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A two-dimensional electron system in an external magnetic field, with Landau-level filling factor
v= 3, can be transformed to a mathematically equivalent system of fermions interacting with a Chern-
Simons gauge field such that the average effective magnetic field acting on the fermions is zero. If one ig-
nores fluctuations in the gauge field, this implies that for a system with no impurity scattering, there
should be a well-defined Fermi surface for the fermions. When gauge fluctuations are taken into account,
we find that there can be infrared divergent corrections to the quasiparticle propagator, which we inter-
pret as a divergence in the effective mass m *, whose form depends on the nature of the assumed
electron-electron interaction v(r). For long-range interactions that fall off slower than 1/r at large sepa-
ration r, we find no infrared divergences; for short-range repulsive interactions, we find power-law diver-
gences; while for Coulomb interactions, we find logarithmic corrections to m *. Nevertheless, we argue
that many features of the Fermi surface are likely to exist in all these cases. In the presence of a weak
impurity-scattering potential, we predict a finite resistivity p,, at low temperatures, whose value we can
estimate. We compute an anomaly in surface acoustic wave propagation that agrees qualitatively with
recent experiments. We also make predictions for the size of the energy gap in the fractional quantized
Hall state at v=p /(2p + 1), where p is an integer. Finally, we discuss the implications of our picture for
the electronic specific heat and various other physical properties at v= 3, we discuss the generalization
to other filling fractions with even denominators, and we discuss the overall phase diagram that results
from combining our picture with previous theories that apply to the regime where impurity scattering is
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dominant.

I. INTRODUCTION

When the fractional quantized Hall effect was
discovered in 1982 by Tsui, Stormer, and Gossard,! we
were given only a first glimpse of the remarkably complex
behavior of two-dimensional electron systems with a par-
tially filled Landau level. In the intervening decade, as
samples with higher and higher mobility have been
prepared, and measurements have been extended to lower
temperature and stronger magnetic fields, there have
been observed an increasing number of Hall plateaus cor-
responding to various filling fractions v with odd denomi-
nators.>® A few fractions with even denominators have
also been seen in higher Landau levels,*> but not, so far,
in a single-layer system, in the lowest Landau level.

From a theoretical point of view, the occurrence of
Hall plateaus at filling fractions with odd denominators
can be understood, to a great extent, through the original
theoretical analysis of Laughlin,® and various subsequent
extensions, such as the hierarchical construction of quan-
tized Hall states.>’~!> The essential correctness of these
explanations is well established in the case of the strong-
est fractional Hall plateaus, such as those at v=1 and 2,
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where the energy gap is large, and the Laughlin trial
wave function is the exact ground state for a system with
short-range repulsive interactions.® Moreover, numerical
solutions of the ground state for small finite systems with
Coulomb interactions show a very high degree of overlap
with the Laughlin trial functions. As one considers filling
fractions with larger and larger denominators, however,
the evidence for the correctness of our general theoretical
picture becomes more and more tenuous, as our ability to
calculate quantitative properties of the quantized Hall
state becomes progressively weaker, the energy
differences between competing states of possible interest
become progressively smaller, and the ability to obtain
meaningful results from finite-size system calculations be-
comes progressively more questionable. Nevertheless, it
is at least plausible to believe that the most essential
features of the observed plateaus with odd denominators
such as the quasiparticle charge and statistics, and the
quantum numbers of the ground state and low-lying ex-
cited states, are correctly described by the conventional
hierarchical constructions.?!*

By contrast, the behavior of a two-dimensional elec-
tron system in the vicinity of a filling fraction with even
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denominator is very poorly understood. As an example,
from the point of view of the hierarchical construction,
the state at filling fraction v=1 is only described as the
limit of an infinite sequence of odd fractions with larger
and larger denominators, such as the sequence v=1, 2,
3, 4,.... Each state of this sequence is a daughter state
of the state which proceeds it, but as the density of quasi-
particles added at each stage is relatively large on the
scale set by the effective magnetic length or the size of the
quasiparticle, and the form of the quasiparticle interac-
tion is not known on these length scales, the extrapola-
tion to v=1 cannot be made with any degree of
confidence. Moreover, it is not even clear that the state
which is constructed by taking the limit of the sequence
v=21% 3 % .., which approaches v=1 from above, is
necessarily the same as the state which is obtained by the
approach from below.’

An alternative approach to understanding the behavior
at v=1 is suggested by the ideas of transmutability of
statistics for particles in two-dimensional systems.”'4-3!
In particular, it is possible to introduce a Chern-Simons
gauge field that interacts with the electrons, which is
equivalent to attaching to each electron a “magnetic flux
tube.” The quantum-mechanical model thus obtained
will have identical properties to those of the original elec-
tron system without the fictitious gauge field, provided
that the statistics of the particles in the new model are
appropriately modified. Specifically, let ¢ denote the
strength of the flux tube, in units of the flux quantum
27#. (The fictitious charge of each particle which in-
teracts with the fictitious gauge field has been chosen to
have unit strength.) Then we must impose the condition
that if two particles are interchanged in a clockwise
manner around a curve which encloses no other particles,
then the wave function must change by a phase factor
e'® where'

0=m(d+1) (mod2w) . (1.1

If we choose ¢ to be an even integer, then the wave
function still obeys the conditions for fermions, and
indeed the quantum-mechanical problem is really un-
changed. However, there are approximations which
seem natural in the transformed representation but which
might not be so evident in the original formulation. For
example, if we make the choice [5 =2, and if the external
magnetic field B is chosen such that there are precisely
two flux quanta per electron (i.e., v=1), then the average
of the fictitious magnetic field arising from the flux tubes
precisely cancels the external magnetic field. Thus if we
ignore fluctuations in the gauge field, we are led to a
greatly simplified model, a system of spinless fermions in
zero magnetic field.

It is the purpose of the present paper to follow this line
of argument to its logical conclusion. We assume that
the ground state at v=1 (and at certain other fractions
with even denominator) in fact contains a Fermi surface
for some type of quasiparticle, which can be obtained adi-
abatically from the mean-field state of transformed fer-
mions with ¢=2n flux quanta attached. We obtain vari-
ous predictions based on this and we find that a number
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of these predictions are in agreement with known experi-
mental observations. In particular, we are able to pro-
vide an explanation for the anomalies in surface acoustic
wave propagation which have been recently reported
near v=%.32 3

We also probe the self-consistency of our underlying
assumption by trying to calculate some of the effects of
the fluctuations of the fictitious magnetic field about its
average value. Although we encounter some divergences
in the course of these calculations, which depend in a
crucial manner on the nature of the interaction between
the electrons, we conclude that, at least for the physically
important case of Coulomb interactions, the essential
features of a Fermi-liquid theory are likely to be correct.
The necessary modifications of Fermi-liquid theory,
which are particularly large in the case of short-range in-
teractions, will be also explored in Sec. VI below.

The idea of attaching an even number 2n of quanta of
fictitious flux to each electron, at v=(2n)"!, was used in
the work of Moore and Read!” to construct an order pa-
rameter for the spin-singlet quantized Hall state of Hal-
dane and Rezayi,** analogous to the order parameters
previously used for quantized Hall states with odd
denominators,'®~2° and to construct a new class of spin-
polarized states involving a Pfaffian. In both the
Haldane-Rezayi state and the Pfaffian state, the “mean-
field theory,” which describes the fermions in the zero
average magnetic field, contains pairs, in the manner of
the BCS theory of superconductivity. In the Haldane-
Rezayi state, where both spin states are occupied, the
pairs are singlets, so that the pairing function has even
parity (a d wave in the simplest case). In the Pfaffian
state for spinless or spin-polarized electrons, the pairing
has odd parity (a p wave in the simplest case). The
Pfaffian state was further discussed in a similar manner
together with other pairing states of odd parity by
Greiter, Wen, and Wilczek.?"?? The latter authors also
emphasized the possibility of attaching the flux to the
electrons in an adiabatic manner, passing continuously
from a p-wave BCS state in zero field, to a fractional
quantized Hall state at v=1, with an energy gap that
hopefully remains open at all intermediate stages, for a
suitably chosen potential. In all the above works, the
goal was to construct a state which is an incompressible
fluid, and this has been demonstrated for suitable Hamil-
tonians. Thus these states may describe the even-
denominator quantized Hall plateaus which have been
actually observed under some special conditions—e.g., in
the second Landau level, at v=3, in a single-layer sys-
tem,*> and at v=%, in certain double-layer or thick-layer
systems.>>3¢ In the present paper, however, we shall be
concerned with the more usual behavior at v=, where
no quantized Hall plateau is observed.>*3%37

The idea of attaching an even number of flux quanta to
each electron, in order to convert a state at one value of
the filling factor v into a state with an average magnetic
field corresponding to another simpler filling factor, is
also central to the work of Jain,?> who used it to con-
struct trial wave functions for fractions of the form
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where p is a positive or negative integer. In this case, the
transformed fermions are in an integer quantized Hall
state, with p Landau levels occupied. The sequence of
states obtained from (1.2), with n =1, is in fact the princi-
pal sequence of odd-denominator quantized Hall states,>®
tending toward v=1 from above or below as p — + « or
p— — o, which includes the most prominent fractional
Hall plateaus that are observed experimentally in the
lowest Landau level.

The existence of prominent Hall plateaus with associat-
ed vanishing of the resistivity p,, at the sequence of frac-
tions v=p /(2p +1), and the success of Jain’s trial wave
functions, were in fact among the principal motivations
for our attempt to develop a theory in which there is a
Fermi surface at v=1. If the density of electrons n, is
held fixed, then the magnetic field B corresponding to
v=p /(2p + 1) satisfies

2mfic
e

ne
p

where B, ,, =4rficn, /e is the magnetic field correspond-
ing to v= at this density. This equation has the same
form as the relation which determines the positions of the
integer quantized Hall plateaus in the vicinity of B =0,
except that the deviation AB appears here on the left-
hand side instead of the total magnetic field B. But the
integer Hall plateaus are properly regarded as an extreme
form of the de Haas—Shubnikov effect, which is a direct
consequence of the Fermi surface at B=0.

The underlying method of the present paper, which is
the idea of treating a many-body system of fermions with
attached flux tubes by starting from a mean-field theory
in which the fermions see only the average value of the
fictitious magnetic field, was used with dramatic effect by
Laughlin®! in his argument for the occurrence of super-
conductivity in a collection of semions—particles with
half-Fermi statistics, which can be obtained from fer-
mions or bosons by attaching a flux tube with ¢= +1. In
subsequent papers, Laughlin and various co-workers, as
well as other authors, have developed a systematic per-
turbation theory for taking into account the fluctuations
of the fictitious magnetic field about its average value,
and have explored the consequence of a variety of ap-
proximations, including the Hartree-Fock approximation
and the random-phase approximation (RPA), for anyon
models of superconductivity.’*=*3 A related study of the
fractional quantized Hall states at v=p /(2p +1), which
employs a transformation to fermions with two flux quan-
ta attached, and which includes a discussion of the RPA
in t}215is case, was presented recently by Lopez and Frad-
kin.

Overall, there is substantial evidence supporting the
validity of the underlying method for the case of anyon
superconductivity and for fractional quantized Hall states
with a large energy gap.!#?>%%% 1In the present case,
however, we wish to use the method in a gapless system.
Thus the self-consistency of the approach rests on much
more delicate arguments, dependent on the vanishing of
phase space for scattering events close to the Fermi sur-
face, and requiring that the corresponding matrix ele-

ABE(B“BI/z): ’ (13)
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ments not diverge too rapidly as the Fermi surface is ap-
proached. Hence the validity of the method cannot be
taken for granted, and it will be of great interest to see
whether further theoretical and experimental work sup-
ports the results we have obtained so far.

The situation considered in the present paper is the
ideal case of a very high mobility sample, where the ran-
dom potential due to impurities is either neglected or
treated as a weak perturbation. This should be contrast-
ed with recent work by several other authors who have
considered the case of a Landau level near a filling frac-
tion with even denominator under circumstances where
the disorder is relatively large.?””?** In that case, it ap-
pears that there is no Fermi surface, and no metallic state
over a range of densities, but rather a direct impurity-
driven transition between one quantized Hall state and
another. Authors who studied the dirty case have also
made use of a Chern-Simons gauge field, but in contrast
to the approach we use here they chose to transform the
electrons into bosons, with an odd number of flux quanta
attached to each boson.?”»28:46

The outline of our paper is as follows. In Sec. 11, we
define the mathematical transformation we use, and ob-
tain the key results of mean-field theory and the RPA
response functions for the system at v=1, in the absence
of impurity scattering. The mean-field theory results are
extended to the fractional quantized Hall states at
v=p/(2p+1) in Sec. III. In Sec. IV, we discuss the
value of the effective mass m * which one obtains in the
case of a Coulomb interaction between electrons, if one
fits the mean-field formula for the energy gaps at
v=p /(2p+1) to numerical results for the energy gap in
small systems of electrons on a sphere. We also discuss
some implications for the interaction parameters of a
Fermi-liquid theory. Effects of impurities are included,
within the RPA theory, in Sec. V, where we also estimate
the electrical resistivity p,, using a simple model for the
impurities, at v=1.

The effects of gauge fluctuations, not taken into ac-
count in the mean-field theory or the simple RPA
response functions, are examined in Sec. VI. We discuss
the contribution of collective-mode fluctuations to the
specific heat at low temperatures, and we discuss the
singular corrections to the one-fermion self-energy that
arise from scattering by dynamical gauge fluctuations, in
a clean sample, for various forms of electron-electron in-
teraction. In Sec. VID, we speculate on the
modifications to Fermi-liquid theory which are likely to
be implied by these singular self-energy corrections. In
VIF, we discuss implications for the size of the energy
gap at v=p/(2p+1), while in VIG we examine the
effects of fluctuations on the electrical resistance at v=1,
in the dirty case where impurity scattering is moderately
large.

Various experimental consequences of our theory are
discussed in Sec. VII, including the predictions of an
anomaly in the propagation of surface acoustic waves
near v= 1, referred to above. In Sec. VIII, we extend our
analysis at v=1 to various other filling fractions with
even denominator, and in Sec. IX we discuss the overall
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phase diagram, at at low temperatures, as a function of
the magnetic field B and the strength of the impurity
scattering potential, which one obtains by combining our
analysis with the earlier work on impurity-driven phase
transitions between different quantized Hall states. A
brief summary of our conclusions is given in Sec. X.

Two appendixes contain a derivation of the RPA using
the Lagrangian formalism, and a discussion of the wave-
vector-dependent resistivity tensor in the presence of im-
purities in the vicinity of v=1.

II. MEAN-FIELD THEORY
AND THE RPA AT v=%

We consider a two-dimensional system of spinless elec-
trons, governed by a Hamiltonian of the form

H=K+V, (2.1

where K is the kinetic-energy operator,

1

K=
Zmb

Ja o[ —iV+e AP (), (2.2)
and V is a potential-energy operator which depends only
on the positions of the electrons. The operator ¥, (r) is
the creation operator for an electron at point r, the vec-
tor potential A(r) is due to a uniform external magnetic
field B which points in the z direction normal to the
plane, and m, is the band mass of the electrons. We em-
ploy units where #i=c =1, and the electron charge is —e.

