —+26,4 (m )/K (4.35)

One of the obvious unphysical features of the double-
parabolic models is the sharp cusp in C&0(m) at m =0:
see Fig. 2. To eliminate this but preserve the ease of
analysis, it is natural to consider triple-parabola models
40 (m) in which the central region of @0 (m) is re-
placed by a third, inverted parabola. The simplest possi-
bility is to take this as

&bo=@(0)——,
' I m (4.34)

for m o &m* &m &m& &m, while restricting (4.1) ac-
cordingly to m ~ m * and m ~ m &. By adjusting say,
C&(0), I, m *, and g for fixed m o, m, g&, and mti one
can make &Po (m) continuous and smooth (with no kinks)
for all m.

The previous derivations can be repeated in a fairly
straightforward manner. The crucial profile m„(z;l)
still has the general character illustrated in Fig. 1 with a
kink at z =l&l but continuous slope and curvature else-
where. However, both parts, m (z;l) and m&(z;1) for
modem =0, are now composed of two pieces: one piece
with the original exponential forms in (4.7) and (4.8) and
one piece, for m* ~ m ~0 or 0~ m ~ m&, involving
sin[i~o(z —I)] with so= VI /K. The pieces join with
matching slope and curvature at m * or m &, respectively.
The algebra is more complicated than previously and the
results are not quite as explicit. Nevertheless, it is easy to
see that the trigonometric pieces of m„(z;l) span an in-
terval in the interfacial region of the profile of width ap-
proximately ~/Ko which, for reasonable choices of the in-
verted parabolic section, is only of order g or
Thence one reaches, when l ~ ~, essentially the same
conclusions, (1.5) for &t[l], (1.6) for W(l), and (4.30) for
X(l), as previously. Of course, the explicit expressions
for w&, w2, . . . , X~~&,s,o,s2„. . . will change quantitative-
ly but not qualitatively.

More generally, one learns that it is really only the
form of the free-energy density %0(m) in the Uicinity of
m =m that determines the asymptotic form of &t[l]
as l ~ ~. We can exploit that fact, as follows.

K. Single-parabola forms

Consider a "single-parabola" thermodynamic potential
&o (m) which (i) in the I3 phase, for m ~m "=0, takes
the simple parabolic form that is given in (4.1), but (ii) for
m &m assumes a general form, say N„(m), restricted
only by the requirement that it has a single, second, a-
phase minimum at m =m o: see Fig. 2. We may reason-
ably assume that there is an expansion in powers of

where hN is defined as in (2.14). If, as previously, m(z)
is the optimum profile satisfying m(l)=m =0, it is
clear that the desired constrained, planar profile in the u
phase is simply

m (z —l)=m(z —Al) with bl =l —l . (4.36)

It may be remarked that these steps essentially justify the
ansatz used by previous authors in the a phase (only) and
for this special, single-parabola, type of free energy.

Now, as regards mn(z, l) in the P-phase region
0 &z & l, the previous analysis in (4.7) —(4.12) remains un-
changed. Indeed, the first new feature arises in the ex-
pression (4.15) for W(l): the fourth term here, namely
—,
' Ka m, represents the contribution, say X ( T, h ), of
the profile for z ~ l to the surface tension of a free a~P in-
terface: see (4.17). Evidently this must be recomputed
using the new form for m (z —l) that solves (4.35). In
the usual manner this leads to

X (T,h)= I [2K64 (m)]' dm
rz oo

(4.37)

where m „(T, h ) represents the minimum of 4 (m) —hm
which, up to 0 (h ), is s till given by (4.3).

The first term hl in (4.15) also has a contribution from
the o.-phase region of integration, but the changes
amount only to the redefinition of m „(T,h) already
mentioned. Thus, (4.13), which defines h, remains valid
except that in the second line terms of order h will, in
general, arise; but these are clearly of no consequence.

To adapt the previous derivation of W(l) it is thus
clear that it is necessary only to replace the terms
—,'Eir m in (4.16) and (4.17) by X . But these changes
have no efFects on the subsequent expressions
(4.18)—(4.22). Thus W(l) behaves precisely as previously
found. The derivations in (4.23)—(4.26) of the discon-
tinuity in

m ti(z;l) when lWl also need no modifications.
The analysis of the wall-perturbed stiffness X(l) in Sec.

IV C also stands virtually unchanged beyond the replace-
ment of —,'Ktr m by X in (4.27). In particular, the re-
sults (4.29)—(4.33) remain fully valid.

Recalling that the choice m =0 is quite general, since
a shift in m can always be made, we conclude that it is
only the pure parabolic form of C&o (m) around m (ac-
tually in a neighborhood of magnitude r) that determines
the asymptotic forms of W(l) and X(l). To go beyond
this analysis and treat general free-energy forms it is
necessary to allow for cubic and higher-order terms in
the expansion of a general @0(m) about m =m. That
task is undertaken in the next section.
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V. PKRTURBATIONAL ANALYSIS
FOR GENERAL FREE-ENERGY DENSITIES

In this section we consider a general free-energy densi-
ty 40(m; T) of double minimum form. As in Sec. IV E,
we treat the bulk, a-phase region in m + m —=0 exactly;
however, the wetting layer or 13-phase region will be ana-
lyzed perturbatively starting with the single-parabola re-
sults of IV E.

A. Wetting-layer formulation

Following the arguments of Sec. IV E, we can straight-
forwardly reformulate the problem of computing the
wall-interface potential W(l) and the perturbed stiffness
X(l) in terms of the wetting-layer properties alone as fol-
lows:

W(l) =min&L [m (z)]—W'
( T, h, h i,g),

m (z)
(5.1)

where, with m =0m /Bz, the layer Hamiltonian is simply

I
&I [m (z)]=f dz[ ,'Km +b@(—m)]+@1(mi) (5.2)

with, as before, m 1
——m(z =0;l},and b,4 defined via (1.3)

and (2.14); the background W„(T, . . . ) is fixed [as in
(4.15)] by the condition [ W'(I) —hl] ~0 as I —+ oo. In ad-
dition, the crossing criterion translates into the condition

m (z =l;l) =0, (5.3)

to be imposed on all m (z) used in (5.1). Note that &I
entails only the P-phase part of the profile [z & I and
m (z;l) ~0].

The wall-modified interfacial stiffness is, via (2.26) and
(4.37), given by

X(l)=Kf dz(Bm, /Bl) +X (5.4)
0

where mll(z;I) is, now, the planar profile (for z & l)
minimizing (5.2) subject to (5.3).

To establish a perturbative scheme for calculating m&
we set

expansion coefficients in the expressions

W(I;E)= Wo(l)+ g' V„„
I k„ I

(5.9)

X(l;E)=XO(l)+ g' Sk i . . . (l) Q E„",
Ik„ I n =3

(5.10)

B. Perturbation procedure

By (5.1)—(5.3) and (5.6) the planar layer profile
m „—m}3„——y„(z;I ) (for z & l) satisfies

(5.1 1)

where 0, =8/Bz, together with the boundary conditions

g,y„=(KB,+g)y„(z =0;1)= —h, —gmp„, (5.12)

+2% il 0 ll(z I I) m/3 (5.13)

where the leading terms 8 o and Xo follow from the pre-
vious analysis; here and below the primes on the sums
denote the restriction k3+k4+ ~ 1.

A remark concerning the nature of the free-energy
function C&0(m) as the E„vary, is worth making. If

—=@(m &0) is held fixed while &f3 =—&b(m ~0) varies
with c, , a discontinuity is, in general, introduced in
@(m;E) at m =0. Now, on the one hand, this could be
eliminated (along with discontinuous derivatives) by
making appropriate c-dependent changes in N which are
then easily included in the calculation; on the other hand,
a discontinuity in 4(m) at m =0 may well be tolerated
since, as the analysis reveals, it has no effect on the
asymptotic behavior of W(l), etc., which is of primary in-
terest. Of course, a discontinuity in C&(m) at m =0 does
induce a break in slope (or kink) at the crossing point
even in the optimal profile m(z)=mil(z;l =l). This is
unphysical but, again, harmless as regards the large-l be-
havior. Thus we wi11 have no reason to discuss this issue
again.

y(z;1) =m(z;I) —mil„(T, h)

and expand 4( m ) about the P-phase minimum as

Now if we expand the profile in the form
(5.5

k„(z;I) Q E.„",
6 =3

(5.14)

4(m ) =+;„(T, h )+h + —,'gp 'y + g n 'E„y",
17 =3

(5.6) the coefficients cpk k3 4
satisfy the recursion relations

where (4.13) has been used. For the standard m form
(2.28) with r &0 one finds m}30 =(6 rl /u)'
yf3 '=2lrl+0(h), and

E3=(ulrl/6)"~ +O(h), E4=u/6, E„=0 (n o 5) .