We next introduce a “‘quasiparticle” creation operator
¥ (r) which is related to ¥ by

Y (r)=v¢} (r)exp [—i$fd2r’arg(r~r’)p(r') , (2.3)

where arg(r—r’) is the angle the vector (r—r’) forms
with the x axis, and

pr)=¢; ()¢ (r)=9¢ " (r)Y(r)

is the density of particles at point r. The operators ™ (r)
and ¥(r) will obey the usual fermion commutation rela-
tions provided that & is an even integer. Here we shall
primarily consider the case ¢ =2; however, we shall keep
track of ¢ in our equations for later generality. In terms
of the transformed operators ¢ (r), we may write the ki-
netic operator in the following form:!®

(2.4)

—_ 1 2 + . — 2
K=7 Ja*ry ([ —iV+e Ar)—a(n)Py(r), (2.5
where
a(r)=4¢ [ d?r'g(r—r')p(r') (2.6)
gr)=(2Xr)/r?. 2.7)

For the potential-energy operator, we assume a two-
body interaction of the form

V=%fd2r d?r'v(r—r')p(r)p(r'): , (2.8)
where the colons represent normal ordering with respect

to creation and annihilation operators. Our primary in-
terest is in the case of Coulomb interaction

e2

——7 > (2.9)
elr—r'

v(r—r')=
where € is the background dielectric constant. However,
we shall also consider finite-range repulsive interactions,
and potentials which fall off slower than |r—r’| ™. In the
case of the Coulomb interaction, or other slow power
laws, we must also assume an interaction with a uniform
neutralizing background, which cancels out the infinite
k =0 Fourier component of the two-body potential v.

We shall study the Hamiltonian H using a perturbation
approach based on its formulation in terms of the quasi-
particle operators i and ¢¥t. Because the relation be-
tween ¥ (r) and ¢ (#) is highly nonlocal, quantities such
as the one-electron Green function G,(r,t)
=(iT[¢; (r,t)1,(0,0)]) cannot be readily obtained with
this approach. However, quantities such as the response
function for the density, which has a local expression in
terms of ¥ and ¥, are natural objects for study.

ﬁs a starting point, we define a mean-field Hamiltoni-
an

1
2m*

where m* is an effective mass and A A is a mean-field
vector potential which satisfies

VX(AA)=AB=B—27¢n,/e ,

H0=

Jot[—iV+eA A(r)Pyd?r , (2.10)

(2.11)

where n, is the mean value of the electron density p(r).
Within the Hartree approximation or the RPA, the
effective mass m * is equal to the band mass m,; we intro-
duce a different symbol, however, for later generality. In
this section, we shall restrict ourselves to the case of a
half-filled Landau level (v=2mn,/Be=1) so that AB is
precisely zero, and H|, is just the Hamiltonian of a set of
fermions in zero magnetic field. The ground state of H,

is then a filled Fermi sea, with Fermi wave vector

kp=(4mn,)*=1/1, , (2.12)
where [ is the magnetic length, defined by
ly=(eB)" 172, (2.13)

The linear-response function for the density and
current can be readily calculated in the RPA, or time-

dependent Hartree approximation. We write the
response function in the form
ju=eK,,(q) 47", (2.14)

where p and v take on the values (0,x,y); A% is an
external perturbing electromagnetic scalar or vector po-
tential at wave vector q and frequency o, and j u is the in-
duced change in the particle density and current. We
shall work in the Coulomb gauge, so that the longitudinal
part of A is equal to zero. Moreover, the longitudinal
part of j is simply equal to (w/q)j,. Therefore, it is pos-
sible to treat K uv 88 2 2X2 matrix, in which the indices
taken on the values O and 1, denoting, respectively, the
time component and transverse space component of a
vector. (Our sign convention is such that, for q||X, the
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direction =1 refers to the positive y direction.)
The RPA equations for K uv May be written as

K=K°[1+UK°]™!

=K%'—KOK°+U"117KO, (2.15)
where
v(q) —M;
U= —omid . (2.16)
q

and K Ov is the response function of the noninteracting
Fermi system, governed by the Hamiltonian H,. The
off-diagonal matrix elements of the matrix U arise from
the interaction with the Chern-Simons gauge field while
v(q) is the Fourier transform of the two-body interaction

v(r—r’). For the Coulomb potential (2.9), this is given
by
2
(q)=27¢ 2.17)
€q

The unperturbed response function Kg,, has only diag-
onal elements, which may be written as

(w floy) 2
f k+q) k) d°k (2.18)
o— a)k+q+wk+1n (277)?
by f(cok+q)—f(wk) d?k
m* w_wk+q+wk+i7] (27T)2

(See Fig. 1.) (2.19)

The RPA equations may be derived using the Hamil-
tonian formalism by following in a straightforward
manner the methods developed for the anyon supercon-
ductor by Hanna, Fetter, and Laughlin and others.?® 4042
An alternatlve derivation, using the Lagrangian ap-
proach,*! is reviewed in Appendix A below.

We first consider the static response function K ,,(q,0)
for wave vectors g << k. In the limit of small ¢, we find

*

0o _Mm 2
= + .
Koo Py O(g”), (2.20)
0 q2 4
K}, =— +0(q") . (2.21)
1 127m* q

Carrying out the matrix inversions and multiplications
specified in Eq. (2.15), we find, for the RPA density-
response function (compressibility),

m*

Kyo(gq,0)= — (2.22)
0 () + 201+ 52/6)
+
FIG. 1. Diagrams which contribute to the bare density-

current response function K¢ wv The second diagram gives the
diamagnetic contribution —n, /m* to K9,.

For an interaction potential, such as the Coulomb poten-
tial, which diverges for ¢ —0, the static density response
vanishes as 1/v(q) for g—0, just as for the Fermi system
in zero magnetic field. On the other hand, if v(q) is finite
for ¢g—0, the RPA compressibility is also finite and
differs from the zero-field RPA compressibility only
through the term 27¢2/6 in the denominator of Eq.
(2.22).

Next we consider the behavior at finite frequency, for
q <<kp. In the limit where w >>qgkr/m*, we have

— 2
KO ~ n"’_q_
00~ 2

m* (2.23)
—n,
K = . (2.24)
so that
—n.q° —iq
m*w? 27
(K°+U "= ) _ (2.25)
iq n,
27 m*
We see that det(K°+ U ~!) vanishes, and we obtain a
polein K, when
2mn,é
to="" :¢ : (2.26)
m

This frequency is just the cyclotron frequency in the
external magnetic field B for a system of particles of
effective mass m *.

We also find structure in K, for o <<qvp. Here we
have
0o m* o 2.27)
TmK o0 2m qug
2n,w
K9 =—= (2.28)
ImK7, krq

The imaginary part of KJ, is small compared to the real
part, for o <<qup, and thus can be neglected. On the oth-
er hand, the imaginary part of K¢, may be large relative
to the real part and must be kept. Thus we find, in this
regime,

in,
det(K°4- U )~ —= 2
T qUp
2 T2 *
49 1+g§_+ m*v(q)
(27é)? 6 27

(2.29)

If we continue this result analytically into the lower half-
plane for w, we find a zero of the determinant, and hence
a pole in Km,, at

qskp
o= —

T2 *
— 1+L+w
47n,$’m* 6

y (2.30)

Thus we find a relaxation rate for long-wavelength densi-
ty fluctuations that varies as g3 in the case of a finite-
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range interaction potential, but varies as ¢ in the case of
a Coulomb interaction.

We recall that within the RPA, m*=m,, so that Eq.
(2.26) is in agreement with Kohn’s theorem, which states
that the pole in K, should be at the bare cyclotron fre-
quency o, =eB/m,. At a later point, we shall treat m*
as a parameter in the theory and a Fermi-liquid interac-
tion parameter will then have to be introduced to satisfy
Kohn’s theorem. This will be discussed in Sec. IV. It is
also worth noting that the RPA expressions give correct-
ly the expected result that the f-sum rule is exhausted by
the cyclotron mode in the limit ¢ —0 and that the over-
damped mode given by Eq. (2.30) contributes a spectral
weight which vanishes as g*.

As will be discussed further in Sec. VI below, the ma-
trix D =[K°+ U '] ! may be interpreted as the dynami-
cally screened interaction, or as the propagator for com-
bined gauge and potential fluctuations. The correlation
function for fluctuations in the transverse vector poten-
tial a(q) is proportional to ImD ,(q,®), where

D, (q,0)=K3 /det[K°+ U]

27
q

Kopo(g,0) . 2.31)

For o <<vpq, with g <<kp, we may replace K9, by its
limiting value m* /27, and use Eq. (2.29) for the value of
the determinant.

For a general value of q, the RPA density-response
function Ky(q,w) will have a nonzero imaginary part
anywhere that ImK3(q,0)70. For 0<gq <2kg, this
occurs at all frequencies such that 2m*|w| < g%+2kgq.
For g > 2k, the region where ImK y,(g,®)70 is given by

q(q—2kpg)<2m*w<q(q+2kg) . (2.32)

This leads to the familiar Kohn anomaly at ¢ =2k in
the static response function Ky,(q,0), which for a two-
dimensional Fermi surface has the form

K 00(q,0)=~Ko(2kp,0)—const(q — 2k )/ (2.33)

for g > 2kp.

In principle, the Kohn anomaly in K, should be
reflected in Friedel oscillations in the screening charge
density surrounding an impurity in the electron layer;
i.e., we expect that, for r — o,

cos(2kpr+8)

’
r2

(p(r))—n, < (2.34a)
where {p(r)) is the charge density at a distance r from
the impurity, and 8 is a phase shift which depends on the
potential near the impurity. Similarly, near an edge of

the sample or other straight-line perturbation, we expect
to find

cos(2kpx +6)

—i72 (2.34b)

(p(x))—n, «
Unfortunately, the wave vector 2k, corresponds to a
wavelength A=l, which is not very convenient for ex-
perimental measurements. Moreover, the amplitude of
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the Kohn anomaly or of the associated Friedel oscilla-
tions is likely to be quite small. The amplitude of the
singularity in the RPA response K, will be generally re-
duced relative to that in K3, when there is a strong repul-
sive interaction between electrons. More importantly, in
the case where the electron-electron interaction is large
compared to the cyclotron energy so that electrons are
confined to the lowest Landau level, the matrix elements
of tzhze density operator are reduced by a factor of
e ! 10/4, which comes from overlap between two states in
the lowest Landau level separated by a wave vector g in
the Landau gauge. Since the density response K 80 is pro-
portional to the square of the density-matrix element, we
guess that the form factor leads to a reduction in the size
of the 2k, anomaly by a factor
k272

e Milo=g-2 (2.35)

III. FRACTIONAL QUANTIZED HALL STATES
ATv=p/(2p+1)

Perhaps the most direct demonstration of the existence
of a sharp Fermi surface in an ordinary metal is the ob-
servation of oscillations in the magnetization and trans-
port properties as a function of the inverse applied mag-
netic field, in high-quality samples at low temperatures.
In a two-dimensional system, these oscillations are
magnified in importance, leading to energy gaps at the
Fermi energy and vanishing of the longitudinal resis-
tance, associated with the integer quantized Hall effect, at
magnetic fields given by the condition eB=2mn,/p,
where p is a positive or negative integer. In an ideal sys-
tem of noninteracting spinless electrons, the energy gap
for an integer quantized Hall state is just the cyclotron
energy, w,=|eB|/m. If electron-electron interactions
are taken into account, the energy gap E, is found to be
shifted somewhat from o, due to the difference in ex-
change and correlation energies between the lowest emp-
ty level and the highest filled Landau level. (The energy
gap is defined as the smallest energy necessary to create a
positive and a negative charged carrier, infinitely far
apart. In a sample with very low impurity concentration,
the thermal activation energy for electrical resistance
should be just E, /2.)

If there exists a Fermi surface for a half-filled Landau
level, then the behavior of the system when the magnetic
field deviates slightly from the field B, ,, =4mn,, at which
the Landau level is precisely half full, should resemble the
behavior of a noninteracting electron system near B =0.
In particular, we would expect to find an energy gap in
the excitation spectrum when the external magnetic field

satisfies
mn,

eAB= , (3.1)
p
where
eAB =eB —4mn, . (3.2)

As was noted in the Introduction, this condition corre-
sponds precisely to the condition v=p /(2p +1), which
characterizes the most prominent series of fractional
quantized Hall plateaus converging to v=1 from above
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or below.?»?> Moreover, in the spirit of mean-field

theory, we are led to define an effective cyclotron energy
Aw*=e|AB|/m* 3.3)

and to use this quantity as an estimate of the energy gap
E;"’ atv=p/(2p+1),i.e.,

e

2mh

(V) ~

s (3.4)

m*|p|

The reader may recall that the energy gap for a quan-
tized Hall state is defined as the lowest energy necessary
to create a fractionally charged quasiparticle and
quasihole, separated by a large distance, and that the ele-
mentary excitations in the quantized Hall state with
v=p /(2p+1) have charge *ge, with g=1/(2p+1).57°
On the other hand, the effective cyclotron energy Ao}
has been obtained as a mean-field energy gap for the ener-
gy spectrum associated with the creation operator ¥ (r),
which adds a quasiparticle of charge —e to the system.
The apparent discrepancy between these definitions may
be understood in terms of the effect of the flux quanta at-
tached to the electron in the definition of *. For a
quantized Hall state with v=p /(2p +1), the addition of
two flux quanta creates a local charge deficit of
2p/(2p+1) electrons, with the missing charge being
pushed away to the boundary of the system. Thus the
operator ¢ (r) applied to the quantized Hall state leads
to a net charge of —e /(2p +1) in the vicinity of r and a
net charge of —2pe /(2p +1) on the boundary of the sys-
tem. If r and r’ are two points far apart, then the product
of operators ¥ (r)y(r’) creates only a pair of fractional
charges at r and r’, as the boundary charges cancel each
other in this case.

Since an extra electron added to or removed from a
fractional quantized Hall state will break up into (2p +1)
quasiparticle or quasiholes with charge +e /(2p +1), the
jump in the chemical potential for electrons Ap which
occurs as one crosses from one side of the fractional Hall
state to another is related to E " by®"3*

Ap=[2p +1|E" . (3.5)

Thus if Eg") is proportional to 1/p, the jump in chemical
potential is independent of p, for p— . This result,
which seems surprising at first glance, is actually con-
sistent with the following thermodynamic argument. If
we reason by analogy with the quantum oscillations of a
noninteracting electron system in weak magnetic field, we
would expect that the ground-state energy per electron
near v=1 can be written in the form*’

(Aw?)* | 27n,
E; eAB

where E, is an analytic function of its arguments, while
P(s) is a periodic function, with period unity, and with a
discontinuity in slope AP’ >0 which occurs each time the
argument s crosses an integer value. The chemical poten-
tial p is defined as the derivative of the total energy
NE(n,,v) with respect to the total particle number N, at
constant magnetic field and volume. From (3.1-(3.3) and
(3.6), we therefore find

E(n,,v)=Ey(n,,v)+ , (3.6)
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AP’
Au=
u E,
which is indeed consistent with (3.4) and (3.5).
The orbital moment M per electron may be obtained
from E(n,,v) from

(Aw*(2p%+p), (3.7)

M= 9E

3B |n, (3.8)

Equation (3.6) then implies that there is a discontinuity in
the magnetic moment at the fractional quantized Hall
state which is given by
AM=YAp, (3.9)
2T
which is also independent of p, for p — .

The current situation may be contrasted with the de
Haas—van Alphen effect near B =0, where AM is in-
dependent of p but Aux1/p for p— . This origin of
the difference becomes clear if one replaces AB by B in
Eq. (3.6) and repeats the derivation. Of course, Eq. (3.9)
also applies to the integer quantized Hall effect, with
v=p in that case.