+1P0=0 +9'10 0'o~ +0'01=%'o ~

2+'P20 29 OV 10 +'Pl 1 2V OV 01+3V OV 10

2&0'02 3V'OV'0&

(5.15)

(5.16)

(5.7)

As u ~0 one formally has E3-3/u, E4- u. More general-
ly we may conveniently suppose

where, for brevity here and below, only the subscripts k3
and k4 have been indicated. Likewise the appropriate
boundary conditions are

8,+0= —hi —gm}3„, X,p/k =0 for J +k ~ 1,
E„~E" (n ~3) . (5.8) (5.17)

When v=0 the problem reduces to the single-parabola
form solved in Sec. IV E. Then we propose to treat E (and
E3 E4 . . ) as a small parameter and aim to compute the

+2+0 m}3 %2%/k =0 for j +k 1 (5.18)

The equations for ego are equivalent to those solved for
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mn in the 13 phase in Sec. IVB. As in (4.8)—(4.12) we
therefore have

(z 1 ) B e K( z —I ) +B e
—a ( z —I ) (5.19)

with B+ = —mI3„+O(&X,X ) and B =O(&X,X ). It is
then straightforward in principle to solve the system
(5.15)—(5.18) recursively. Before undertaking that task,
consider the expansion coefficients for W(l;E) and
X(l; s).

In principle one needs to substitute the expansion
(5.14) for yn into (5.2) to obtain W(l;E). However, the
variational equation

some detail. Before embarking on that analysis it is in-
structive to examine some of the low-order terms explicit-
ly to see what is involved.

C. Leading orders in y

It transpires that novel behavior is generated in lowest
order (in X and r) by the )p terms in (5.6); accordingly,
consider c3=c5=c6= =0 with c4) 0 small. To sim-
plify expressions here, we will when convenient also
adopt units of distance, energy, and order parameter in
which

~=1, %=1, mp =1 . (5.27)
8&[m ]

0pl
=0 for all c„

m =m& +y&&
(5.20) Substitution of (5.19) in (5.22) and a simple integration

yields
yields

aj )+"+ -[~„(z 1)]'
V„.. . (1)= dz

3)ik' ''BJ E 0 E

~

~
~ ~ ~

gj+k —)+ .
[ (

. 1)]4
dZ

0 4Jiki. . . aJC3ak-184

(j) 1)

(k~ 1),

(5.21)

Vo)(l) =
,', B+ (1—X)+—,'B+B —(1—X )+ ', lB+B—

(1—X )+,'B X (1—X ) .

(5.28)

On using (4.10)—(4.12) for B+ one finds that Voi(l) con-
tains the expected positive powers of X plus the novel,
"anomalous" term

From these relations one can read out the relatively sim-
ple results

b. Vo, (l)—:', 1B+B —= ,')ill e —'+O(ale ') (5.29)

I
V,o= —,

' f dz[q&0(z;1)]
0

I
V01=4 dz +0 z&I

0
2 3

~20 dZ 9 OV 10~ ~02 dZ V OV 01
0 0

2 = ' 3dz 0'0V'01 = dz 0'0V'10~
0 0

(5.22)

(5.23)

(5.24)

(where ~ has been temporarily restored). This contribu-
tion is, of course, in disagreement with the pure exponen-
tial form (1.6) for W(l) suggested by previous arguments
and supported by the parabolic models; rather, it is con-
sistent with the more complex form (1.8), namely

W(1)=hl + W) (vl)e '+ W2(al)e ' + . , (5.30)

The last equation here provides the first instance of a use-
ful series of consistency checks on the calculations which
reffect the fact that the system [X;X„X2] is self-
adjoint. From (5.4) and (5.10) one similarly finds for the
stiffness coefficients

I aVO
S)0=2Kf dz

0

with polynomials

Wi (x)=w io+ w i)x,

W2(X) W20+ W2)X +W22X
2

etc. More concretely, (5.29) suggests

W2) 27 E4, w3) O(7 )E4-3 2

(5.31)

(5.32)

I aVOSo):2ICf dz

(5.25) to first order in E4. Collecting the other terms in (5.28)
yields

S20=K f dz

2
aV 10 BVO

Bl Bl

w =2r(1 —
—,'c. + . ),10 8 4

w20=9(l ——4)s4+ . )+O(r ),
(5.33)

(5.26)

The procedures outlined here enable the formal pertur-
bative expansion for W(1) and X(1) to be carried through
explicitly to any specified order. Note, in particular, that
owing to the simplicity of L ~B,—~ and to the simple
exponential form (5.19) for yo, the successive diff'erential
equations in (5.15), (5.16), etc. present no technical
difficulties. However, in order to understand the asymp-
totic decay of W(l) and of X(l)—X in the regimes of
small ~ and of small X:—e ' it proves necessary to ana-
lyze the structure of the whole perturbative expansion in

'e"'=e"'l(n —1) for nA+ I

= 2nze for n =+1 . (5.34)

In combination with the general solutions C+e —' this
yields

etc. , where the zeroth-order results follow from (4.21)
and (4.22). To this order in s4, no contributions to wi)
and w k for k ~ 2 appear.

To go further one needs yo„ the first-order c4 correc-
tion to )II))i-—yo. To solve (5.15) for @0) we use the special
solutions
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(z'I)= —'B+e ' "+[', B—B (z —I)+C ]e'

B2 z C )e
—z+l~ ~ B 3 e

—3(z —I)

butions to W(/).
Combining (5.40) with the previous parabolic results

(4.31)—(4.33) one reads out

(5.35) X =X „+—,', s4, s,o =2r+O(r)s4) (5.43)

C =—', Q[r+O(X)]/X —
—,'QX +O(r X, . . . ) . (5.37)

The novel feature here is, evidently, the appearance of
both factors z and I in pn(z, I) related to the "resonance"
solutions, n =+1, in (5.34). Note also that in (5.23) and
below the z factors multiplying e ' " terms with j
positive, integrate on z from 0 to I to yield a term varying
no more strongly than I: conversely, z factors multiply-
ing increasing exponentials e+ ' " (j &0), can be
grouped as (z —I)"e+J' ", so that integration yields
only I "e '. The corresponding coef5cients C+ and C
are then found to associate factors X' (i & 1) with the I"
terms.

Now using (5.25), the expression for yo, leads, via an
integration, to the first-order stiffness correction

where the boundary conditions (5.17) and (5.18) yield
closed expressions for C+ and C, which have been cal-
culated explicitly and have leading behavior

C~ = —[—', r +O(rX, . . . )]IX + ,'+O—(rX,. . . ), (5.36)

$22 ) e4) $32 1 5 TQE4) ~ (5.44)

s2& = —29(1——4e4)) s3& = 8Q—v[1+0(1)E4] )

(5.45)

as well as s&& =0 and s k =0 for all j ~ k + 3 to this order
in s4. Recall that we are using reduced units: see (5.27).