If magnetic field B is held fixed, and the electron densi-
ty is varied from a value with v< % to a value with v> %,
then we pass through an infinite number of quantized
Hall states of the form v=p /(2p +1), and, according to
Eq. (3.7), the sum of the jumps Ap is positively infinite.
Since the net change in p must be finite, it follows that
there must be regions of decreasing u between the quan-
tized Hall states of large |p|, enough to cancel the infinite
increase at the Hall states themselves. For a system with
short-range interactions, this would violate the thermo-
dynamic requirement that du/dn, must be =0 in any
equilibrium state. It follows that there must be an infinite
number of phase transitions, with discontinuities in densi-
ty, which eliminate some or all of the filling fractions be-
tween the principal quantized Hall states. Effectively,
this means that fractions with even denominators of the
form v=(2p +1)/(4p +4), which lie roughly midway be-
tween the values p /(2p + 1), must be unstable for large p
in the case of short-range interactions.®

For the case of long-range Coulomb interactions, there
is no thermodynamic requirement that du/dn, be =0, as
the diverging Coulomb energy will prevent phase separa-
tion on the macroscopic length scale, if the positive back-
ground is held fixed. Nevertheless it seems likely that a
system of electrons with a filling fraction midway be-
tween two quantized Hall states of the form
v=p /(2p +1), for large p, will tend to break up locally
into domains of the two adjoining stable densities.
Presumably this would lead to a periodic array of domain
walls, and hence a lowering of the translational symmetry
of the system.

The conclusion that, for a system with short-range
forces, there should be an infinite number of first-order
phase transitions in the neighborhood of v=1 does not
imply that the point v=1 is itself necessarily unstable. If
Eq. (3.6) is correct, then the first derivative dE /9n, | is
well defined at v=1, so that the chemical potential u, ,, is
also unique and well defined. Although the second
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derivative 3%E /0n?|p is not well defined, the stability
condition at v= only requires an inequality, viz.,

E(n2+8n,)= E(nd)+pu, ,8n, , (3.10)

where E(n,) is here the energy per particle at a fixed
value of B, and n is the density at v=21. If Ey(n,) is the
contribution to E(n,) that comes from the analytic term
on the right-hand side of (3.6), and P, is the minimum
value of the periodic function P(s), which presumably
occurs when s is an integer, then the inequality (3.10) will
be satisfied for small values of 6n, provided that
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*

n,m

E{(n2)+ Py>0. 3.11)

In a case where 3%E /9n? is ill defined, one may ask
what is the relation between the static density-response
function K)(q,0), discussed in Sec. II, and the energy
curve E(n,), in the limit where q—0. It seems most like-
ly that the response to an infinitesimal density perturba-
tion at finite q should be insensitive to the precise value
of the magnetic field, and should be the same at small
finite temperature as it is at 7=0. This means that we
should effectively replace the periodic function P(s) by P,
its average over the period of its argument. For a short-
range potential, then, we would expect that, precisely at
v=1,

16 | '

%*
n,m

Ey(nd)+ P

lim K o(g,0)= (3.12)
q—0

For a Coulomb potential, where the k =0 part of the
electron-electron interaction is canceled by the positive
background and is thus excluded from the definition of E,
the relation corresponding to (3.12), at v=1, is

2
Ky(g,0) £q n,m*

lim (3.13)

q—0

Slightly away from v=1, the value of Ky (g,0) will de-
pend sensitively on the order of limits as ¢ —0 and v— 1.
For fixed finite ¢, as v— 1, we would expect the value of
Ky (g,0) to approach the same value as it has precisely at
v=1. On the other hand, if the limit ¢ —O0 is taken at
fixed v, the value approaches the uniform compressibility,
which is a rapidly oscillating function of v—1. For the
stable fractional Hall states with v=p /(2p+1), we ex-
pect that K o,(g,0)— 0, proportional to g2, for g —O0.

The density-current response function K, (q,®) can be
calculated in the RPA, at v=p /(2p +1) using formulas
that have been developed previously for models of anyon
superconductivity which are mathematically quite similar
to the fractional quantum Hall states. Formulas for the
RPA response functions in the fractional quantized Hall
case were in fact presented by Lopez and Fradkin,? but
were not evaluated explicitly except in the limit of ¢ =0.
Our present formulation is somewhat simpler than that of
Lopez and Fradkin in that we work with 2 X2 matrices,
while they use 3 X 3 matrices.

In order to calculate K, at v=p /(2p +1) we employ
the basic RPA equation, (2.15), except that now we must
use for Kﬁv the response function for noninteracting elec-
trons in the effective magnetic field AB, defined by Eq.
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(3.2). The matrix K° may be written in the general form
42
e

n o M(s)(q)e“q p
—8,8,,+ i ,
m* HV S§1 (@+in)?—sAw*)

0 —
K,uv(q’w)—

(3.14)

where M /(133 has a polynomial dependence on ¢, Aw} is the
effective cyclotron frequency defined by (3.3), and /, is
the magnetic length in the effective magnetic field AB.
This is related to the magnetic length /; in the true mag-
netic field B by

12=2p+1l15 . (3.15)

Expressions for M ifj in terms of the associated Laguerre

polynomials may be found, e.g., in Chen et al.*' In gen-
eral, for larger values of s, the polynomials begin and end
with the higher powers of g.

It can be seen without much difficulty that, for any
fixed value of g, the matrix K ,,(¢,®) has a discrete series
of poles at frequencies w, (q), which are in fact restricted
to lie on the real axis. (This follows from the fact that
there is no mechanism for dissipation in the problem.)

For any fixed s, the residue in K ?w decreases exponen-
tially for sufficiently large g, and hence there will be a
corresponding pole (or pair of poles) in K,,, which will be
very little shifted from the value sAw}. Also, in the limit
g —0, the residues in Kﬁv vanish rapidly for all s other
than s =1. This again leads to poles in K, at frequen-
cies =~sAw}, for s 22, whose weights vanish for g —0.
The entire weight of the response function K, appears,
for g —0, in a single pole at the cyclotron frequency w,,
which is equal in the RPA to [2p +1|Aw?. (Recall that,
within the RPA, m*=m,.) This result has previously
been found by Lopez and Fradkin.®> The pole at o,
arises from the s =1 term and the diamagnetic first term
in the expression (3.14) for ng, so thereisno pole in K,
at o=Aow?.

We note that the lowest branch of the excitation spec-
trum ,(g) may be identified with the quasiexciton mode,
which for large values of g is described as a quasiparticle
and quasihole, of charge te /(2p + 1), separated by a dis-
tance 2\qu3.48’49 (Note that this gives a dipole moment
egl?) As we have seen in the RPA, the frequency of the
lowest excitation mode is equal to A} (which is the ener-
gy gap E;”) for large values of ¢, but w,(q)—2Aw? for
qg—0.

If one averages over a frequency interval that is large
compared to Aw}, then the diagonal matrix elements
K3 (g,0) and K9 (g,w) will be well approximated by the
corresponding response functions in zero magnetic field,
provided that gl, is large compared to unity. The neces-
sary conditions to approximate the RPA response func-
tion K(q,w) at v=p/(2p+1) by its value at v=1 are
somewhat more complicated, since the weight of the
K(g,w), outside of the pole at w, is shifted to lower fre-
quencies than in the case of K%g,w). Thus in the case of
short-range interactions, where the characteristic relaxa-
tion rate at v=1 is of the form w, < q°, we would expect
to find (gl,)®> Aw* /o, as a necessary condition to ap-
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proximate K(g,w) by its value at v=1. For much of the
interesting range of frequencies and wave vectors, the
RPA response function may be well approximated by us-
ing the semiclassical formulas presented in Appendix B,

below.

IV. VALUE OF THE EFFECTIVE MASS

Within the simple Hartree theory which we have con-
sidered so far, the effective mass m * of the quasiparticles
is simply the single-electron band mass m, for a single
electron in the two-dimensional system. (For GaAs
wells, m, is approximately 0.07m,, where m, is the free-
electron mass.) In fact, however, the situation is more
complicated. In the limit where the electron-electron in-
teraction vanishes compared to the cyclotron energy o,
states in a given Landau level all become degenerate, and
thus we must have m* — . More generally, if (ez/elo)
is small compared to #iw,, we can neglect mixing between
Landau levels, and then all energies are proportional to
(e2/ely). Thus we find, using dimensional analysis, that

if a finite effective mass exists it should have the form
2 2
€ & @.1)
m*  (4mn,)’* €

where C is a dimensionless constant and (4wn,)!/?

is
equal to /5! at v=1. For a given material, if v is held
fixed, the value of #iw, increases with increasing B faster
than (e?/ely) and so Eq. (4.1) should be valid in the limit
of large magnetic fields. A crude estimate, given below,
suggests that the constant C has a value

C=0.3. (4.2)

Using the dielectric constant £=12.6 appropriate for
GaAs, we obtain from Eq. (4.1) the result

m*=0.27m,~4m, 4.3)

for magnetic field B=10 T. The value of m* will of
course increase < B!/2 for larger values of B.

The way we have estimated the value of C is by fitting
to the known energy gaps for the fractional quantized
Hall states at v=1 and % to formula (3.4) for the values
of the energy gaps for the quantized Hall states with
v=p/(2p+1). In the strong magnetic-field limit,
#iw,>>e?/el,, the energy gap in a fractional quantized
Hall state of filling factor v can be written in the form

2
Eg(v)zg(v)_e__ , (4.4)

el
where g is a dimensionless constant and [/, is the mag-
netic length which is related to the electron density at
filling factor v by

loy=(v/2mn, )% . 4.5)

Under conditions where only one spin state is occupied,
there is an electron hole symmetry which requires that

(4.6)

g(v)__:g(1~v) .

d’Ambrumenil and Morf*® have given estimates of the
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energy-gap coefficients g, for the first three fractional
Hall states in the series v=p /(2p +1), based on extrapo-
lation of exact diagonalizations of small systems on a
sphere. Their results are

g1/3=0.102+0.003 , @7
22/3=0.063+0.004 , (4.82)
g%/7=0.049+0.018 . (4:80)

In trying to compare these results with the predictions
of Eq. (3.4) for v=p /(2p +1), we immediately encounter
an ambiguity. Although Eq. (3.4) is well defined in the
limit p — o0, when v— 1, if we wish to use the formula
for small values of p, the answer depends upon whether
one assumes that m* is a function only of the electron
density n,, a function of the magnetic length /,, or of
some combination of the two. We have chosen to resolve
this ambiguity by defining m* to be the effective mass at
v=% for the given value of n,, so that m* is determined
by n,, and to incorporate the fact that (3.4) is only strictly
correct asymptotically for p — oo, by writing

2mn,

E,=

v)1h(v) , (4.9)

lplm*

where 4 (v) is an analytic function of v in the vicinity of
v=1, with the value #=1 at v=1. The factor
(2v)1/2=[2p /(2p+1)]'/? is also analytic in the vicinity
of v=1, and has been inserted explicitly to facilitate the
incorporation of electron-hole symmetry. If Eq. (4.1) is

used for the effective mass, then (4.9) leads to the result

(V) — C

g (4.10)
If v is a fraction of the form p /(2p+1), then (1—v) isa
fraction of the same form, with p replaced by —(p +1).
Equation (4.10) is therefore compatible with the symme-
try requirement (4.6) if and only if A(v) is symmetric
about v=1.

The simplest guess for 4 (v), which is consistent with
the above requirements, is that 4#(v)=1, independent of
v. This then leads to the final result

o C e*
E)W= 2p +1] el (4.11)
Note that |2p + 1] is just the denominator of the fraction
v. We see that (4.11) is in excellent agreement with the
numerical results for v=4 and %, provided that we
choose C~0.31. The resulting estimate g3/”’=0.044
also agrees with the numerical value (4.8b), within the
relatively large quoted uncertainties.

The fact that the effective mass m* is quite different
from the band mass m, suggests that if a Fermi-liquid
theory is correct near v=1, the Landau interaction pa-
rameters must be large, and must be taken into account
in the computation of quantities of physical interest. In
particular, the interaction parameters should be taken
into account in the computation of the density-current
response function for small g and w.

As an example, let us consider the compressibility
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(dn /du), defined by (3.12) for the case of short-range in-
teractions, or by the inverse of Eq. (3.13) in the case of
Coulomb interactions. In Fermi-liquid theory, one finds
that

dn
dup

_ 2w

m*

T2
1+2-
6

+ug, (4.12)

where u, is the appropriately normalized Landau interac-
tion parameter for uniform dilations of the Fermi surface.
The RPA result is obtained from (4.12) by setting
uy=v(0) for a short-range interaction, and u,=0 in the
Coulomb case.

The requirements of Galilean invariance dictate that
the cyclotron resonance pole in K(g,w) is determined by
the bare band mass rather than by m?*; viz,
fiwo, =eB /m,. Moreover, the form of K(g,w) in the limit
g —0 for any fixed w0 is also determined by the bare
mass. For example, the components Ky, and K, in this
limit are given by

2
n.q
Koolg,0)~ ¢ , (4.13)
00'd my(w? —w?)
2 —1
Kiolg,0)~ —ig2e [1—- 2 (4.14)
n, g

It can be shown that in order for these relations to be
satisfied in a Landau Fermi-liquid theory, it is necessary
that the p-wave Landau parameter u,, with an appropri-
ate normalization, obeys the relation

uy=— 4.15)
my m*

When interactions beyond the RPA are properly in-
cluded, the density-current response functions at high
frequencies are not directly determined by the effective
mass m* and the Landau interaction parameters, which
strictly describe only low-energy long-wavelength fluctua-
tions. Although (4.15) is necessary for (4.13) and (4.14) to
be valid at low frequencies, the validity of the latter equa-
tions at high frequencies, including the correct locations
of the cyclotron pole, implies additional constraints relat-
ing the one-fermion propagator and the interaction ver-
tices at all frequencies.

In the limit where AB is small, so that the effective cy-
clotron frequency Aw} is small compared to the Fermi
energy, it should be correct to use Fermi-liquid theory to
calculate Aw}, which we identify with the energy gap
Eé") for the quantized Hall states at v=p /(2p+1). On
the basis of a preliminary analysis, we believe that the
Landau interaction parameters do not affect the value of
the effective cyclotron frequency Aw} or of the energy
gap E;V’ for small values of AB, and therefore (4.9)
should be correct for large p, if Fermi-liquid theory ap-
plies. However, we find that there are potentially diver-
gent corrections to m *, as will be discussed in Sec. VI.

We expect that the lowest pole w;(g) of the density-
response function should coincide with Aw} at large
values of g, as we found in the RPA approximation which
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we discussed in Sec. IV; however, there is no simple rela-
tive between Aw} and w,(g) for g —0.

V. EFFECTS OF IMPURITIES

In order to make any comparisons between theoretical
predictions and the results of actual experiments, it is
necessary to take into account the effects of scattering by
impurities or other types of disorder. A peculiar feature
of the model with a Chern-Simons gauge field is that one
of the principal effects of an impurity potential is to pro-
duce a static fluctuation in the fictitious magnetic field,
consequent to the induced modulation in the density of
particles.

We begin by considering the effect of a positively
charged impurity, located at a distance d; >>I;, away
from the electron layer, above the origin in the x,y plane.