In a parallel way, the expression for yo& yields the
second-order s4 corrections to the potential via (5.23).
After some tedious algebra, one finds

V 0(2/)=I(3B~B C +3B~B C~ 9B~~B3—)—

+( ,', B'+ + ——,'B+C+ ', B4+B—' —I+ ), (5.46)

where, as in (5.38), all terms not displayed are of higher
order in X and ~. Consequently, one can expand to get

V02(/)=I Pr X +[18r 9+O(r )]X +

+/[ —4r X +O(r X,rX, . . . )]
—

—,', + —,'rX+ —,', QX + (5.47)
$0, (/)= —

—,'I (3B A ~+12B~B A4. A +3B~A )

+/(2A D ~+22 ~D 3B~B A )—
+—'8~A ~+A~D~+3 D X +

(5.38)

where the A+(/) are defined through (4.28), and

D~(l) = (BC~ IB/) + ~C~ (a = 1), (5.39)

+ I [ [ —,
' 0+0(r ) ]X +O(r)X +

+ —,', +O(r )+O(r)X+0(1)X +. . . (5.40)

Note the presence of l-independent terms which contrib-
ute to the stiffness of a free (I~ oo ) interface: such terms
must clearly be present.

As anticipated, this result suggests that the stiffness
X( I) has the general form

X(/) =X„+S,(v/ )e '+$2(x/)e '+, (5.41)

with polynomials (j =1,2, . . . )

so that D+ =O(r X )/+O(l) and D =O(rX )I
+O(X ). The powers of I arise from the resonances, as
mentioned, but also from the integration of terms with
factors e '. A direct expansion for large I and, hence,
small X yields

Soi (/) = I ( ——', r X —15'QX +. . . )

This accords with the form (5.30) and yields new / terms
in W(/) with

~ 9 3 2 2~ 2
W32 2~ C4~ W42 io~ ~F4 (5.48)

D. Some general considerations

Our explicit calculations of the y corrections in W(/),
to second order in E4, and in X(/), to first order, can,
clearly, be extended straightforwardly. However, the
algebra rapidly becomes unmanageable. Nevertheless,
various general features are clear and will be discussed
prior to examining the explicit low-order y corrections.
For convenience let

Pk(z, /;X) =g p,~(X)I'z~ (5.49)

be a generic polynomial in z and I of total degree k
( &i+j); related polynomials of the same degree will be
denoted Pk, Pk , etc. Then with th—e operator X defined by
(5.11)—(5.13), one may extend (5.34) to give

In addition, this calculation shows that the leading varia-
tion of those terms that are already nonzero in first order
[see (5.32)—(5.33)] are unmodified in character while w»,
w22, and all w.k with j ~k ~3 remain zero in this order.
Finally, note the existence in (5.47) of an I-independent
term that contributes only to the background to be sub-
tracted off in the final definition of W(/).

$.(x) =s 0+s,x+ . +sijxi . (5.42) 'P„(z)e"'=P„(z)e"' for nA+1
This structure is obviously similar to that of W(/) in
(5.30)—(5.33). Note, however, that the coefficient of /X
here does not vanish when w —+0 in contrast to the contri-

=Pk+, (z)e"' for n =+1 . (5.50)

Thus, on solving (5.16), one sees that F02(z;I) contains
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terms Poe — ', P, e— ', and P2e —'. More generally, in nth
order one has

. l) —y+ P+( l) +(2n —2k+1)

It =0
(5.51)

where distinct sums over + and —are understood. On
the other hand, from (5.21), etc. , one obtains the potential
contribution in the form

n —1

Vo„(l)= g a!z) f dz pro;(z;l) . gok(z;l), (5.52)

asymmetrical y perturbations and related issues. By cal-
culating explicitly the leading-order corrections, we will
see that the c3 terms behave in a closely similar way to
the E& terms so that all major conclusions for W(l) and
X(l) remain valid.

E. Leading orders in y

Consider now the case c4=c.5= =0 with c.3)0
small, and follow the program of Sec. VC. On using
(5.19) and (5.22) and adopting (5.27), the first-order s3
correction is simply

the sum being restricted by i+ +k =n —1 while the
aI -I are unimportant combinatorial coe%cients. In light
of (5.51) this leads to

V, o(l) =
—,'B+ (1—X )+—,'B (X —1)

+B+B (1 X)+—B+B (X ' —1) (5.56)

n+1
V,„(l)=f dz y+P+, „„,(z l)e+'" "+'~. -

Jt =0
(5.53)

which, under expansion, yields

V,o(l)= —
—,'+ —,'r +[2r+O(r )]X

where m(k, n)=min(k, n —1). A precisely similar ex-
pression is found for the stiffness correction coeKcients
So„(l) except that P —

(k „+,) replaces P ~k „~.
Since one has

f dz Pi, (z, l)e"'=Pk (l, l)
0

for n&0

=Pk+, (l, l) for n =0, (5.54)

these results clearly reveal the general route by which
powers of / appear in the perturbative structure. Indeed
one sees that Vo„(l) and So „ i(l) contain terms with all
factors l~ for 0 (j ( n. Consequently, both W(l) and X(l)
contain terms with prefactors l with k arbitrarily large.
In these circumstances it is at first unclear why the
coefficients W„(Ill ) in (5.30) should be finite polynomials
as asserted in (5.31). However, if they were not finite po-
lynomials one would have to contemplate the possibility
that, for example, the expansion of the first coe%cient
takes the form

W, (x)=w, 0+w* g (AE4x)"/k!
It =0

A, c4x=F10+m *e (5.55)

That would change the leading exponential decrement of
W(l) from Ir to Ir(1 —Ae4), a most alarming transforma-
tion! The same concerns obviously apply to the stiffness
expansion (5.41).

Fortunately, a scenario of this sort is not, in fact, real-
ized. What happens, as can be seen in the calculations re-
ported above and below, is that each factor of I finally ap-
pearing in W(l) or X(l) carries at least one factor of
B -~X or of X, thence leading to the polynomial nature
of the W, (l) in (5.31) and of the S (l) in (5.42). ' The
reader should examine (5.28), (5.35), (5.38), and (5.46) and
note the operation of the boundary-condition mechanism
discussed after (5.37). Moreover, as also indicated by the
explicit calculations for So, in (5.41) and for V02 in (5.47),
the higher-order c4 corrections do not determine the lead-
ing decays of the coefficients Wi(l), Si(l), W2(l), and
S2(l) of the crucial e 'and e 'terms.

Before discussing further generalities, we examine the

+ [—'0+O(r)]X + [—,
' —Q+O(r)]X +

(5.57)

+C 10Z '+ —,'B Z (5.59)

where Z=e' ", while the boundary conditions (5.17)
and (5.18) lead to

C,+0= —
—,
' ——,'r[1+O(r)]X —3[9+0(r)]X + ' ' '

(5.60)

1C-= ——9—
10

1 —g
r [I+O(r)]X

+—'[0+O(r)]X + (5.61)

which have no resonance factors of /. Subsequent itera-
tion, however, yields

;l) =,,B+z'+ 3C,+~+z'

+ [C20 ,'B+B (z———l)]Z
—2(cioB +C,OB+ )+( ,'B+B +zC )Zio—

+-'C;~ Z '+ —'B' Z- (5.62)

Evidently this correction preserves the pure-exponential
form of the parabolic limit; it results only in background
terms and unimportant modifications of the amplitudes
of the leading coefficients of W(l). Thus, extending the
earlier results (4.20) —(4.22), we find

w, = w, o =2r(1+ —,
' e3+ ),

(5.58)
w, —= w, o = Q(1+ —', E, + ) .

[In addition, (5.58) leads to wi(E3)=O(r)+( —,
' —Q)E3) 0

when ~ and 9 are small; this removes the unphysical tri-
critical and higher multicritical wetting behavior' '
mentioned after Eqs. (4.6), and (4.22). Indeed, the Ez

corrections derived from (5.28) and so on, as well as
higher-order corrections, fulfill the same function. ]

Solving (5.15) now yields the first-order profile correc-
tion

bio(z;l) = ,'B+Z + C ioZ——2B+B
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with new amplitudes

C~() = —', [++O(rX, . . . )]lX —
—,', +O(&X, . . . ), (5.63)

C20= —
—', [rQ+O(X)]lX + ,', Q—X +O(r X, . . . ) . (5.64)

Evidently @20(z;I) has both z and l factors: note also the
operation of the boundary-condition mechanism dis-
cussed after (5.37).