The impurity will give rise to a bare potential
vo(r)=(e?/e)(r*+d2)'/? whose Fourier transform is

_ 2me —qd;
volq)=—e .
£q
This will induce a fluctuation in the electron density in
the plane which is given by

(5.1)

plg)=evy(q)Ky(q,0=0), (5.2)

where K, is the density-response function defined in Sec.
II. For q <<2kg, we expect that (K, ) ! is dominated by
the Coulomb interaction term, so that Ky, =~eq /( 2me?).
Hence, we find that the induced electron density is

qd

plq)=e . (5.3)

(This result is simply the charge density induced in a per-
fect metallic plane by a unit point charge a distance d,
away from it.)

The charge density (5.3) leads to a vector potential a(q)
which satisfies q-a(g)=0 and

iqXa(q)=2m¢p(q) . (5.4)

The vector potential gives rise to a matrix element for
scattering a fermion from a wave vector k to wave vector
k +q, which is given by

~ ﬁqu
M _a(qrk _ 2mde kg
k,k+q m* ~ .

m*ig (5.5)
Note that the requirement g <<2k implies that if k and
k +q have the same energy, then q must be approximate-
ly perpendicular to k. In addition to the vector potential
term there will be a scattering potential due to the scalar
Chern-Simons potential a,(q) and to the screened impur-
ity Coulomb potential, which in the RPA we may write
as

27 () - (5.6)
m

veﬂ‘(q )=~

However, this term will clearly be less important than the
vector potential term for g <<2k.

If we assume that there is a density n;,,, of charged im-

purities in a doping layer that is located a distance d;



7322

from the electron layer, and if we assume the positions of
the impurities within the layer are completely random,
then we may use Eq. (5.5) to calculate the transport
scattering rate for the quasiparticle in the lowest Born
approximation. Writing ¢ =2ksina, we find

1 4m*nimp

/2
2.2
f da|Mk’k+qi a
Tir m 0

_ Nimp 7d?

oy (5.7)

Note that the total scattering rate, where the factor a? is

missing from the integrand in (5.7), has a divergence due
to small-angle scattering, unless some kind of infrared
cutoff is incorporated in the calculation.

Now we would like to use this result to calculate the
dissipative part of the resistivity p,,. In a Hall experi-
ment, with electrical current —ej in the x direction, the
rate at which energy is put into the electron system is
given by

—ejE, =e%j%p,, . (5.8)
If we identify the drift velocity of the quasiparticle with
the drift velocity v, =j/n, of the electrons, then the rate
of momentum transfer from the impurities to the quasi-
particle system is given by dP/dt=—P/7,, where
P=n,m*v,; is the momentum per unit area. (We do not
distinguish here between the effective mass m* and the
bare mass m;,. A preliminary analysis suggests that our
final results should not, in fact, be affected by the renor-
malization of the effective mass.) The rate of energy dis-
sipation in the quasiparticle system is then given by

22 %
SR i (5.9)
dt n Ty
Comparing (5.7)-(5.9), we obtain
nimp 7T(‘];2
. (5.10)
Pxx n, deSez

A more formal derivation of the relationship between p,,
and 7, may be found in Appendix B, below.

For an ideal modulation-doped sample, the number of
charged impurities in the doping layer is just equal to the
number of electrons, so that n;,,=n,. Setting é=2 for

the case of interest, and restoring the factors of #, we
thus find

__ 1  Art#i
Pxx (des) o2

(5.11)

Recall that 4777 /e is the Hall resistance p,, at v=1, and
kr=1/1,, where [, is the magnetic length.

Actually the assumption that there are no correlations
in the positions of charged impurities within the doping
layer may tend to overestimate the scattering of the
charged impurities. Most frequently, only a fraction of
the donors in a doping layer are ionized, so that redistri-
bution of bound electrons within the donor layer may
give rise to a significant screening and hence a reduction
of the amplitude of the random impurity potential at long
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wavelengths.

For a typical value of kpd;~15, Eq. (5.11) leads to a
value of p,,, at v=4, which is of order 3000 }/square.
Experimental values found by Willett et al.33 are of the
order of 1000 /square, however, which is a factor of 3
smaller than our estimate. Similarly, measurements re-
ported by Stormer et al.’® gave values for p,, at v=1 of
1500 and 2000 Q /0 on two high mobility samples with
kpd,=9.4 and 16.5, respectively. It is not clear whether
the reduction in potential fluctuations due to screening
within the doping layer could account for the discrepan-
cy between theory and experiment or for the differences
among experimental results.

The model of uncorrelated charged impurities in a re-
mote doping layer can also be used to calculate the resis-
tivity of the electron layer in zero magnetic field. In this
case, of course, we have no Chern-Simons field so that
term (5.5) is not present in the scattering matrix element.
Thus the scattering is due to the potential term, which is
still given by (5.6), for the case of spinless electrons. The
resulting resistivity for spinless electrons in zero field is
then

n 27hi

e2

imp 1

n, 4kpd,)?

P = , (5.12)

which is smaller than (5.11) by a factor of (8k2d?)™!. If
one takes into account the fact that actually two spin
states should be occupied when B =0, one finds that (5.6)
is reduced by a factor of 2, and hence one finds

nj 1 27h
ph=—"" s 195 (5.13)
n, 16(kgd;) e
However, the value of k. is now equal to (27n,)'/? rather

than (4mn,)!/?, the value for the spin-polarized state at
v=1, so that the double-spin occupancy leads only to a
further reduction of p%, by a factor 1/V2.

The value of the zero-field resistivity obtained from
(5.13) for (kpd,)=10 is actually smaller, by an order of
magnitude, than the zero-field resistivity in the samples
employed by Willett et al. This suggests that the zero-
field mobility is actually determined by a small number of
residual charged impurities that are much closer to the
electron layer than the impurities in the doping layer.
These close impurities should be much less important for
the resistivity at v=1, however, because the value of p,,
is in any case much larger at v=1 than it is at B=0, and
because the distance dependence of the impurity scatter-
ing in Eq. (5.11) is much weaker than in the zero-field
case (5.13).

The prediction of a finite value of p,, would be
modified, at very low temperatures, by the effects of
“weak localization.””! The quasiparticle scattering
mechanism arising from the Chern-Simons field is not in-
variant under time reversal, so that we might expect that
weak-localization effects would be similar to those for
noninteracting electrons in a system with spin scattering,
or random magnetic fields, but zero average field. Then if
the value of p,, obtained from (5.11) is sufficiently small
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(e.g., if kpd, is very large), we would expect that at T=0
there is a length-scale-dependent resistivity p,, (L) which
satisfies
h 2
[pxx(L)]Zz[pxx(lo)]2+const—e;1n(L /1) . (5.14)
We shall argue in Sec. VIG, however, that logarithmic

corrections due to Coulomb interactions are more impor-
tant than this weak-localization effect.

VI. EFFECTS OF LONG-WAVELENGTH
FLUCTUATIONS IN THE GAUGE FIELD

A. Propagator for gauge fluctuations

As shown in Sec. IT and Appendix A, there is an in-
teraction term which couples charge-density and current
fluctuations, which may be represented by the exchange
of a gauge field.? In the Coulomb gauge, V-a=0, so that
in two dimensions there are two independent components
of the gauge field: ay and the transverse component a;.
We define the gauge-field propagator at wave vector q by

D,(q,7)=—(T,[a,(q,7)a, (¢,0)]), (6.1)

where 7 is an imaginary time, T, is the time-ordering
operator, and u,v=0 or 1. Its Fourier component
D,.(q,»,) at the Matsubara frequency w,=2mnT, is
given, in the RPA, by D, (q,»,)=D,(q,i lw,|), with

D=(K°+Uu—H !, (6.2)

where U is the matrix defined in Eq. (2.16), and K is the
density-current response function for the unperturbed
system, described by the Hamiltonian (2.10), with A A=0
in the case where impurities are absent. The general for-
mula for K in this case was stated in (2.18) and (2.19) for
frequencies w on the real axis. Here, however, we shall
also consider the case with impurities. We note that in
our notation, the scalar potential a,(q) includes fluctua-
tions arising from the electron-electron interaction v(gq)
as well as from the Chern-Simons field.

The most important physics is dominated by the low-
lying mode of the gauge propagator and its behavior de-
pends on the presence or absence of Coulomb interac-
tions and on disorder which gives rise to a mean free path
I=vp7,. Thus there are four separate cases to consider.
It is useful to display the following compact form which
is valid for o <vggq:

Hog,0)  —i—d-
27
D Yg,0)= iq , , (6.3)
— ioy,—q“X(q)
278 Yqe—4q9X\q
where
2n,
Ye= "% clean: g/l >1, (6.4a)
m qu
n, | 1 .
—= disordered: ¢/ <1, (6.4b)

m* vp  e’p,

and
~ viq)
X(@)=xo+ 2nd) (6.5)
where
_ 1
Xo= am* (6.6)

Note that ), is the Landau diamagnetic susceptibility of a
two-dimensional (2D) Fermi gas. For long-range
Coulomb interactions, v(g)~g ~!, which then gives the
dominant contribution to Eq. (6.5).

The scattering rate 1/7,, should be identified with the
quasiparticle scattering rate calculated in Sec. V, and as
previously it is primarily determined by the static gauge
field fluctuations produced by the impurity potential.
The quantity p, is just the value of p,, at v=1, which
was obtained, using this scattering rate, in Eq. (5.10).

The density-density function K 3,(g, ) takes the form

*

clean: gl/>1 6.72)
Kgo(q,w)= * 2
_m__%q__ disordered: ql,o7,.<1,
27 Dg*—iow

(6.7b)

where D =lvl is the diffusion constant. The diffusion
pole in Eq. (6.7b) is responsible for the anomalous ther-
modynamic and transport properties of the disordered in-
teracting Fermi gas.”®> The four regions of long- or
short-range interaction and clean or disordered limit cor-
respond to different limits of Eqgs. (6.4), (6.5), and (6.7).

B. Gauge fluctuation contribution
to the specific heat

As a first application, let us consider the contributions
to the free energy and specific heat due to the low-lying
gauge fluctuations. As discussed in Appendix A, the

effective Lagrangian takes the form Eija,-D,-;‘aj. There-
fore, integrating out the q; field leads to
AF’=~§ S IndetD (g, w,) . 6.8)
q,n
Standard contour integration leads to the form
© do d’q 1
AF'= ao
—w 27 J (27)* ePo—1
-1
Xtan ™! ImdetD_l(q,a)) (6.9a)
RedetD " '(q,w)
1 0 2 g°
detD " (q,w)=Ky(q,0)iwy —¥x(q)g°]— — .
q oo(q Y —X(q)q~] 2nd)
(6.90b)

Let us first consider the clean case, where detD ~! is
given by Eq. (2.29) and
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Im detD ! z_"e(27$)2_w- 1
RedetD ! mp g3 2 *
1+ 4’6— + ’;T v(q)
(6.10)
For short-range interactions, we have
_ d AF' w 3]
AS= T2 f (2’”’ (eBw/Z__e—Bw/Z)Z
Xtan ! C—w? ,
q
(6.11)

where  C=(n,/mvp)(27$)?/[1+¢2/6+m*v(0)/27].
The ¢ integration can be done by scaling, giving
~(Cw)*3. The w integration can be estimated by replac-
ing w¥(eh®’?2—e~PB2/2)"2 by T? for w<3T and zero for
w>3T. Thus

AS~ fOwaw"(cca)m

~C?PT*3 (6.12)

For Coulomb interactions, v(g)=2me?/|q|, the argu-
ment of tan™! in Eq. (6.11) is now C'w/q? where
C'=(n,/mvg)(2md)(m*e?)” 1. The q integration is now
ultraviolet divergent. After introducing an upper cutoff

~2kp, we obtain 1/47C'wIn[(2k;)?/C'w]. The o in-
tegration can be now evaluated, yielding
ASz%T]n[(ZkF)z/C'T]. (6.13)

Thus we see that the overdamped -collective mode
identified in Sec. II still gives a contribution to the low-
temperature entropy which dominates over the quasipar-
ticle contributions of a Landau Fermi liquid. The damp-
ing rate goes from ¢° to ¢ in the presence of long-range
Coulomb interaction, and the contribution to the entropy
is reduced from 723 to T InT.

In the presence of disorder, the transverse conductivity
given by Eq. (6.4a) is replaced by the g-independent con-
ductivity of (6.4b). From Di;! in Eq. (6.3), we see that
the damping of the transverse gauge field alone is now g
and g with short-range and Coulomb interactions, respec-
tively. To calculate AS, it is essential to include the
diffusion structure of K 80 given by (6.7b). In the case of
Coulomb interactions, it is easy to verify that the ratio

ImdetD "'(q,0)  —o

- T - (6.14)
RedetD " '(q,w) Dgq
This leads to
T DK}
AS = D In T (6.15)

This is the same result as has been obtained previously>?
for a disordered electron gas with no magnetic field, and
is a consequence of the diffusion pole in Eq. (6.7b). In the
present case, the damping rate of the transverse gauge
field is proportional to g, and its contribution to AS is

B. I. HALPERIN, PATRICK A. LEE, AND NICHOLAS READ 47

unimportant compared with (6.15).

In the case of disordered short-range interactions, both
diffusion and transverse modes contribute and we again
obtain AS ~ T InT with a more complicated prefactor.

C. Effect on the fermion propagator

We now turn to the important question of the effect of
interactions via the gauge fluctuations on the propagator
for the fermions. The lowest-order contribution to the
fermion self-energy is given by the Feynman diagram in
Fig. 2, where the wiggly double line is the RPA gauge
propagator D,,. We limit ourselves, in this subsection,
to the clean case where impurity scattering is neglected.

Let us first consider the contribution from the trans-
verse gauge fluctuations, given by D ;. From Eq. (6.3),

1

Dy (q,0)=——"—5—, (6.16)
oy, —q*%%
where
¥ =xo+v(g)/2m)?,
1 1 1
6= —+—=. (6.17)
AL y— [6 ¢2‘

The propagators Dy, and D, involve factors of ¢ and
®/q, respectively, in the numerator. Since the important
region in w is ~¢q°, we expect that these will be less im-
portant in the small g, » limit.

We note that the problem of a Fermi gas coupled to a
transverse gauge field without the Chern-Simons term has
been considered before, in a different context, by various
authors.>*~>" In that case, the propagator D, for the
transverse gauge field has precisely the same form as Eq.
(6.16) except for the replacement of ¥’ by x,. Thus for
the case of short-range interactions we can immediately
adopt the results already known in the literature. There
are also some treatments of the effect of an external mag-
netic field,’®*° in which case D has exactly the form of
(6.3), with the off-diagonal term iq /(27¢)? replaced by
iqo,,

We begin by examining the Green function for the
“quasiparticle” ¥ introduced in Eq. (2.3). Note that this
is not to be confused with the Green function of the phys-
ical electron ¥,. The (retarded) self-energy is easily cal-
culated to lowest order in the coupling to a transverse
gauge field, and is given by

N

FIG. 2. The leading contribution to the fermion self-energy.
The wiggly double line represents the propagator D, for the
combined Chern-Simons gauge field and the electron-electron
interaction v(q), including the effects of screening by the fer-
mion bubbles. The solid line represents a fermion propagator.
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__q_ ©dw kX@ ImD“(q ®)
(2m)? m*
I+nglo)—ng (i g)
Etin—Eyiq—
ngl@)+np(Eeiq)
plO)Trplbera) | g 1g)
etin—§yiqto
i
S 6 )~ —E [ Lo 1
(= s—— [ 7= [ "dg ImDyy(g,0)np(e) 11,

where g =2kgsin(6/2) is the momentum transfer. For
short-range interactions, ¥’ is a constant, y . l~q/k,
where k,=2n,/m*vy, and the g integration can be done
by scaling, yielding 0~ '3(¥')"?3ks 3. At T=0, the 0
integration gives the result

— 3k, )~ 6.21)
m

where C=kz¥' ~2’ky /3. This calculation can also be
done for 3’ and 2" for general k and €. We obtain
3

is|>L’ H3 (6.22a)
ko | vp
"(k,e)~ 4/3 ;
c |k | & (€l<“X; Sk
m* XI 5}4(’ k() UF ’
6.22b)
£ 3
sgne, |s|>—l)f; —vf (6.23a)
3'(k,e)=~ 1/3
_C" | ko 3 |s|<— Qc_
m* | X &’ ko |vp |’
(6.23b)

where C’, C"”, and C'" differ from C by factors of order
unity. Similar results have been obtained by Blok and
Monien.®® If we attempt to analyze the Green function in
terms of the conventional Fermi-liquid quasiparticle pole,
G(k,e)=z/(e—E}), where z=(1—092/3¢)” !, we find
that the spectral weight vanishes since 82 /9d¢e diverges.
Furthermore the Fermi velocity vg defined by
Ex=vp(k—kp) is given by vF=vp(1+02/0§,)/
(1—0X/0¢). Near the mass shell e=£}, we see from Eq.
(6.23a) that 3’ has no singular dependence on &, while
02 /9de diverges. Hence we conclude that vj vanishes,
while the effective mass m* =k /vy is found to diverge
at the Fermi surface. This suggests that at least some
modifications to Fermi-liquid theory are necessary in this
case.