Using these corrections to the profile in (5.23) yields

V20{l)=—', 8+8—l+{—,', 8+ +T~B+C~P+28+8 C

To this order in E.3 the coefficients w&&, W22, and w k with

j ~k ~2 remain zero.
With y, O and @20 one can go further, since from (5.21),

etc., one obtains

V30 = dz(0 09 10++0% 20)
0

=C20( ,'8+—+28+8 + . . )+C20(B +. . . )

= ——", [r +—', rX+O(~, r X,X )]IX

+8+C,() ', 8+—8— + .
) +l[ ] (5.67)

= —
—", [r +2rQX+O(r X,X ))lX

+—5' —
—,', +O(r, r X, QX, . . . ) . (5.65)

Thus the E, 3 perturbation also generates anomalous terms
with factors of 8 and contributes to the general form
(5.30) for W(l); specifically, one has

This demonstrates that V30 and V20 have equivalent
anomalous terms, both being proportional to r lX as
x,~~0.

Likewise the E3 corrections for the stiA'ness may be cal-
culated. Using the A+ from (4.28) and defining

D 0—:(BC 0/Bl)+14C0 (with j=1,2, and 14=1),
10 M 20 C7 2

W $ ] 3
I E3 y W 3 ] 3

Tu E 3 y ~ ~ ~ (5.66) (5.68)

while the w 0 with j = 1,2, . . . are modified only trivially. one obtains from (5.25) the result

S, (l)=2(A+D(q+ A D)+0)1+(48+ A+ + A+D+ —', 8+ A+ A— 48 A+—+D A X + ' ' ' )

= ——', [9+O(7.,X)]lX —
—,'8[I+2rX+(8&—3)X + ' ' ],

(5.69)

(5.70)

and, from (5.26), the second-order result

S20(l) = '(48+8 A+ A —+8 A + +8+ A )l

+(A Dq()+ A+Dzo)l+( . ),
=[—,'r +—,'rQX+O(X )]l X + (5.71)

where in the last line, only the l terms have been shown
explicitly.

By inspection we see that the first-order correction
S,o(l) does not generate any new terms beyond those al-
ready found in the pure parabolic results (4.31)—(4.33).
On the other hand, the second-order correction contrib-
utes to the fuller form (5.41)—(5.42) with, specifically,

$22 67 E3, S32 3'TwE. 3, 42 'T E3 (5.72)

F. Higher-order perturbations and cross terms

The explicit calculations of the leading order E4 and E3

corrections reported above do, in fact, serve to determine
the leading behavior of W(l) and X(l) to order e
which is our primary concern. Examining the details of
the calculation reveals the operative mechanisms leading
to the correction polynomials in I with, furthermore, in
many cases factors vanishing with ~. However, it is also
clear that the perturbative structure is rather complex;
this has prevented us from developing transparent algo-
rithms for describing the general perturbative term. Nev-
ertheless, further analysis, which we summarize now, en-
ables us to surmise, we believe reliably, the most impor-

Vo„(l)=b„l"8"+', So„(l)=c„l"+'8"+', (5.73)

where b„and c„are of order unity. Furthermore, the
Vo„(l) and So „,(1) corrections generate nonzero
coefFicients w.„ for all j ~n +1 and s „ for all j ~n.
Beyond that, however, they have no other significant
consequences.

The low-order calculations also revealed that the first-

tant structural features of the perturbation expansion.
Consider, first, the efFect of further perturbations of de-

gree n ~ 5 (which do not, of course, arise in the simple y
model). We find that these may be ignored asymptotical-
ly provided the s3 and E4 terms are present. (In saying
this we are, of course, regarding modifications of various
amplitudes by factors of order unity when ~—+0 and
l ~ oo as uninteresting. ) More concretely, it is easy to see
that the first-order contributions to W(l) proportional to
E2& for k ~ 3 contain only the anomalous term
-l8" -~ le ', while the corresponding second-order
correction contains terms l (r " 'X " '+ . . )
+l(r"X"+ . ), etc. All these terms are, in fact, weaker
(in powers of ~ and X) than the corresponding contribu-
tions to the w.k arising from the E3 and E4 perturbations.
Hence we restrict further discussion to the y and y po-
tential terms.

As seen explicitly above, the leading contributions to
the t0 k and s k in low order come from the (pure) s4
terms. Following the analysis in Sec. V D above, one sees
more generally that the highest powers of l enter in nth
order as
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order y terms gave no anomalous l dependences whereas
the second-order c3 corrections were equivalent to the
first-order E4 correction: compare (5.32) with (5.66) and
(5.44) with (5.72). Further analysis indicates that these
correspondences, for the s& with j k and for w& with

j ~ k +1, hold for general k ~ 0.
It is clearly also necessary to understand the cross

terms such as V&&(l), V&2(l), etc. A full calculation, us-
ing (5.24), yields

V, i(l) =3B+B (B+C,o+B C,+o)l+
,
', B—'+ +

=(r +3rQX+ . )lX +0(l, rX, X ) . (5.74)

Comparison with (5.28) and (5.29) shows that the E3E4
term contributes to IV(l) nothing beyond the products of
the pure first-order E4 term; it merely modifies the ampli-
tudes by factors of order unity. More generally, one sur-
mises that the corrections of order c.3 c4 and c.3 c4
have the same character as the term of order c4

+'
(m, n )0).

In summary, we conclude that the general polynomial
coeKcients, resulting from perturbations E3 c 84 E

etc. behave as

2k 2k+2 —j [& +O( )]
2 k —

1
+ 2k —j [b +O( )]

(S.75)

(5.76)

where x~+ =maxIx, OI; while the coefficients a k for
j ~ k + 1 and b k for j ~ k are of order unity except that
b io and b i i both vanish as revealed by the explicit calcu-
lations of Secs. VD and VE. Furthermore, s&& appears
to carry a factor of at least ~ in all orders and it vanishes
identically in c4, E4, c3, c.3, and c3c4. It follows, as already
seen in lower orders, that the w I, are nonvanishing at
T=T,~ if, but only if, k ~

—,'j —1; likewise the s~& are
nonzero at T = T,~ only when k ~

—,
' j.

This completes our analysis of the perturbative contri-
butions to the effective interfacial Hamiltonian: see
(5.30) and (5.41). In fact, the leading-order results con-
tained in (5.32), (5.33), (S.43)—(5.45), and (5.48) are quite
characteristic of the full expansion.

VI. INTEGRAL CRITERION ANALYSIS

A. Integral criterion formulation

Clearly the integral definitions (2.11) of 1, the wetting-
layer thickness, entail global constraints on the funda-
mental partial trace in (2.1) through which the effective
interfacial Hamiltonian &t[l ] is now to be defined. Ac-

Our conclusions based on the crossing criterion are
clearly satisfactory, especially since the value of m can
be chosen fairly freely. Nevertheless, other choices of
the definition for the interface location are possible and,
if reasonable, should lead to equivalent asymptotic wet-
ting behavior. As was mentioned in Sec. II, the definition
(2.11) provides, for general p )0, a set of integval criteria
providing measures of the total adsorption in the wetting
layer. In this section we use this definition and discuss
some interesting features of the results.

m„(z~+ ~;l)~m (6.2)

which is, in fact, also required by (6.1). Finally, the
profile must satisfy the minimization requirements, corre-
sponding to integrating out the noncritical bulk fIuctua-
tions at a mean-field level: see Sec.II. These derive from

5.&[mti]+A, f [mii —m ]~dz . 6mn =0,
0

(6.3)

where A, is the anticipated Lagrange multiplier. On using
(1.2) for &[m ], this reduces to

drC," =e'(m„)+pa(m„—m.„)-',
dz2

for the bulk region 0 &z & ~, and

dmg
K (z =0)=4'(m, „),

dz

(6.4)

(6.5)

at the wall with m it&
=—m n(z =0+, l ), following the nota-

tions of (2.8) and (2.9).
Evidently, our task is to solve the nonlinear differential

equation (6.4) subject to the two boundary conditions
(6.2) and (6.5) and with one parameter X to be determined
through (6.1). It turns out that for the natural choice
p = 1 (as well as for 0 &p & 1) certain difficulties arise" '

as we now show. However, for integral p =2, 3,4 and the
standard m model (2.27), we can obtain explicit results.

B. Insolubility for p unity or less

We observe, first, that the equi1ibrium profile m(z) de-
pends only on &[m] but not on the choice of criterion.
Consequently, if I ( ohT) is the equilibrium value of the
wetting layer thickness, the -relation mti(z;I =lo) =m(z)
holds for all p )0: see Fig. 1. This corresponds, again, to

cordingly, the previous derivations of the corresponding
effective interaction IV(l ) and of the effective stiffness
X(l ) must be revised. However, the general principles
remain unchanged so that we again undertake the follow-
ing program: First, we obtain the planar profile
m ti(z; l )—:m-[r; l( ~ ) = I ] from the constrained minimi-
zation principle. (Note that we use an overbar to label
properties computed using the integral criterion. ) Then,
with m„(z;l) in place of m„(z;l), we evaluate IV(l ) and
X( i ) using (2.13) and (2.26), respectively. (Note that
these expressions are not dependent on the details of the
criterion determining l or l. )

Now, to obtain the planar constrained profile m„(z;I)
we will utilize the method of the Lagrange multiplier to
impose the constraint. This leads to a new set of equa-
tions for the constrained profile. Specifically, the first one
of this set may be taken as the constraint itself, namely

I = f dz[mii —m ]~/(mt3 —m „), (6.1)
0

where I is independent of y and does not, in general,
equal the corresponding equilibrium value lo.

Next, the planar profile must still obey the bulk condi-
tion



47 EFFECTIVE INTERFACE HAMILTONIANS FOR. . . CRITICAL W'ETTING 7381

consistency at the mean-field level. Naturally, m„(z;10)
also corresponds to A, =O in (6.4); conversely, for l&lo
one must have A,AO.

Second, since m =m „ is the global minimum of the
bulk potential 4(m), (6.2) and (6.4) determine the curva-
ture of mn(z) when z~ ~ as

iso(T)=(2~r~/K)' =x o=ir& . (6.11)

p(z;1)—:[mn(z;1 ) —m ]/( —2m ) . (6.12)

Now in order to solve for the constrained planar profile
m z it is convenient to define the rescaled profile

d m„/dz ~Ap(m„—m ) '/K .
The first integral of (6.4) using (6.2) yields

(6.6)

But for p ( 1 (and A.WO) this implies a nonzero curvature
as z~ ~ and m~m . Clearly, however, that contra-
dicts the bulk condition (6.2), which in fact requires de-
cay of all derivatives d "mn/dz" to zero when z~ oo.
We must conclude therefore that no proper solutions ex-
ist for the constrained profile when p ( 1 and A, WO.

In other words, the integral criterion as we have ac-
cepted it perturbs the vicinity of the pure 0. phase too
strongly whenever p (1."' We remark that the result
is somewhat surprising in that (2.11) with p =1 corre-
sponds to the most natural definition of the wetting layer
thickness on the basis of the adsorption. One can devise
various ad hoc but reasonable approximate procedures to
define and solve the problem using 0 &p ~ 1, but they are
too artificial to be worth recording here.

On the other hand, (6.6) implies no difficulties whenev-
er p ) 1. Indeed, by choosing tractable bulk free-energy
densities 4(m) in (6.4) and corresponding values of the
parameter p ) 1, one can obtain several sets of exact, ex-
plicit solutions. We present below only a representative
case with p =2 and the standard m model specified by
(1.3) and (2.27).

C. Exact profiles in the m model

To begin, we recapitulate briefly some of the known
mean-field results for the model. '

(a) The m potential has an exact a-P symmetry at
coexistence h =0+ with the order-parameter values

—m o(T)=m&(T)=M—:(6~r /u)'~ (6.7)

When H &0, the o. phase is stable and the equilibrium
value of the order parameter shifts as

m (T,h)=m 0+ —,
'

~r~ 'h+O(h )(m 0, (6.8)

which is the negative solution of the third-order equation

—,'um(m —M )=h . (6.9)

The P phase is then metastable with the order-parameter
value m& ( T, h ) = —m „(T, —h ), which is the largest,
positive solution of (6.9).

(b) Unlike the parabolic potentials considered in Sec.
IV, this m potential together with the usual surface in-
teraction C&, (m, ) of (1.4) generates, in mean-field theory,
a full, well-behaved wetting/surface-transition phase dia-
gram in the field space (T, h, h „g).' In particular, the
critical wetting transition corresponds to

(dp/dz) =i~ [(1—p) +p]p (6.13)

where the parameters are

p=(3/um „)A,+ri,
h = —,

' [ 1 —
( m 0 /m „)] ——1i ~0+,

x(T, h) =(3K/um )
' =x. (T)+O(h) .

(6.14)

(6.15)

(6.16)

Likewise the wall condition (6.5) becomes

1 d +g p = hi ——(h +gm „)/2m „K~, (6 17)
K dz

while near mean-field wetting criticality one has
h, =g =g/K~.

In order to proceed correctly, particularly as regards
the signs of dp/dz, it is useful to study the problem with
the standard graphical methods. ' ' One verifies that
p(z;1) is always a smooth function for 0 (z ( 00; this is a
benefit of the global character of the integral criterion.
In particular, p(z;1) crosses the reference value m =0
or p =

—,', smoothly at z =l in contrast to the crossing-
criterion profiles: see Fig. 1. We expect 1=1+0(g&)
near critical wetting.

Now two distinct cases arise: (i) p =p( l ) )0, which
corresponds to l & l, where, depending on the relative
values of the relevant critical wetting fields h and ~, one
has l, (T, h) =210. [Recall that 10(T,h) is the equilibrium
or unconstrained value of 1.] Furthermore, p(1) de-
creases monotonically as 1 increases. In case (ii) one has
p(l)(0, corresponding to 1, (1(ao. Now, however, as
1 increases above 1„p(l) first decreases (below zero) and
then finally rises back to zero as l —+ 00.

The profiles also differ markedly in the two cases: (i)
when 1(1, one finds that p(z) increases monotonically as
z decreases from + ~ and, on analytic continuation
through z =0, ultimately diverges to + ~ inside the wall
region when z approaches a singular point z*(1)(0. On
the other hand, (ii) when 1)1, there is always a point of
symmetry, on the analytically extended profile at z =z (1)
such that p(z)=p(2z —z))0. In addition, there is a
unique maximum at z with p(z )=1+(—p)': see Fig.
1.

Armed with these insights, the appropriate square
roots in (6.13) may be taken. The integral to obtain
z =Z(p) then proves tractable and, furthermore, can be
inverted to yield the explicit constrained profile in the
form

(6.18)
T Tcw 7 h1+gm ~ 0 (6.10)

at h =0—with g & —KKO, where the inverse bulk corre-
lation length is

where the asymptotic decay is given by

R (T,h)=~ (1+@). (6.19)
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This form of solution can be checked by direct substi-
tution in (6.4) and (6.2) and is a valid solution for all 1

provided F+F = —4p. By imposing the crossing condi-
tion m =0 or p(l) =

—,
' to define 1 one finds more explicit-

ly

2F+ =1+2@+[(1+@)(1+4@)]' (6.20)

and can check that 1=1+0(g&) for large I. The various
features listed under (i) and (ii) above can be explicitly
checked.

Note also that (6.19) and (6.20) include the exact solu-
tion in the unconstrained, X=O case which is given sim-

ply by p, =h. Then one has « =ir+1+h,
F+ =1+—'h+O(h ), and F = ——'h+O(h ). When
h ~0—the standard tanh[ —,'«(z —1)] profile of m theory
is reproduced. We remark that this explicit solution for
the standard theory does not seem to be recorded in the
literature for h %0. When T ) T,~ the equilibrium
profiles, imposed by appropriate wall conditions, have the
form

m (z; T, h =0)=M {1+coth[ —,'«(z —z*)]] . (6.21)

D. Effective wall-interface potential

These display the advertised divergence at z =z*: see
Fig. 1.

=—(h i
—gm )/( —2m K«) —r . (6.28)

The variable ~ will serve as our primary control parame-
ter.