The above calculation can easily be repeated for the
case of long-range interactions, where v(g)— o for
q —0, using the appropriate form for D,;(¢g,w) in that
case. For the case of a Coulomb interaction with
v(g)«<1/q, we find a contribution to 2'(k,e) at e=£&, of

7325

where £, =k?/2m*—Ey and ng, np are the Bose and

Fermi factors. The important point is that
-1

oY,

— (6.19)
w2+(f;y;lq2)2

Ilel(q,a)):_

diverges for small ¢ and o, leading to a singularity in
3(k,e). When evaluated on the mass shell, we find

(6.20)

[

form e|lne|, which suggests that there is a logarithmically
diverging correction to the effective mass in this case. On
the other hand, for ultra-long-range interactions such
that v(g) diverges as 1/q%, for ¢g—0 with 1 <x <2, we
find |="(q,&, )| <<|&;| for |£,|—0, while 2’ is linear in
&,. Thus there is no obvious violation of the conditions
for a normal Fermi-liquid theory in this case.

There are other pathologies occurring in the one-
fermion Green function, however, which appear even in
the case of an ultra-long-range interaction. An indication
of this may be found in a singular contribution to the
self-energy which comes from long wavelengths and high
frequencies in the contribution of Dy, to the diagram in
Fig. 2. Specifically, in this limit we can make the approx-
imation

Dyy(q,0) —i—Kll (q,0)
(27d)? w?
5 3 — (6.24)

q m, o —(w+in)

where o, is the cyclotron frequency w, =eB /m,, and we
use the band mass m, rather than m* here to emphasize
the fact that there are no Fermi-liquid corrections to K,
in the long-wavelength limit. If we also neglect the recoil

energy of the fermion, so that we set §, . =&y, then we

obtain a contribution to 2(k,¢) of the form

530k, )= T Ry —— k) (6.25)
T Ty, e —(e—Esgnk T

where R is the radius of the system, and q,,,, is a max-
imum wave vector which may depend on € or §;,. We see
that this leads to a reduction in the residue z at the quasi-
particle pole by a factor which diverges in the limit of an
infinite system size. Since the contribution 83 vanishes
for e=¢£,, however, it does not lead to a renormalization
of m* or vg.

The physical origin of term (6.25) is not difficult to es-
tablish. Let us consider the mean energy cost to instan-
taneously remove a fermion from the system, which we
define as

=_ (YT (n)HyY(r))
E= . (6.26)
(YY)
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If one thinks in terms of electron operators, rather than
the transformed fermions, one sees that the operator ¥(r)
removes an electron from the ground state at point r, and
multiplies the electron wave function by a phase factor
that depends on the positions of all the other electrons
according to Eq. (2.3). If we employ first-quantized nota-

tion in terms of electron coordinates r;, the phase factor
. i§ arg(r, —r) . . ..
is equal to H,emmg L Choosing r to lie at the origin,

we see that all the electrons near a point r’ far from the
origin are given a velocity boost by an amount ¢/(m,r’)
in the direction perpendicular to r’. This will clearly lead
to an energy cost

E,= (6.27)

n? o di  mng’
=~ In(R max) ’
f |r1|2 q

2m,

which appears as a contribution to the mean energy E. A

similar positive-energy contribution appears in the mean

energy to add a fermion to the system with the operator
+

If the operator 1(0) is applied to the ground state at
time ¢ =0, the induced velocity field may be thought of as
arising from an impulse electric field in the azimuthal
direction, which falls off as 1/, and which may be con-
sidered as slowly varying in space for distances » which
are large compared to the magnetic length /. The result
of this impulse force is simply to excite oscillations at the
cyclotron frequency w.. The mean number of quanta ex-

cited is equal to E,/w.,. Using the relation
w,=2m¢n, /m,, we find

E -

—°=i;i1n(qux) . (6.28)

D,

Although the mean number of excited quanta is given
by (6.28), there will actually be a distribution of quanta
excited and for a finite system there will be a finite proba-
bility that there are no quanta of excitations at the cyclo-
tron frequency. This probability is given by

—Ey/0,

PO ~e (6.29)

(This may be thought of as a Debye-Waller factor, which
is given by the square of the overlap integral between the
harmonic-oscillator ground state and a displaced
harmonic-oscillator ground state with mean energy E,.)
If we ignore the fact that E is large, and simply expand
P !in powers of E, we find
Py=(1+Ey/0,)" . (6.30)
This coincides precisely with the reduction in the residue
z at the quasiparticle pole that one obtains from the first-
order contribution to the self-energy 86X, given by Eq.
(6.25). [The more accurate estimate of the reduction of z,
given by P in Eq. (6.29), can be obtained formally from a
diagrammatic expansion, if one sums up contributions to
2(k,e) in which an arbitrary number of a, fluctuations
are emitted and absorbed, using the approximation (6.24)
for Dy, and ignoring the recoil energy of the fermion in
all intermediate states.]
The vanishing residue at the quasiparticle pole means

that in the limit of an infinite system there is vanishing
overlap between the state where a bare fermion is added
or removed and the quasiparticle states whose properties
we really wish to study. Nevertheless, we believe that if
the limit of R — oo is studied with sufficient care, it
should be possible to extract from the fermion Green
function G various properties of the quasiparticle states.
Moreover, we believe that the singular contribution to
the fermion self-energy arising from scattering by trans-
verse gauge fluctuations, which we found in the case of
short-range or 1/r interactions, has a physical
significance for the quasiparticle propagation which must
be taken into account in any Fermi-liquid-like descrip-
tion.

D. Proposed form of the renormalized theory

At the present time, a complete analysis of the effects
of gauge fluctuations is not available. Nevertheless, we
are able to propose a modified Fermi-liquid description
which seems at least to be self-consistent, and which we
believe to be a good candidate for the correct description
of the Landau level at v=1 even for the case of short-
range interactions.

For the case of short-range interactions, the essential
features of our proposed description are the following.

We assume that there exists a well-defined Fermi wave
vector kp=(4mn,)!”2. For wave vectors k with magni-
tude close to kg, there exist quasiparticle or quasihole ex-
citations with energy spectrum

g < |k —kg|??. (6.31)
This means that there is a renormalized effective mass
m* of the form

m* o« |k —kp| Ve g, |73 (6.32)

The scattering rate, at 7=0, for quasiparticles close to
the Fermi surface is also of order |k —k;|>/2, so that
there is an imaginary part to €; which is proportional to
g, for €, —0. Fermi-liquid parameters such as u, and
u, defined in Sec. V, remain finite for k — k.

The long-wavelength behavior of the density-current
response function K,,,(q,») and the gauge field propaga-
tor D,,(q,w) are essentially the same as in the RPA. In
particular, we believe that the characteristic relaxation
rate o, of density fluctuations remains proportional to
g*, while the static response functions K,(g,©=0) and
K, (g,0=0) remain finite in the limit ¢—0. This is
plausible because the effective mass m* disappears from
the low-frequency part of the RPA formulas (2.22), (2.30),
(2.31), and (6.24), in the limit m * — o, as long as the po-
tential v(g=0) (or more correctly the Fermi-liquid pa-
rameter u,) is assumed to be finite. Of course, there also
remains a pole in the response functions at the bare cy-
clotron frequency w.. (See also Sec. VIE, below.)

If the behavior of D, indeed remains unchanged in
the limit ¢g—0, w—0, we can make the following self-
consistency argument in support of Egs. (6.31) and (6.32).

Fluctuations which renormalize m* will also have an
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effect on the vertex for interaction between a quasiparti-
cle and a fluctuation in the transverse gauge field. Since
the form of the coupling is essentially determined by the
requirements of gauge invariance, however, it seems
reasonable to assume that the matrix element for scatter-
ing a quasiparticle from momentum state k to momen-
tum state k +q, where k is close to the Fermi surface, and
where q is small and nearly orthogonal to k, is given at
least approximately by the form ik-a(q)/m™*, where m*
is the renormalized mass at wave vector k. Then the
scattering rate for quasiparticles should be given by an
expression identical in form to the imaginary part of ex-
pression (6.18) for the lowest-order self-energy Z(k,e),
except that the energies &y, of the particle in the inter-
mediate state should be replaced by the renormalized en-
ergy spectrum g .4 given by (6.31). This gives rise to a
scattering rate of form Ce?//m*, similar to the right-
hand side of (6.22a), except that now the mass m * should
be evaluated at the energy €, assuming that k is close to
the Fermi surface and € is the same order as g;. Since
the expression for Im= depends primarily on € and is not
a singular function of (e —¢g, ), it is reasonable to assume
that a Kramers-Kronig relation applies to the depen-
dence on €, and that the real part of the energy shift
should have a similar singularity as the imaginary part in
the neighborhood of the Fermi surface. Thus we see that
the assumption (6.31) is self-consistent in that it leads to a
scattering rate and a shift in energy for a quasiparticle on
the mass shell with g, « |k —k|3/2, which are both of or-
der €.

The fact that the quasiparticle decay rate is found to
vary as €; at 7 =0 suggests that, at finite temperatures,
the decay rate for a thermally excited quasiparticle
should itself be of order T. However, the dominant terms
arise from scattering by a gauge fluctuation whose energy
is itself of order T, and thus whose wave vector q is of or-
der T'/3. Thus the scattering is only small-angle scatter-
ing in the limit T—0, and is therefore not effective in re-
laxing a distortion of the Fermi surface. To make this
more precise, let us define

_ o 27 im¢
np= [ “kdk [ Tdgemnik), (6.33)
where &n (k) is the change in occupation of the quasipar-
ticle state at momentum k relative to the occupation in
the ground state at 7=0, and ¢ is the orientation of k
relative to the x axis. The coefficients n,, characterize
distortions of the shape in the Fermi surface, being sensi-
tive to the direction of the wave vector of the quasiparti-
cle, but not being sensitive to the value of the energy.
The coefficients n,, can also be defined separately for
different points r in space, within an accuracy that is lim-
ited by the Heisenberg uncertainty principle.

The lowest coefficient n, measures the change in the
area enclosed by the Fermi surface. If n; is independent
of r, it must remain constant in time, since the total num-
ber of quasiparticles is conserved in the system. The
coefficients n,, determine the total momentum of the
quasiparticles. In the absence of impurities, this quantity
should also be conserved, and thus should not relax by
quasiparticle scattering. (The value of n,; can oscillate
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at the cyclotron frequency, however, through coherent
interactions with the Chern-Simons field at q=0.) If any
of the higher coefficients »n,, is slightly different from
zero, at initial time ¢t =0, however, it will relax due to the
scattering mechanism with a rate of order

2
L= [ r(q)g%dq ,

(6.34)
Tm  2kg

where r(q) is the scattering rate for wave-vector transfer
g. If the scattering rate r(g) is peaked at g =~T'/3, and
the total scattering rate is proportional to T, then for any
fixed m we have

2T5/3

1o m (6.35)

Tm

for T—0. Thus we find that relaxation of the shape of
the Fermi surface is slow compared to 7T in our model,
just as in the case of an ordinary Fermi liquid (where
/7, <T?.

A greater difference from the case of an ordinary Fer-
mi liquid occurs if we consider the quantity

— *® 2 im¢
en=J "kdk [ Tdpemtesn(k) . (6.36)
We may interpret the coefficients €,, for m 0 as describ-
ing nonuniformities in the energy or temperature of the
quasiparticles and quasiholes on various portions of the
Fermi surface. In a conventional Fermi liquid the quanti-
ties €,, will relax slowly compared to the temperature 7,
for small distortions, just as the coefficients n,,. In the
present case, however, we expect that €,, will relax at a
rate proportional to 7 for even values of m. The reason
for this is that the scattering of quasiparticles via the
gauge field is an efficient mechanism for exchanging ener-
gy between quasiparticles at diametrically opposed re-
gions of the Fermi surface, but is much less efficient oth-
erwise. In particular, a low-energy gauge fluctuation
with wave vector q <<k is made up predominantly of
particle-hole excitations where the particle wave vector k
is nearly perpendicular to the wave vector q. For a given
direction of q, this occurs at the two points on the Fermi
surface which are perpendicular to q. When a quasiparti-
cle with wave vector k decays by emitting a gauge fluc-
tuation, the gauge fluctuation will have predominantly
wave vector qlk, and will carry away on average about
half of the quasiparticle energy. This energy is then
redistributed among other quasiparticles and quasiholes
with k’1q. We see that the energy is thus concentrated at
points with k’ parallel or antiparallel to k.

The analysis given above applies to the case of short-
range interactions v(r). For the Coulomb interaction
v(r)x<1/r, the modifications are relatively straightfor-
ward. Equations (6.31) and (6.32) are replaced by

g, < (k—kp)|In(k —kg)| , (6.37)

m* « |In(k —kg)| < |Ing, | . (6.38)
The characteristic relaxation rate for density fluctuations
remains of the form w, = g7, as in the RPA, and the dom-
inant scattering mechanism for quasiparticles of energy
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g, will come from long-wavelength gauge fluctuations
with qlk and ¢ < €. The imaginary part of g, is expect-
ed to be slightly smaller than the real part by a logarith-
mic factor; the relaxation rate of the coefficients n,,
which describes distortions of the Fermi surface should
vary as ~m?2T? for T—0, while the relaxation of the
coefficients €,, should occur at rate < T for even values of
m.

We may note that in both the short-range case and the
Coulomb-interaction case, the quasiparticle contribution
to the specific heat, which we obtain with the renormal-
ized mass m* given by (6.32) or (6.38), has the same
dependence on temperature for 7—0 as the collective-
mode contribution computed in Sec. VI B.

In all cases, the weight of the quasiparticle pole in the
fermion Green function G will be vanishingly small for an
infinite system. The behavior of the electron Green func-
tion has not been studied, but we also expect that there
will be no contribution to it from a single quasiparticle
excitation.

The properties of the modified Fermi-liquid theory out-
lined above bear a certain resemblance to theories of a
“marginal Fermi liquid” or of a “tomographic Luttinger
liquid” which have been suggested by various authors in
the context of two-dimensional models of high-
temperature superconductivity.®%? It is not clear to us
whether this resemblance is other than superficial, how-
ever.