Now Eqs. (6.24) —(6.28) determine the variation of x,
p&, and p with the layer thickness l and the thermo-
dynamic fields T, h, h „and g (via r, g, etc.). We aim ini-
tially, therefore, to express the wall potential
W(l; T, . . . ) in terms of x, pi, and p.

To proceed we write the expression (2.13) for
W(1;. . . ) as

W(l ) = W ii(l )+ W„(l ) —W„(T, . . . ),
where the direct wall contribution is

(6.29)

W =@,( m i ii )
—h i m i i-i —,'gm i ii

=Xo( T, h ) [ ,' g 2r —4—rx ——2gx ], (6.30)

in which Xo =IC«m —reduces simply to —', X ~&(T), when
h~0, where X

~&
is the mean-Geld interfacial tension for

this model. ' The background term W„(T, . . . ) may, as
explained after (2.13), be determined at the end of the cal-
culation from the requirement W(l;h =0)~0 as 1~ oo.

The bulk term W &(1) is more complicated but after
substituting for (Bm„/Bz) using (6.13) and performing
an integral similar to that yielding (6.25), one can obtain

x =p, (1)—1=(m,„+m )/( —2m „), (6.22)

Although the explicit form (6.18)—(6.20) of the con-
strained profile is relatively simple, it is still necessary to
impose the wall boundary condition (6.17) and the actual
constraint (6.1). To that end it is convenient to introduce
the wall deviation and reduced gradient via

W &(1)=-220 ' h ln
x p)

1+p —1

+ —,'(1+@—3h )v'1+@

—
—,'p, [2x'+3x —p+3h ] ', (6.31)

1 dp
Kp) dz , z=O

(m, „—m ).
(6.23)

These are related via (6.13) as

p) —x +p (6.24)

Then, using the appropriate square root in (6.13) one can
integrate (6.1) for p =2 to find

x pi
« l = —p, —Vl+p —ln

&1+p—1

where, as previously, the subscript 1 means evaluation at
z =0+, and

which is valid for p, positive, negative, or zero. The first
step now is to eliminate the logarithmic term here with
the aid of (6.25). That yields the expected linear, bulk
field term h 1 in W(l ) with

h =—2XOhK=
(mp„—m „)

h ——h,
2m~

(6.32)

(r+gx )

(1+x)
After some algebra one can then write

(6.33)

as h ~0—.Note, however, that there are still weak, re-
sidual field dependences in p, p&, etc. Next one can elimi-
nate pi in (6.24) and (6.31) using (6.27) and express the re-
duced Lagrange multiplier as

which is valid for all l with W(l ) =h 1+V[x(l )]—W' (6.34)

ir(T, h)—:—,'«[1 —(m&„/m )] =«+O(h) . (6.26) with x now regarded as a function of l, T, h, h &, and g,
and

Note, however, as discussed in Sec. VIC, that p, can
change sign. Finally (6.17) may be rearranged to give V(x)=XDPg —2r+ —', [1+@(x)]~ —2'

(1+x)p,= —~—gx

with, recalling (4.5) and (4.6),

(6.27)
—gx —

—,'(r+gx)[p(x) —3x —2x ]/(1+x)] .

(6.35)
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—g x +0(x )], (6.36)

where the expression follows by eliminating p& and p in
favor of x as before. The expansion can then be inverted
for small X, that is, for l ~ ~, to yield

.(l)= '+ " ———'X—,'g' X'+O(x'),
1 —g e e(1—g)

(6.37)

Note that this may readily be expanded in powers of x for
small ~.

On the other hand, one can rearrange (6.25) in the
form

X(l)—:e '=[i/1+iM —1](x—p, ) 'exp[p, +v'1+iM]

=
—,
' e [1+0 (r ) ][r+ (g —1)x

where, by (6.20), we have

X=e "= 2F—[iM
—x —pii/1+p]/p(1+x) . (6.45)

Now note that near criticality ~, x, and thence p& and p
are all small. Then with the aid of (6.24) one can expand
in the form

x +pj —
—',iM+ —,'(2 p—i)( —pi )+ 0( piiM, M)] .

x+p, = —(2/e)X[1 —
—,'p —p, + —,'p, +0(p„p )] . (6.47)

Combining this with (6.46) and using (6.37) for x yields

X=(2/e)X[1+2gx +0(x,r)]

(6.46)

On the other hand, from the expression (6.25) for l one
can obtain

Pr(l ) h l +ia e
—«i+ i' e

—2«I+ @ e
—3«i+ (6.38)

where we recall that h is defined in (6.23) while i7(T, h) is
given by (6.26), (6.16), and (6.11). The coefficients are
found to be

which, in turn, may be substituted into the expansion of
(6.34) in powers of x.

Finally, one obtains the desired expansion for the wall
potential as l ~~ in the form

=—X 1 — X+0(X,r)
e (1—g)e

Finally, using (6.19), one obtains

el=[ii l+1 —1n2+0(r, X)]/(1+iM)'

Now from (6.33) and (6.37) one finds

(6.48)

(6.49)

w, =(4/e)(1+ 9)Xor+0(Y. ),
wz = (4/e ) QXO+ 0(r),
w 3

= [ 16g (g + —,
'

) /( 1 —g ) e ]Xo+0 ( r ),

(6.39)
r+ —OX+0(X ) [1+0(r)] .

l —g

(6.41) l=l+(1 —In2g'fi+0(il X, l X ) .

(6.40) Hence from (6.49) we can conclude, as h —&0,

(6.50)

(6.51)

as r-r —+0. Note that r is defined in (6.28), the numeri-
cal coefficients g and 0 are defined in (4.6) and (4.12) and
satisfy —g ) 1 and 0& 9&1, while Xo(T,h)=Earn
reduces to three halves of the bulk tension X

~&
when

h ~0. This completes the derivation of the wall-interface
potential.

One also finds that the background piece is given by

This confirms the basic expectation l —l =0(g&). In the
limit that the profile approaches the standard tanh profile
this is, of course, easily seen directly.

We now seek to reexpress the potential W(l ) in terms
of l, the crossing thickness. To that end notice
that X:—e ' =X '~ '+" and from (6.48) thence obtain

W =(—,'+ —,'g )Xo+0(r), (6.42)
X=—,'eX '+" 1+ X '+"+0(X )

1 g
(6.52)

which approaches X ~&+ —,'gM when h, ~~0—.This
value is, of course, calculable directly from the mean-field
theory. '

E. Relation between the integral and crossing constraints

(p —x)/(1+x) =F+X+F X

pi(1+@)'i'/(1+x) = F+X+F X—(6.43)

(6.44)

The most striking feature of the result (6.38) is that the
thickness l enters only in the bulk term h l and as powers
of X=e ', there are no terms like l "X with polynomi-
al factors as found generally when using the crossing con-
straint. To understand the relationship between the two
apparently contrasting results in more detail we examine
the dependence of l on the corresponding crossing point l
that follows from the integrally constrained profile (6.18).

To this end we evaluate p(z;l ) and dp/dz at z =0 us-
ing (6.18), (6.22), with (6.23) to get

Then by using (6.50) and noting that X"=exp( —pi~1) one
can expand this for small ~ and X in the form

oo j—j

(2/e)X=X+ g g c i, (~1)"X~,
j=2 k=0

where the leading coefficients are found to be

c~, =r/( I —g ), c20 =2g/(1 —g )+0(r),
c32= —2r /(1 —g), c3, = —,'0+0(i.),

c3p =0( 1 )

(6.54)

(6.55)

The appearance of the terms (i~l)"e ~ ' is striking in
view of the results originally obtained with the crossing
criterion! Indeed, we may now substitute (6.53) into the
previous results (6.38)—(6.41) for W(l ) to obtain the same
potential expressed in terms of l. This yields



7384 ALBERT J. JIN AND MICHAEL E. FISHER 47

» =h~/x(1 —g)[1+O(Y.,h)],
w zo

= QXO+ 0(~, h ),
(6.58)

w&&
= —2gXp +O(r, h), w3& -r+O(h), (6.59)

wzz =br /k(1 —g) [1+O(r,h)],
(6.60)

w3z-r +O(h},
w»=2g '(g+ —,')Xo/(1 —g)' . (6.61)

Finally, therefore, we have an extremely close correspon-
dence with the results (5.30)—(5.31) obtained wholly on
the basis of the crossing criterion. Note in particular
how the coefficients w.k for k ~ 1 vanish as powers of
w-~ when T~T,~ as do the original coefficients w k.
The compatibility of the two approaches reinforces our
general conclusions.