E. Additional remarks

Our expectation that the long-wavelength behavior of
K,, is unaffected by the fluctuations responsible for
divergences in m* is given further support by the work of
Ioffe and Kalmeyer,% who have studied the problem of a
system of bosons or fermions coupled to a fluctuating
transverse gauge field. Ioffe and Kalmeyer compute in
particular the particular the diamagnetic susceptibility Y
for the boson problem. They find that, while the diver-
gences encountered in the Green function appear in indi-
vidual diagrams, they are canceled for the final result.
Using a static approximation for the gauge-field fluctua-
tions, they find a correction of the form

Sy~T (6.39)

’
de =0

where ng(e)=1/(ef*"# —1) is the free boson occupa-
tion function. For the fermion problem, they find that
within the static approximation the answer is the same as
Eq. (6.39) except that ngp is replaced by
ng=1/ (eB TR 4 ). Thus the correction is exponential-
ly small in €z /T. It is expected that if dynamical fluctua-
tions in the gauge field are taken into account, a power-
law correction in T would arise. This is indeed the case

for the imaginary part of K ;, where it is found that®
2/3
ImK , ~—2 |14 |BaxT0) . (6.40)
Vrq EF
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Thus the higher order correction to K; appears to van-
ish for low temperatures and frequencies.

F. Fractional qhantized Hall states at v=p /(2p +1)

Fluctuations in the transverse gauge field, which can
lead to a divergent renormalization of m* at v=1,
should also have an effect on the size of the energy gap at
the nearby fractional quantized Hall states, where
v=p/(2p+1). Neglecting these effects, we found in
Secs. III and IV that, for large p, the energy gap E,”
should be proportional to (m *|2p +1|)~!. If interactions
with gauge fluctuations are properly taken into account,
we would expect that m* in this formula should be re-
placed by its value at the energy gap Eg(”, i.e., for short-
range interactions,

m*~const(E,) "', (6.41)

while for Coulomb interactions,

m* ~const|InE,| . (6.42)
This leads to the result, for short-range interactions,
t
EV .~ _onst__ (6.43)
g 12p + 1372
while for Coulomb interactions,
2
. et 1 L (6.44)

& ely 12p+1| C'+In|2p+1] °

where C and C’ are constants. A more careful analysis of
the logarithmic divergences suggests that the correct
value for Cin (6.44) is C=¢%/m=1.27.

As was noted in Sec. IV, the numerical data on the en-
ergy gap for Coulomb interactions at v=1, 2, and 3 can
be well fit without use of the logarithmic correction to
the effective mass. Equation (6.44) does not fit as well; if
we choose C'=3.0 to fit the gap at v=1, then the value
at v=2is 13% too small.

Gros and MacDonald>® have performed numerical cal-
culations of the energy eigenvalues for finite-size systems
of particles in the lowest Landau level with a “hard-core
interaction,” in which only the pseudopotential
coefficient for the lowest angular momentum state is
different from zero. These calculations allow crude esti-
mates of the energy gap at v=1, %, and 2 which also ap-
pear quite consistent with the simple formula
E;Y <« |2p+1|7'. The values of p are sufficiently small,
however, and the uncertainties of extrapolation to infinite
system size are sufficiently large that the asymptotic be-
havior of Eq. (6.43) must also be considered compatible
with the data.

It is possible to envision a diagrammatic calculation at
v=p/(2p+1) in which one self-consistently calculates
the contribution to the fermion propagator arising from
the diagram in Fig. 2, and one calculates D,,(q,®) or
K,,(¢,») in an approximation which includes, in addi-
tion to the RPA diagrams discussed in Sec. III, correc-
tions to K 2V arising from exchange of a transverse gauge
fluctuation such as was taken into account by Ioffe and
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Kalmeyer®® in the problem they considered. Hopefully,
in such a calculation one could recover explicitly the re-
normalization of E;") that we have predicted in (6.43) and
(6.44). Hopefully, also, one would find that the lowest ex-
citation mode of K, occurs as a simple pole at an excita-
tion frequency w;(g) which approaches Eé") for g — 0,
and remains > O for all values of q.

We note that the diverging reduction of the quasiparti-
cle residue z in the one-fermion Green function, arising
from long-wavelength excitations at the bare cyclotron
frequency w,, which we found for v=1, also occurs in
the quantized Hall states at v=p /(2p +1). Thus proper
care must be taken in letting the system size go to
infinity, for this case as well as for v=1.

G. The disordered case

We consider briefly the effects of exchange of a gauge
fluctuation on the conductivity tensor o; for the system
at v=1. We are interested here in the limit ¢ =0, ©—0
of the conductivity tensor o,;(q,w) defined in Appendix
B. Since the pure system obeys Galilean invariance, we
must consider the disordered case to get nontrivial re-
sults.

From Appendix B, we find that the physical resistivity
tensor p,, and p,, is given by

Po  —(2rfi/e®)d

P (2rfi/e))§ 7 , (6.45)
where p,, =&, and &, is the conductivity for a Fermi
system scattered by gauge field fluctuations and by im-
purities. In general, & consists of a residual zero-
temperature part &, and a temperature-dependent
correction 80(T). The term &, is due to impurity
scattering and its inverse is given by Eq. (5.10). The
temperature-dependent part has contributions from (i) in-
elastic scattering from the gauge-field fluctuations, (ii)
weak-localization corrections, and (iii) interaction effects
in the presence of disorder. In (iii), the interaction is
mediated by the gauge field propagator D,,,. As pointed
out in Sec. V, the leading weak-localization effect is
suppressed because time-reversal symmetry is broken in
the impurity-scattering process. The importance of (i)
and (iii) depends on whether we have long-range
Coulomb interaction or not and is discussed briefly
below.

We first consider the case of short-range interactions.
First consider process (i). Using the disordered form of
Eq. (6.3), we find that D, has a denominator which van-
ishes as ¢ and —iw for small g and . We can estimate
the transport scattering rate in the same way as the calcu-
lation of 2" in Eq. (6.20), except that an extra factor of
g*/k2 must be inserted in the integrand to account for
the momentum relaxation. We find that the singular be-
havior of D, leads to a temperature-dependent contribu-
tion to 7., ! varying as T°3/2, which is enhanced compared
with the standard Fermi-liquid result of 72. Assuming
that the impurity-scattering rate is large enough so that
the momentum of the gauge field relaxes to the laborato-
ry frame before it is returned to the fermions, we can as-
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sume Mathiesson’s rule operates and we simply add the
static impurity and the dynamic scattering rates. In this
case the T3/? correction is the leading temperature-
dependent term in the weak disorder limit (kgl/>>1,
where | =vp7,,).

For process (iii), it is known that, in ordinary metals,
the combined effect of short-range interaction and disor-
der leads to a correction®!>?

Ae?
2mh

where A >0 is a dimensionless coupling constant. This is
a consequence of dressing the density vertex which cou-
ples the fermion to Dy, by a ladder of impurity scatter-
ing. We note that for kz/ >>1 this is a small correction
to

8o ~ In(T7,), (6.46)

e’
e

However, the present problem is more complicated in
that the fermions also interact by exchanging D,, and
Dy, gauge fields. Due to the vanishing denominator in
D, in the small ¢, limit mentioned earlier, these pro-
cesses also lead to logarithmic corrections to 8o. The
coefficient and sign of the leading logarithmic correction
requires a detailed calculation which has not been under-
taken at this point.

Next we discuss the case of Coulomb interactions. In
this case D,(q,0)=[~wv, +%'(g)g?]" ! and the denom-
inator is of the form —iw+|g|, which is less singular
than the short-range case. As a result, we find that pro-
cess (i) yields only a standard T correction to o. Simi-
larly, for process (iii) the exchange of D, and D, is not
sufficiently singular to lead to logarithmic corrections.
Thus the only logarithmic correction comes from an ex-
change of Dy, and we recover the same result as the ex-
change of screened Coulomb interaction in a convention-
al metal except that our fermions are spinless. In this
case, 353

To= (kgl) for kpl>>1 . (6.47)

2

8o = Z‘iz;m( Tr,) . (6.48)
T
This term reduces the conductivity and the system scales
toward strong coupling, at which point the perturbation
expansion in (kp/)”'! breaks down. (Presumably this
occurs when & becomes of order e2/h.) In conventional
metals this is interpreted as the transition to an insulating
state. For the present problem, we do not know what the
strong-coupling fixed point should be. However, we may
speculate that the effect is to drive the system into a re-
gime where impurity scattering dominates over the
electron-electron interaction, and the system looks at
least qualitatively like a system of noninteracting elec-
trons near the center of a Landau level in the presence of
disorder. In this case there is only a single value of B for
which there is an extended state at the Fermi level at
T=0. For any value of B in the neighborhood of this
critical value, the states at the Fermi level are localized,
and therefore o,, =0 at T=0. The value of o,, will be 0
or 1, depending on whether the value of B is less than or
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greater than the critical B,.26-2845

If the initial value of & given by (6.47) is large, corre-
sponding to a large initial value of the mean free path /,
then one would have to go to exceedingly low tempera-
tures before & becomes of order e?/h. If (6.48) is correct,
this should occur at a very low temperature,

Toecrle "F (6.49)
For temperatures larger than T, impurity effects are
presumably not dominant, and there should be a metallic
region near v=1, over a finite range of B, where our
theory should be applicable.

Finally, we remark that in the usual case of interacting
fermions in a disordered potential there are anomalous
magnetoresistance effects which set in at low magnetic
fields and have a logarithmic field dependence.’’ Formal-
ly the role of magnetic field is played by AB in our prob-
lem. However, we do not expect the usual anomalous
magnetoresistance in our case. The reason is that the
anomalous magnetoresistance originates from two
sources: (1) the sensitivity of the particle-particle ladder
to the breaking of time-reversal breaking by a magnetic
field; and (2) spin-splitting effects. In our case, time-
reversal symmetry is already broken and we assume full
spin polarization, so that both known sources of anoma-
lous magnetoresistance are absent.

VII. POSSIBLE EXPERIMENTAL CONSEQUENCES

A. Fermi-surface effects

We have already indicated several implications of the
existence of a Fermi surface at v=1, which should have
direct experimental consequences if the impurity scatter-
ing can be made sufficiently small. The most readily ob-
servable of these consequences, the existence of a set of
most prominent series of Hall plateaus at filling fraction
v=p /(2p+1), has indeed been observed experimentally,
and in fact has been noted previously by various au-
thors.*3 A more stringent test of the validity of our
modified Fermi-liquid theory would come from an experi-
mental verification of the prediction of Eq. (6.44) for the
relative sizes of energy gaps in the series v=p /(2p +1).
We have seen that these formulas work moderately well
for the first few fractional Hall states in the series, based
on numerical calculations on finite systems. However,
the small size of these systems makes it difficult to obtain
reliable results for energy gaps for the larger values of p,
which would be necessary to properly test the theory.

Unfortunately, experience has shown that the presence
of impurity scattering in actual samples also makes it
difficult to extract from experimental data useful infor-
mation about the energy gap for an ideal system without
impurity scattering. Even in the case of the largest frac-
tional quantized Hall gaps, at v= 1 and %, it is only quite
recently, in samples of extremely high mobility, that an
energy gap approaching the ideal energy gap has been ob-
served. Since our estimate of the effects of impurity
scattering on the transport properties near v=1 gives
scattering rates larger than those that are actually ob-
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served in the best samples, we are not in a good position
to speculate on the possible improvements that might re-
sult from new techniques of sample preparation.

The formulas of Sec. III lead to predictions for the size
of the de Haas—van Alphen oscillations and for oscilla-
tions in the compressibility dn /dpu as a function of a
filling fraction v in an ideal system at 7=0. These for-
mulas can be readily generalized to finite temperatures as
well. Again, however, it is difficult to make contact with
experimental results because of our poor understanding
of the effects of impurities. The effects of impurities on
these measurements may be particularly strong, since it is
known that localized electron states caused by impurities
can contribute to the thermodynamic properties near a
quantized Hall plateau, even though they do not contrib-
ute to the transport properties. In fact, even for the in-
teger quantized Hall effect, the density of states in the en-
ergy gap, measured by various thermodynamic methods,
is typically found to be a substantial fraction of the densi-
ty of states near the center of a Landau level.®

We have already argued that the amplitude of the
Kohn anomaly in response functions near 2k is likely to
be quite small, and difficult to observe even in the absence
of impurity scattering. In the presence of impurities,
these effects would presumably be reduced still further.

B. Magnetoresistance oscillations
in a modulated system

A possible means of observing Fermi-surface effects
might be a variation of the experiments reported by
Gerhardts, Weiss, and von Klitzing,67 and by Winkler,
Kotthaus, and Ploog in 1989.%® These authors observed
the magnetoresistance of a two-dimensional electron gas
modulated by a one-dimensional superlattice potential
with period a in the range of 0.5 um. They observed an
oscillatory structure in the magnetoresistance which cor-
responds to the condition that the classical cyclotron di-
ameter 2R, is a multiple of the period a. For example,
Gerhardts, Weiss, and von Klitzing report maxima and
minima in the resistivity p,, perpendicular to the lines of
the grating which are given by

#i a

—=——(nt+¢),

AT (7.1)

where n is an integer, and the phase shift ¢=0.17 for
maxima and ¢~= —0.25 for minima. Prominent oscilla-
tions were observed in the field range 0.15-0.6 T, for a
sample with an electron density n, ~3X 10! cm 2.

If there exists a Fermi surface at v=1, then, at least in
principle, one ought to see magnetoresistance oscillations
in a modulated sample near v=1, with the quantity AB
substituted for B in (7.1). In particular, in the absence of
impurity scattering, the quasiparticles should move in a
circular orbit with a radius

«__B
¢~ ABkj

(7.2)

Thus there should be maxima or minima in the resistivity
when 2R * is a multiple of a, or
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4(mn, )2
a(n+a¢)

The values of AB corresponding to these oscillations will
be much smaller than the values which correspond to the
de Haas-Shubnikov oscillations or fractional quantized
Hall states, predicted by (1.3), because a superlattice
period a in the range of several tenths of a micrometer is
large compared to the quantity 2(7n,) " !/2

We must also inquire what are the conditions on im-
purity scattering that must be satisfied if this effect is to
be seen. A necessary condition is presumably that
eAB /m *c be small compared to the transport scattering
rate 1/7,. This condition might be difficult to satisfy if
the scattering rate is as large as we have estimated
theoretically in this section, but the condition should not
be so difficult to satisfy in practice if one uses the trans-
port scattering rate implied by experimental values of
Pxx» Which are significantly smaller than our estimate.

=——4mn,= (7.3)

C. Specific heat

Another prediction of our model is the existence of a
nearly linear electronic specific heat at low temperatures
for v=21. If one considers only the contribution from
quasiparticle and quasihole excitations close to the Fermi
surface, then one expects a specific-heat contribution

c =%m*k§T , (7.4)

qap
where we have estimated m * in the mean-field theory, for
Coulomb interactions, in Sec. IV as m *z3.3kF£/e2.
When gauge fluctuations were taken into account, we
found logarithmic corrections to this result [cf. Egs.
(6.13), (6.15), and (6.38)]. However, the coefficient of the
logarithm may be relatively small; e.g., the coefficient
(C’/47) in (6.13) is smaller than the coefficient in (7.4) by
a factor =5.

The electronic specific heat of a two-dimensional elec-
tron system is not easily measured experimentally, but
comparisons with calculations in finite-size systems
should be possible.

D. Surface acoustic wave propagation

Perhaps the most interesting experimental results con-
cerning the two-dimensional electron system at v=1 are
the recent observation by Willett and co-workers3?3? of
an anomaly in the propagation of surface acoustic waves
(SAW’s) in a magnetic field near this point. Our Fermi-
liquid description of the v=1 system predicts an anomaly
in the SAW propagation which is in good qualitative
agreement with these observations.

The effect of the 2D electron gas on the SAW propaga-
tion is essentially determined by the value of the density-
response function Ky (g,®) at the wave vector q and fre-
quency o =v,q of the sound wave.

The experiments are conducted at a wavelength
sufficiently large that the static compressibility of the
electron system is dominated by the Coulomb interaction
v(g). (At v=1, this condition should be satisfied as long
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as g <<kp.) Also, the sound velocity v, is small com-
pared to v} so that w <<vfq. Under these conditions, we
may use Eq. (B6), ignoring the second term on the right-
hand side, to write

2 , (7.5)
2me?[1—io,, /0,.(q)]

KOO(q’mzvsq)z

where o,,(q) is the longitudinal wave-vector-dependent
conductivity, evaluated at low frequencies as discussed in
Appendix B. We have assumed q||X, and

U E

Tm="— - (7.6)
For a heterostructure near the surface of GaAs, using €
as a weighted average of the dielectric constant in the
vacuum and the medium, which depends on the distance
to the surface and the wave vector ¢,% the value of o,
corresponds to ~6X1077 Q7133 If (7.5) is used in the
equations for SAW propagation, one obtains a velocity
shift Av; and an attenuation rate « for the SAW ampli-

tude of the form

Avs _ (12 1
v, 2 1+[o,(g)/0, 2

2
k= qa [Uxx(q)/am] ’ (7.8)
2 1+[0u(g) /o, T

(7.7

where a is a constant proportional to the piezoelectric
coupling in GaAs. In the limit of sufficiently long wave-
lengths, o,, (q) becomes the macroscopic dc conductivity
0 4, in which case Egs. (7.7) and (7.8) reduce to the stan-
dard formulas employed to describe the effects of a 2D
electron system on SAW propagation at low frequen-
cies.3>% (Note that the convention for the velocity shift
is such that Ay, =0 when o, = «; i.e., when the electron
layer behaves like a perfectly conducting plane.)

In analyzing their experiments, Willett et al. 3 found
that the variations of both Av, and k could be fit with the
same choice of o,,(g) in (7.7) and (7.8). To achieve this,
however, and to maintain consistency with dc conductivi-
ty measurements, it was necessary to use a value of o,,
approximately four times larger than is obtained from
(7.6) with a reasonable value of €.

In order to discuss the SAW propagation at v=1, we
wish to substitute for K,(g,») the RPA results obtained
in Secs. III and VI. The formula for o,,(g) may then be
rewritten as

(g)
O'Xx(q):pyy2
pxy

where p,, =4wti/e 2, and

L o e?lim iImK(l’l(q,a)) .
pyy(q) 0—-0 @

, (7.9)

(7.10)

(We work in a regime where p,.p,, <<p%,) From our
previous discussion, we have
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Py (q)= I 93 for 9>, (7.11a)
_ 47 A 2
Py ()= %ol o2 for g <7 (7.11b)

where [ is the transport mean free path at v=1 [cf. Egs.

(2.28), (6.2), and (6.4)].

A linear dependence of p,,(q) on g, for ¢ >>1/] as pre-
dicted by Eq. (7.11a), is precisely what is needed to ex-
plain the frequency dependence of the SAW anomaly at
v=1, according to the analysis of Willett et al®* How-
ever, the absolute value of o,, (gq) obtained from (7.9) and
(7.11a), which has no adjustable parameters, is approxi-
mately a factor of 2 smaller than the values obtained by
Willett et al.

The physical reason for the wave-vector dependence of
the transverse resistivity p,,(q), and hence of the SAW
anomaly, is not difficult to see. Essentially, Py (q) is
determined by the relaxation rate for a transverse current
fluctuation at wave vector q for a collection of nonin-
teracting fermions with effective mass m*. If ¢ is small
compared to 17!, the relaxation rate is determined by
scattering from the impurities. If g is large, however, the
Fourier component of the current can relax without
scattering, due to motion of the fermions in the direction
of q. The effective mass m drops out of the final results
(7.11), because the factor of (m *) ™! in the fermion veloc-
ity is canceled by a factor in the magnitude of the current
fluctuation in equilibrium. (See Appendix B.)

Our analysis at v=1 can be extended to discuss the be-
havior of the SAW anomaly when magnetic field B devi-
ates by an amount AB from the value at v=4,. We can
again use Eq. (7.10) to find p,,(g), but now the fermions
which enter K9, are assumed to move in an effective mag-
netic field AB. Then for g/ > 1, the mechanism for relaxa-
tion of the transverse current by fermion motion parallel
to q will be cut off when the effective cyclotron radius
R}, given by (7.2), becomes shorter than zq_l. This
predicts that for large values of the SAW frequency o,
the range of values AB for which the SAW anomaly is
seen should increase linearly with o, roughly according
to the formula

CBq

AB|= R
a5 2

okt (7.12)
- .

where C is a constant of order unity, and the last equality
makes use of the relation between ky and B at v=

A more quantitative estimate of o,, (g) is obtained us-
ing the semiclassical analysis of Appendix B. We contin-
ue to use Eq. (7.9), but now we must use

P, ()= _.&_
yy + 4

(7.13)

where &;;(q) is given by Eqs (B17)-(B22).

We note that the behavior predicted by these formulas
is rather complicated, and for AB+0, the value of o, (q)
is dependent on / even for g/ >>1. In the limit g/ >>1, the
semiclassical approximation predicts oscillations at small
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values of AB, with maxima occurring close to the zeros of
J(gR}), or roughly at

AB q

S YT 7.14
B an+1/4)k; "’ 7.14)

where n is an integer. This behavior is illustrated in Fig.
3, for several values of gl. These effects are analogous to
‘“‘geometric resonances’” which are found in the propaga-
tion of acoustic waves in a direction perpendicular to an

applied magnetic field in a three-dimensional metal.”

Observation of such effects near v=1 in a 2D electron
system would be a striking demonstration of the existence
of a Fermi surface in the system.

Experimental results for the half-width of the SAW
anomaly near v=1 are in good agreement with Eq.
(7.12), with a value of C=~0.4. On the other hand, if we
try to assign a half-width of the form of (7.12) to the
theoretical curves in Fig. 3, we find that the most reason-
able choice is C=1, corresponding to the arrows in the
figure. Thus we find that the experimental widths and
the theoretical ones are in good agreement.

Willett et al.3? have observed that the SAW anomaly
decreases with increasing temperature, for temperatures
which are still far below the Fermi energy Ef that we

would obtain using the value of m* deduced in Sec. V.

5
4 -
ql=6
5l ¢
0,.(Q)
2 -
1 b
0 L 1 1
0 1 2 3 4

AB

FIG. 3. The wave-vector-dependent conductivity o,,(q), as a
function of the deviation AB of the magnetic field from the
value at v— =, for several values of the wave-vector g, as calcu-
lated in the semlclasswal approximation using the formula in
Appendix B. The conductivity is measured in units of o,,(0),
which is independent of AB in this approximation, while AB is
measured in terms of the unit B,="cky/(el), where [ is the
transport mean free path of the quasiparticles at v= '. The
quantity o,,(q) determines the attenuation and velocity shlft in
a surface acoustic wave experiment. Arrows correspond to
values of AB given by Eq. (7.12), with C=1, or gR*=3.
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The SAW anomaly was found to persist to higher tem-
perature for larger values of g. We believe that this effect
can probably be explained by collisions between thermal-
ly excited fermion quasiparticles. Such collisions do not
lead to decay of the total momentum, but they should
lead to a decrease in p,,(g) relative to the value in (7.11a)
when the collision-induced mean free path becomes
smaller than ¢ .

E. Far-infrared absorption and Raman scattering

In a pure system, Kohn’s theorem applies, and optical
absorption occurs only at the cyclotron frequency w,. If
translational invariance is broken, however, either be-
cause of random impurities or because of an imposed
periodic spatial modulation of the electron system, then
other degrees of freedom may also be excited.”"’? In the
latter case, the optical absorption is proportional to
ImK y,(g,®), where w is the radiation frequency and g the
wave vector of the modulation.

The behavior of Ky (g,w) has been discussed at vari-
ous points in this paper, primarily in the context of the
RPA. A particularly interesting structure may occur in
high mobility samples for suitable values of g, and values
of B shifted somewhat away from v=1. In addition to
possibilities of geometric resonances at small frequencies
w, the results of the RPA or of the semiclassical formu-
las, given by Egs. (B6), (B8)-(B11), and (B14)-(B17), pre-
dict absorption peaks at a discrete set of frequencies, ap-
proximately given by o=n(Aw}). Interaction terms
beyond the RPA may cause strong decay of excitations
above the lowest few branches of the spectrum, so that
the discrete nature of the spectrum may become rapidly
washed out at high frequencies, except for the cyclotron
mode which remains intact and underdamped at small
wave vectors.

The region most easily accessible to experiment is in
the regime gRJY <<1, where most of the weight of
Ky(g,w) is in the cyclotron mode. The pole in K y(q,w)
at the lowest excitation frequency w;(q), which is
~2Aw? for ¢g—0 in the RPA, has a residue which is
smaller by a factor of order (gl,)* than the residue at the
cyclotron frequency. The residues at the other excitation
branches are still smaller in this limit, by a factor of at
least (R} )%

The density-response function Ky (g,») can also be
probed by Raman-scattering experiments in a geometry
such that there is a substantial scattering wave vector q
parallel to the plane.”

VIII. EXTENSION TO OTHER FILLING FRACTIONS
WITH EVEN DENOMINATORS

The results we have obtained near filling fraction v=1

can be extended in various ways to other filling fractions
with even denominators.
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A. Casev=n+1

The most straightforward case to consider is filling
fraction v=n+1, where n is a positive integer. In this
case, we may hope to describe the ground state as a state
where the first n Landau levels are completely full, while
level (n + 1) is precisely one-half full. The basis states for
electrons in any given Landau level are in one-to-one
correspondence with states in the lowest Landau level
and matrix elements of any centrally symmetric two-body
potential can be uniquely expressed in terms of a discrete
set of pseudopotential coefficients v;, for relative angular
momenta /. (For spinless fermions, only odd / need be
considered.) As before, we assume spinless electrons, or
equivalently, that the partly filled Landau level is com-
pletely spin polarized. For a given potential v(r—r’), the
pseudopotential coefficients will be different in different
Landau levels, but the behavior at large / should be simi-
lar in any Landau level. (For the Coulomb interactions,
v, <1712 for large L)

If the Fermi surface at v=1 exists and is stable for a
large class of potentials, then it should also exist and be
stable in any higher Landau level for some other class of
potentials, namely those potentials which lead to similar
pseudopotential coefficients in the specified Landau level
like the ones which lead to the Fermi surface in the
lowest Landau level. At present, our theoretical under-
standing is not sufficient to tell us what are the conditions
necessary for a potential to give a stable Fermi surface in
a half-filled Landau level, but it seems at least reasonable
to hope that the Coulomb potential falls in this class for a
spin-polarized electron system in any low-lying Landau
level.

We note that for v=n+4, the Fermi wave vector
krp=1/I, is the same as for the state v=1 at the same
value of the magnetic field. For n >0, however, kj is re-
lated to the total electron density by kp=(2mwn,/v)!/?
which is no longer the same as for the same density of
spinless electrons in zero magnetic field.

B. Case v=n=t1/(2k)

Another straightforward generalization of our analysis
is to consider fermions defined as an electron with ¢ flux
quanta attached, where now ¢=2k is an even integer
greater than 2. The fictitious magnetic field will again
cancel the external field if v=1/¢, so that in this way we
can generate states such as I, i, etc. Of course as the
value of @ increases, the magnitude of fluctuations in the
Chern-Simons vector potential increases as well, so the
validity of an approximation in which one ignores these
fluctuations becomes even more questionable.

In fact, there is good theoretical and experimental evi-
dence that, in the vicinity of v=1, the ground state of the
2D electron system, in the absence of impurities, should
be a Wigner crystal.74 We interpret this to mean that, for
$=26, the Fermi surface is actually unstable to the forma-
tion of charge-density waves. Of course this should also
apply to larger values of ¢.

We note that, in the vicinity of v=(2k)™!, we expect
to find de Haas—van Alphen oscillations and conductance
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minima when

2mn,

eAB =(eB —4mkn,)= (8.1)
and p is a positive or negative integer. This leads to a
series of fractional quantized Hall states with?3

v=p/(2kp+1) . (8.2)

The Fermi wave vector at v=(2k )~ ! is in each case given
by

kp=(4mn,)?, (8.3)

which is the same as for spinless electrons in zero mag-
netic field.

States at v=2 and 2 can be obtained from the states at
v=1 and 1 by particle-hole conjugation. The Fermi-
surface radii kr are the same for v=(2k)" ! and
v=1—(2k)™! in the same value of magnetic field B, but
of course these correspond to different electron densities
n,. More generally, starting from a parent state with
vo=n, we can construct in this way a metallic state at
v=n=+(2k)"!, with a Fermi-surface radius k that is re-
lated to n, by

172
41n,

k - -
£ 2kn+1

(8.4)

C. States descending
from a fractional quantized Hall state

The mathematical transformation we have carried out
for electrons or holes added to the vacuum state or a
state with an integer number of filled Landau levels can
also be extended to quasiparticles or quasiholes in a frac-
tional quantized Hall state. For definiteness, let us con-
sider the situation where the parent state is one of the ele-
mentary Laughlin states with filling fraction

1
Vo— )
o 2k +1
where k is a non-negative integer. The elementary excita-

tions from this state are quasiparticles and quasiholes,
obeying fractional statistics, with statistical angle’

(8.5)

__ 7
2k +1

and with charge —Qe where Q =+(2k+1)"!. We can
represent the quasiparticle or quasiholes as fermions, pro-
vided that we introduce a Chern-Simons gauge field and
we attach to each fermion a fluxtube containing ¢ flux
quanta, where

0

(8.6)

$=2l+1—i
o

(8.7)
and / is an arbitrary integer. If the density of quasiparti-
cles or quasiholes is n,, then each fermion feels an aver-
age effective magnetic field B* given by

eQB*ZeQB—Zmeq . (8.8)
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The total charge density —en, is obtained by adding the
charge density —eQn, of the quasiparticles to the charge
density contained in the parent Hall state —vyBe?/27.
Thus we have

_n, (v—vg)
nq—TT , (8.9)
2mrn,[Q*—F(v—vy)
epr =212 ‘i ol (8.10)
vQ
If we consider the case of quasiparticles, with

QO =(2k+1)"!, then we can achieve the condition B* =0
by choosing / =2 0 in (8.7) and choosing v to satisfy
_ 21 +1
VS 2k nI+ D=1 @10
For the case of quasiholes with Q = —(2k +1)"!, in order
to achieve B* =0 we must choose / such that ¢, given by
(8.7), is negative and we obtain

— (21'+1)

VT kDI +1 (8.12)
where I'=—(]/+1)>0. The Fermi wave vector in either
case is given by

k=g )17 (8.13)

As some simple examples, let us consider cases where
the starting state is v,= 1, corresponding to k =1. If we
add quasiparticles we obtain, from (8.9) and (8.11), for
I=0and 1,

v=1, kp=(4mn,)"? for I=0, (8.14)
41n, 12
v=23, kp= 3 for I=1. (8.15)
If we add quasiholes instead, we find
v=1, kp=(4mn,)'? for I'=0, (8.16)
4mn, 12
v=3, kp= 3 for I'=1. (8.17)

The states at v=1 and 1 are states we have previously

encountered, but the states v=3 and 3, and the other
states with /=1 or /’=1 are new fractions with even
denominators.