It should be further remarked that the explicit planar
profile (6.18) allows us to determine the I-dependent
stiffness coefficient as indicated in Sec. VI A. However,
the expressions for X(l) now entail complicated integrals
so that more elaborate analysis (to be presented else-
where ') is required to extract the asymptotic decay.
Here we merely report that the type of behavior found
for the parabolic potentials with perturbations is, in fact,
reproduced. '

VII. CONSEQUENCES OF NONKXPONKNTIAL TERMS

Having established that the effective potential W(I) in

general contains terms of the form w (ak.l)"e J ' for

j)k )0, as in (1.8), and that the perturbed stiffness X(l)
has similar terms, it is appropriate to ask what effects
such deviations from pure exponential form will have on
the critical wetting behavior. Recalling that the border-
line dimensionality is d =3, there are three cases to
address: (i) d & 3, (ii) d )3, and (iii) d =3.

The functional renormalization-group treatment for
d (3 reveals ' the existence of well-defined fixed-point
potentials W*(I) describing wetting criticality with non-
classical exponents. The fixed-point potentials have sin-

gle wells and rapidly decaying tails; on the critical mani-
fold in the full Hamiltonian space they are attractive for
all similar potentials which decay faster than 1/I' with
r=2(d —1)/(3 —d). The only two relevant perturba-
tions correspond to the deviations bT=(T —T,~)%0
and h )0. Consequently, the changes in W(l) we have
found can do no more than change the values of T,~ and
of the nonuniversal metrical factors; universal aspects of
the critical behavior will remain unchanged.

The spatial dependence of the stiffness X(l) that we
have uncovered has not been explicitly studied in current
renormalization-group treatments. However, its pres-
ence considerably complicates the analysis and, accord-

J
W (I;T, . . . ) = W(l; T, . . . ) =htl+ g g w, k(lrl )"X',

j=1 k =0

(6.56)

where the new potential coefficients are, in leading or-
ders,

ht =lrh /~=h, w, o =2(1+Q)Xor+O(r, h), (6.57}

ingly, details will be presented elsewhere. ' Neverthe-
less, one can be confident, in view of the exact planar Is-
ing model solutions, that no deviations from critical
point universality will be induced by this source when
d =2.

By contrast, for d ) 3 mean-field theory should be val-
id and the behavior will be sensitive to the details of W(l)
even if X(l) should play no role. ' Thus considering com-
plete ~etting, as h~0+ with T) T,~, and neglecting
X(1) one finds for w» )0 a wetting layer thickness
diverging as

(Irl ) =ln(h /1~) '+ln[gw&&in(h /a) ']+ . (7.1)

where c is a constant and the next correction varies as
wm/ w»l n(c/~b, T~). Again the leading log-log correc-

tion is absent for pure exponentials. All other properties
also follow in a straightforward way' from W(l) [as-
suming, still, that the effects of X(l) can be neglected '].

At the borderline dimension d =3, on which we now
focus, one might guess that the changes in critical behav-
ior could be no worse than for d )3. However, although
essentially correct, that conclusion is not obvious in view
of the complex wetting transition behavior found at d = 3
in the renormalization-group treatments; recall, in
particular, the continuous dependence of the exponents
on the parameter co defined in (1.1). To study this we fol-
low the analysis of D. S. Fisher and Huse still neglecting
any possible role of X(l).

A. Reaormalization-group analysis for d =3

Fisher and Huse (FH) consider the standard interface
Hamiltonian (1.5) with X independent of I (y) and a
momentum cutoff ~k~ &A imposed. Now FH argue per-
suasively that to understand asymptotic (I~~) wetting
criticality a linearized RG treatment suffices. They then
implement an exact linearization of the standard momen-
tum shell integration procedure: fluctuations with mo-
menta satisfying A/b & ~k~ &A are integrated out fol-
lowed by the rescaling

y'=y/b and l(y')=b' ' l(y) . (7.3)

In this formula we allow for general d, but will usually set
d=3 below. Introducing a continuous renormalization
fiow parameter t (called I by FH, who use z for our I) via
b =e '~1 leads to a linear partial differential equation
for the renormalized wall-interface potential W'"(I ).

To obtain the critical behavior of the wetting-layer
thickness (I ), the parallel correlation length g~~, and F„
the singular part of the free energy (per unit wall area),
the RG transformation is carried through up to a match-
ing point t = t ( T, h, . . . ) where at the (presumed unique)

(~ )minimum I = I of W" '(I) one has

The singular correction term here is absent for pure ex-
ponentials (w» =0); the factor 8 = 1 allows for renormal-
ization by residual fiuctuations (which generally shift the
bare parameters). In a similar way if wzz )0 and w» &0
and w&o both vanish linearly when AT~0 —,critical wet-

ting in zero field is described by

v(I ) =ln(c/~AT~) —1 [n8 wz2l (n/c~b, T~)]+, (7.2)
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(7.4)

At this point mean-field theory suffices and yields

(7.5)

Then, via rescaling, the original, unrenormalized proper-
ties are given by

(I )(T h ) —e

g'~ ()T, h, . . . ) =e'
gati,

F, (T, h, . . . )=e '" '" W" '(lt) .

(7.6)

+O(I) hl+ g W~t (l)
j~k~0

(7.7)

where 8(z) =1,0 for z)&D, is the usual step function. We
then adopt a "soft wall" of strength 0 & wo & ~ and take

W (1)=w0, WJ), (l) =w,t, (a.l)"e

Solving the linearized Aow equation for d =3 yields

(7.8)

( / —I')~
W'"(l) = dl'W' '(I')exp

&2ir5(t) — 25'( t)

Because of the linearization employed one cannot treat
an infinitely repulsive wall for l &0. Rather, in the spirit
of FH, we write for all l

W(l)—:W' '(l)=O( —I) W (l)

I, co & —,'; II, —,
' & ~ &2; III, co & 2. This changeover is evi-

dently independent of the exponent k of the Kl factors in
W(l). Consequently, the same three regimes arise quite
generally. The more detailed changes in critical behavior
can be determined from (7.11)—(7.14) following directly
the methods of FH. We will, primarily, just summarize
the results.

B. Wetting criticality with nonexponential terms

For generality we may first regard the potential
coefficients wJ), (j ) k) as independent fields and thus ig-
nore the rather special dependences of the "bare" or ini-
tial values of the w k on T, h, h &, and g uncovered in the
preceding sections. (Under renormalization one would
not normally expect such dependences to be preserved
unless particular symmetries were involved; however, in
the present case, since we operate with the linearized
functional renormalization group, the bare values have
an enhanced significance. ) A little reflection shows, how-
ever, that a host of different types of wetting transition
scenarios might then arise as various different combina-
tions of the w-k compete with one another under renor-
malization! Our aim here is only to study the changes in-
duced in the ordinary critical wetting transition found for
pure exponentially decaying effective potentials. This re-
sults from a competition between the "attractive" part
of the renormalized potential, which we generalize as

where the width of convolution is given by

5 (t)=2cogtt t .

(7.9)

(7.10)

A'"(I)—:[hl]'"+ W'"(I)+ W'"(l),

and the remaining "repulsive" part which is thus

J
R '"((()= W'" ( I ) + g g W'"(1) .

(7.15)

(7.16)
We may now analyze the renormalized potential asymp-
totically for large l and t. It transpires that expressions
are needed only for p=l lgpt of order co. We thence ob-
tain the Gaussian forms

W(t)(I) e2t —I /25 (t) (7.11)

[hl ](&) hI 2&+ h5 (t) 2& —! /25 (~)

v'8~t' (7.12)

for l )0, and for 0 & l & 2j cogent

Wjkk . . Kl
WJ(kt)(l) = ' J—

V 2tr~5 2' t

—k —i

2t —I /25 (t) (7.13)

however, for l ) 2j cogent one still has th'e exponential de-
cays

W'"(l)=w (t~l —)~ 5 )" ' +
wjk K JK (7.14)

The further corrections to these expressions are of rela-
tive order I /t as I It —t ~ ~ or smaller.

Now FH showed for the k =0 case (w (, =0 for k )0)
that the changeover of the renormalized potentials from
Gaussian to exponential decays is the crucial feature
leading to the three regimes of critical behavior, namely

j~2 k=0

Now in the FH analysis the attractive part is totally
negative for T & T,~ but approaches zero when
T~T,~ —,while the repulsive part remains everywhere
positive throughout the transition region. We will as-
sume that the same situation pertains when the factors
polynomial in l are present with, in particular, the j =2
terms in (7.16) not all vanishing. One may check that for
the specific potential coeScients computed previously
this will be the case. It is then easily seen that the
higher-order terms with j ) 3 in (7.16) may be neglected.

In the circumstances postulated, the three critical wet-
ting regimes will arise just as previously being deter-
mined as follows: regime I, co & —,': the global minimum of

(~ ) (E )W" '(l) lies in the exponential tails of both 2" )(l) and
(t )R" '(l) [see (7.14)]; regime II, —,

' &co &2: the minimum
(~ )lies, now, in the Gaussian region of R " '(l) [see

(7.11)—(7.13)]; regime III, co) 2: the Gaussian parts of
both attractive and repulsive potentials determine the
global minimum of W" '(l). It transpires, furthermore,
that the results can be expressed compactly in terms of
the polynomials W, (x)=w)0+wiix and W~(x), as
defined in (5.31).

Suppose then, that the critical wetting point is ap-
proached along the phase boundary with h =0 and one
can write
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In regime I (co & —,
'

) the transition remains at b T=O and
one finds the parallel correlation length varies as

(7.18)

where the exponent v~~
= 1/(1 —co) takes its previous

value while 8=(l —
Zco)v~~. Similarly one has a wetting-

layer thickness diverging as

(Kl ) = —
~ Wi(v() ~b. T~ ')[

+ lnW (8 lniATi '),
Z(1 —ai)

(7.19)

while the singular part of the surface free energy obeys

[W', (v((ln(ET] ')/

[W2(Dining T[ ')]
(7.20)

In regime II ( —, & co &2) the critical wetting transition
is again at AT =0, but the singularities are described by

(7.21)

with exponent v~~
=(2+co—v'8') ', as previously and

( vl ) =v 8cov~~ I ln
~
b, T

~

' —
—,
'

( 2+ co )ln ln
~

b, T

—ln[ W (8ilni~b, T~ ')/AT]], (7.22)

with 8, =(2—co)v~i.

Finally, in regime III (co) 2) the transition tempera-
ture is shifted according to AT, ~= T,~ —T,~
= —c(co —2)~0 as co~2+. The values of b, T, ii, and c
depend on all the coefficients wzk and the critical diver-
gences are

g~~-exp ln +lnln + .1 1 1

CA~ CA~ CA~

(7.23)

(Ill)= ln +lnln + .v 8' 1 1

CA~ CA~ CA~
(7.24)

where A~-T, ~ —T~O+ and C depends on w~k, wo, ~,
etc.

The previous results ' correspond simply to
W, (x)=a, b T & 0 and Wz(x ) = a& )0. One can thus see
clearly that polynomial factors in W ( l ) can induce
significant differences (which are somewhat more notice-
able in regimes I and II). For instance, if both w» and
wio vanish linearly with b, T and wzz(T, ii, ))0, one finds
from (7.19) and (7.22) that (al ) picks up divergent
corrections of the form 3 (co)in in~a, T~ (although in re-
gime III, one encounters only shifts in the nonuniversal
transition locus, in the amplitudes, etc.).

Wi(x)=b, TU, (x) with bT=(T —T,ii, )/T, ii,~O

(7.17)

On the other hand, our explicit calculations in Secs. V
and VI actually showed that, for short-range critical wet-
ting, w», w2&, and w22 either vanish identically or ap-
proach zero much more rapidly than linearly with AT:
see (5.75) and (6.57)—(6.61). When this is recognized, fur-
ther expansions of (7.18)—(7.24) may be made, revealing
that such w k terms with k ~ 1 generate nothing more
than unimportant modifications of correction factors to
the leading behavior in regimes I and II. In regime III
only the nonuniversal transition locus and various ampli-
tudes are effected. ' In other words, the previous results
of Brezin, Halperin, and Leibler and of FH are fully ade-
quate: all the deviations from pure exponential behavior
found in W(l) are quite inessential to the asymptotic crit-
ical wetting behaviorI

Closely similar conclusions hold for the approach to
critical wetting by varying the bulk field at T=T,~. We
find, in fact, two distinctive types of behavior correspond-
ing to co & —,

' (regime I) and co) —,
' (regimes II and III) that

are adequately determined by the pure exponential terms
together with [hl ]'" and W'"(l). Thus, prouided the
stiffness variation is neglected, all the original RG predic-
tions for critical wetting remain valid, in spite of the
nonexponential terms in W(l).

Finally, we remark that by extending calculations
along the lines of FH, one can obtain closed-form ex-
pressions for the scaling functions for g~~(T, h), (l(T, h) ),
and F, ( T, h ) in regime I as a function of the scaled com-
bination AT/~h~" "' . These scaling functions allow, in
principle, better analysis and assessment of the Monte
Carlo simulations. ' ' ' ' However, in doing this one
seems only to reinforce the earlier conclusions that for
the Ising-model simulated one has co&, ~0.25 in contrast
to the actual value' co ~0.6. Therefore, our analysis to
this point does not cast light on the sharp discrepancy be-
tween the theory and simulations.

C. Effects of stiÃness variation

It is evident that to finish the story the effects of the I-
dependent terms b, X(l) in the stifFness coefficient of the
full interfacial Hamiltonian must be studied. As men-
tioned, the necessary analysis is rather elaborate and will
be reported separately; ' the overall conclusions and a
few details have been summarized briefiy. ' '"' For com-
pleteness the main issues arising are sketched here.

The renormalization-group Aows must now be studied
in the functional space specified by [b,X '"(l), W'"(1)].
The first essential feature is that the Auctuation contribu-
tions controlled by AX(l) feed through into W'"(l).
Within the linearized RG theory, the result has a surpris-
ingly simple form: it is simply as if, after renormalization
to stage t, the bare potentials W k(l) in (7.7) and (7.8) are
replaced by

8;k(l) = [w~k+ —,'cogiiA (1—e ')s.
k ]( 11)"e

(7.25)

in which the sjk are the stiffness coefficients [from (4.31)]
while A is the momentum cutoff.

Next one notices the explicit results found previously,
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in particular, w, o-s&O-AT, w20-$2o kT, w2i -AT,
and, most crucially, the fact that szt(T, h) remains of or-
der unity and negative as b.T~O :s—ee(4.33) and (5.45).
Consequently the term s2, le ' plays a dominating role
in R ("(l), at least for l )4togt)t: see (7.14). Furthermore,
since this contribution is negative it violates the positivity
of the renormalized repulsive potential R '"(l) for large t
and l. This has an obvious destabilizing effect. Indeed,
it follows that in regime I (co( —, ) the critical wetting
transition must become a firs-order transition!

In regimes II and III the fluctuations are enhanced;
then more detailed analysis is needed. ' One finds' ' ' '

that there is a nonuniversal trleritical value co, above
which the critical wetting transition remains continuous
and with unaltered singular behavior; below co, the wet-
ting transition is again of first order.

It also transpires ' that the first-order transitions in-
duced by the stiffness variation are comparatively weak
so that, in simulations of finite systems, they might easily

be viewed as critical in nature. In light of this, it seems
likely that the discrepancies with the previous Monte
Carlo simulations can be attributed to the fact that the
transitions simulated in the three-dimensional Ising mod-
el are actually weakly first-order. However, further nu-
merical studies (analytically based or via simulations) will
be needed to cement that conclusion firmly.
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