It is natural to inquire whether or not the states v=1
and } that we build out of quasiparticle or quasiholes
added to the v= 7 state are the same as the states we pre-
viously constructed from electrons added to the vacuum.
We note that the value of k; given by (8.14) or (8.16) is
the same for these two states as the value of k; given by
(8.3), which we obtained using electrons with ¢=2k.
This is of direct significance since the quantity k. can be
measured, in principle, by looking for a Kohn anomaly in
the density-response function at wave vector 2kp. It is
possible that there are other physical properties which
distinguish the alternative constructions of the metallic
states. In the absence of other information, however, it
seems sensible to work in all cases with the simplest con-
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struction, working with integer charges where possible,
and more generally choosing the parent state with the
largest energy gap.

As another important example, we may consider a situ-
ation where the parent state is a fractional quantized Hall
state of the form vo=p /(2p+1). In this case the quasi-
particles have Q=1/(2p+1) and O6=mw(2p—1)/
(2p+1).° From (8.7), and the condition that the average
Chern-Simons field nq$ should cancel the effective exter-
nal magnetic field —eQB seen by the quasiparticles, we
find that

- 2
=2]+ , .
¢ 2p+1 (8.18)
_ 2pl +1
VeIt D2p D F1—2p (8.19)
If we choose [ =1 in these formulas, we obtain
_2p+1

This gives the series of even-denominator fractions v=13,
3, &, etc., which sit between the dominant quantized
Hall states of v=1, £, 3, - - - . However, as was noted in
Sec. III, we expect that for sufficiently large p the states
given by (8.20) will be unstable to the formation of
domains with electron densities equal to those of the ad-
jacent quantized Hall states.

Assuming the existence of the fractionally charged
“Fermi-liquid” state at the even-denominator fractions v
given by Eq. (8.20), it is natural to ask what are the most
prominent odd-denominator quantum Hall states that
can be derived from these states in analogy with our con-
struction of the states v=p /(2p +1), by adding a field
AB=2mn,/pe to the integer-charged Fermi liquid at
v=1.

The condition that k Landau levels are filled by a set of

fractionally charged fermions is given by

217'nq
lkl 2

where B* is the average effective magnetic field seen by
the quasiparticle, given by (8.8) or (8.10). Using (8.9), we
find that the filling fraction corresponding to (8.21) is

v =V, p .
tk 0 (f)ik'l

This method of constructing additional quantized Hall
states with odd denominators was discussed previously by
Jain?® and by Read.!!

In the case where the parent state is a principal quan-
tized Hall state, with vo=p /(2p +1), we find, for the first
two solutions of (8.22),

Qe|B*|=

(8.21)

(8.22)

3p+1

= 8.23

IT ep+5 ®.23)
_3p+2 8.24

v_, p+7 (8.24)

[The v_, states are excluded because v_,=(p+1)/
(2p+3) is simply one of the principal quantized Hall
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states which we have previously encountered.] The states
vy, other than v_,, are odd-denominator states which
do not belong to Jain’s principal series, though they do
appear as higher-order quantized Hall states in Jain’s pic-
ture as well as in the original hierarchical scheme.®® For
example, in the hierarchical scheme, the state v, is a
daughter state of the state v, while v_, is a daughter
state that is obtained by adding quasiholes to the state
v_,, which itself is a daughter of the state v,. In the limit
k — oo, the states v, given by (8.22) approach the even-
denominator fraction v, given by (8.20), which lies mid-
way between the two principal quantized Hall states v,
and v_,. Thus we may think of the entire series as de-
rived from a Fermi-liquid state at the fraction v.

As an example, we may choose p =1 in the above equa-
tions, so that Eq. (8.20) gives v=2, lying midway between
vo=1 and v_;=2. Equations (8.23) and (8.24) then pre-
dict quantized Hall states at v;= & and v_,= 3. Obser-
vation of these states might be interpreted as supporting
the existence of a fractionally charged Fermi-liquid state
at v=232. At present there is no clear evidence of a quan-

tized Hall state at either -+ or =. However, there is evi-
7 which is the

11 13°
dence for a quantized Hall state at v=F
particle-hole conjugate of % if the system is fully spin po-

larized.’%"?

D. Transport properties

We next consider the electrical resistivity of the vari-

ous even-denominator states considered above. As be-
fore, we assume that n, quasiparticles with charge
—e™*= —Qe and statistics 6 have been added to a parent

incompressible quantum Hall state with filling factor v,.
By attaching ¢ quanta of Chern-Simons flux to each
quasiparticle where ¢ satisfies Eq. (8.7), we convert them
to a collection of fermions, with a kinetic-energy term
represented by

1
2m*

K=~ Jd?r (o[ —iV+e* A(r)—a(r)Py(r) .

(8.25)

The quasiparticle density n, and the effective average
magnetic field B* seen by the quasiparticles are given by
(8.9) and (8.10). The field B* will vanish if we choose v to
be the even-denominator fraction given by

vi=vo+ QY21+ 1)—07 1171, (8.26)

We assume that the resulting “Fermi liquid” is decou-
pled from the parent quantum Hall state, so that, for fre-
quencies small compared to the energy gap of the parent
state, and wave vectors which are correspondingly small,
we can add the conductivity tensors of the background
state and the quasiparticles:

a,-j(q,w)ZUg(q,co)—Fof} , (8.27)
where
2
by Ve 0 1
ah="1_1 o (8.28)
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and 08 is the conductivity of the unbound quasiparticles.

In the case where the parent state is an integer-
quantized Hall state, there is evidence to support this
point of view from experiments on transport in edge
channels near the boundary of a sample. In particular, it
has been shown that the edge channels corresponding to
lower filled Landau levels are effectively decoupled from
the last filled Landau level, and a simple decoupled net-
work model has been used successfully to analyze the
resistance data.”®

The quasiparticle conductivity ag(q,w) can be estimat-
ed using a straightforward extension of the semiclassical
approximations of Appendix B and the Born approxima-
tion for impurity scattering discussed in Sec. V. In par-
ticular, we may write, in analogy with (B8) and (B9), the
matrix equation

(0] =p2=p+Q p,, ,

where p is given by (B11), and p is approximated by the
resistivity tensor for a collection of noninteracting fer-
mions of charge Qe.

Let us first estimate the mean free path of the fermions,
using the model of Sec. V, where a density 7n;,, of un-
correlated impurities is assumed to lie in a doping layer a
distance d; away from the electron layer. An impurity at
r=0 produces an excess electron density in the layer

. —qd . . .
given by p(g)=e °, which is manifested by an excess
quasiparticle density Q _lp(q). This leads in turn to a
static Chern-Simons flux iqXa(q)=2mw¢Q e _qu, which
scatters the fermions. If we use the first Born approxima-
tion to calculate the scattering rate, as in Sec. V, we find
that the mean free path / is given by
m* _ Mimp wd2Q 2

1 = =
I - kFTtr kF deS ’ (8'30)

(8.29)

with k; given by (8.13). The quasiparticle resistivity, at
g =w=0, is then given by p2, =p,, =p,, where

_ nimp 7TQ 2

i T (8.31)

The physical resistivity, obtained using (8.27)—(8.31) and
p=o0 "l is
n

- _ 2
imp nq 7T¢2 _ (v VO)

2
e Ne ezszFdS L%

Pxx = Po » (8.32)

n

while the Hall resistance is given by

_ 1 27 _ (V—Vo) 0

Py » (8.33)

v e? Vo

assuming weak disorder, so that g,, <<2m/e%. Equation
(8.32) could also have been derived directly by using the
analysis which led from (5.8) to (5.10) in Sec. V, provided
that one takes into account the fact that in the present
case only a fraction (p,, /pj%) of the total current is car-
ried by the quasiparticles and is subject to dissipation.

We can now illustrate these equations with a few exam-
ples. Let us first consider the case v=n +1, which we
obtain from the above formulas using vo=n, Q=1, and
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n,=n,/(2n+1). In this case we obtain

:nimp 7T$2 1 1

Px n, e? kpd, 2n+1 "

(8.34)

Since kj scales as (2n+1)7'/%, (8.34) predicts that p,,
for v=n+1 scales as (2n +1)"'? or as B'/? for fixed n,.
Experimentally it seems that p,, scales linearly with B
over a wide range of field strengths,> if the regions close
to a quantized Hall plateau are ignored. We believe that
the main reason for this discrepancy is that the Born ap-
proximation is unlikely to be correct for large values of #,
as the mean free path predicted by (8.30) will then be
smaller than the correlation length (=d,) for fluctuations
in the static Chern-Simons field. Thus the fact that Eq.
(8.34) shows correct qualitative behavior, in that p,, de-
creases with decreasing B, may be as much as one could
reasonably hope for.

It is worth contrasting (8.34) with the well-known re-
sults of a self-consistent calculation of the resistivity for
noninteracting electrons due to short-range impurity
scattering,’"’”  which  yields p,,  equal to
(4%/e%)(2n+1)"!. While the scaling with (2n+1)" ! is
in better agreement with experiment, the absolute magni-
tude is wrong by one or two orders of magnitude and is
independent of impurity concentration. In our model,
the degeneracy of the Landau level is broken by interac-
tions, and a perturbation calculation in disorder is possi-
ble, leading to Eq. (8.34).

Our Born-approximation estimates can also be applied
to other values of v. For example, we may consider the
state v= constructed by binding four flux quanta to an
electron. We have [5:4, Q=1, and n, /n,=1. Com-
pared with the v=3 state at the same n,, we have
Pxx($)/p.(3)=4. For the particle-hole conjugate state
v=2, we have =4, Q=1,v,=1, n,/n, =1, and we find
Prx(3) /P ($)=4/V3.

Next we consider the states v=(2p +1)/(4p +4) con-
structed by adding particles to the quantum Hall states
vo=p/(2p+1) using (8.19) with /=1. In this case we
have n,/n,=(2p+1 )71, so that when normalized to the
resistivity at v=1, for the same electron density, Eq.
(8.33) predicts that
2

(V)
ol (2p+1)372.

-
pee(1/2)

2p +1

(8.35)

This result is based on the Born approximation for the
scattering of the fermions by the gauge field, which is not
reliable for reasons mentioned earlier. We do not believe
that Eq. (8.35) is applicable to the physical situation, and
it is included here only for completeness.

E. Surface acoustic wave propagation

The longitudinal conductivity o,,(q) which deter-
mines the anomaly in surface acoustic wave propagation
can be readily calculated using (8.27)—(8.29) and the
semiclassical approximation discussed in Appendix B.

At the even-denominator fraction v; given by (8.26) we
find o,,(q)=~p,,(q)(ve?/2m)*, where p,(q) is given by
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Eq. (B23), using values of p, and / which are given by
(8.30) and (8.31).

We may also calculate o, (g) for filling factors slightly
different from v,;, using (8.27)-(8.29) and (B18)-(B22),
where now we must define R} by

kg
R}= , (8.36)
QeB*
with B* given by (8.8) or (8.10). If we define
2mn,
AB=B— , (8.37)
ve
then we find
g
B*=AB 1+Lf (8.38)
Q

As an example of these relations, let us consider the
case where v,=n, $=i2k, and Q==1, /=1, so that
v,=n=+(2k)” L. [This case includes in particular the cases
vi=n+1 and v,;=(nkl)] Then we find
|B*|=|AB|(2kn+1). We also find kp=[4m7n,/
(2kn=+1)]'/2. If we define the width of the anomaly in
0 ,.(g) as the value of |AB/| at which gR*=C !, in anal-
ogy with Eq. (7.12), then we find, for a fixed value of n,
and g,

|AB| o< (2kn+1)73/2 | (8.39)

IX. OVERALL PHASE DIAGRAM

The overall phase diagram for a system of two-
dimensional electrons in a strong magnetic field at very
low temperatures, which follows from our previous dis-
cussions, is sketched in Fig. 4. The case of spinless elec-
trons has been considered for simplicity, and we have
neglected the effects of logarithmic divergences, such as
weak localization, which ultimately must be considered
at T=0.

The horizontal axis in Fig. 4 is the magnetic field B,
while the vertical axis represents the strength of the dis-
order potential plotted on a logarithmic scale. Unshaded
regions, labeled by nonzero integers or by fractions with
odd denominators, indicate quantized Hall states where
0, =0at T=0, and o,, has the labeled value in units of
e%/h. The unshaded region labeled O is an insulator, with
0,y =0,,=0. Shaded regions labeled by fractions with
even denominators are metallic states where o ,, 70, and
where o,, has variable value. Near the center of each
shaded region, the value of py_x1 should pass through the
value indicated by the labeling fraction, and for the ap-
propriate value of the magnetic field the metallic state is
supposed to exist even in the limit of zero disorder. The
shaded region labeled M is the ordinary low-field metal,
with p,, =0 at B=0.

The solid lines represent a direct transition driven by
disorder between one quantized Hall state and another
which is its parent state in the usual hierarchical
schemes. These transitions have been discussed by vari-
ous authors,?6-2%% and are believed to be perfectly sharp
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FIG. 4. The hypothesized phase diagram, for spinless elec-
trons, at very low temperatures. The phase diagram is sketched
for a fixed electron density, as a function of magnetic field B,
and as a function of the disorder strength, ignoring the logarith-
mic divergence at T=0, which arises from “weak localization”
or from density fluctuations in the presence of Coulomb interac-
tions and disorder. The unshaded regions, labeled by integers
or by fractions with odd denominators, indicate quantized Hall
states (or an insulator) where o,, =0 at T=0, and o,, has the
indicated value, in units of e?/h. Shaded regions labeled by
fractions with even denominators are metallic states where
o,,70, as is the region labeled M. The value of py_,(l should
vary continuously in the metallic regions, passing through the
value indicated by the labeling fraction near the center of each
region. Further details are explained in the text.

at T=0. The downward arrows on the solid curves show
the portions of the curves which are ‘“normal” in the
sense that the Hall resistance p,,, increases when the line
is crossed in the direction of increasing B. There may
also be rising portions of the curves which are reentrant
in the sense that p,,, decreases with increasing B.

The broken curves which separate the metallic regions
from the quantized Hall or insulating states are probably
not sharp, when weak logarithmic effects are taken into
account. Most likely, in limit of 77— 0, the metallic re-
gions slowly shrink. If Eq. (6.48) is valid, we might guess
that the condition for metallic behavior is that 7 should
be larger than Ty~ ‘e mhel given by (6.49), where [ is
the mean free path before renormalization.

Note that each metallic region other than the normal
metal M has, entering near its top, a single solid-line tran-
sition on the normal descending portion of the curve. In
regions of lower and lower disorder, we find a series of
subsidiary quantized Hall transition lines, leaving the me-
tallic region, presumably on the sides of the regions.

The normal metallic region M is similar to the other
metallic regions in Fig. 4 except that (1) there is no solid-
line quantized Hall transition entering the top of this re-
gion, and (2) the effects of weak localization which blur
the metal-insulator transition are expected to be stronger
in zero magnetic field than in finite B. Weak-localization
effects near B=0, and the associated negative magne-
toresistance, are the reasons why we have indicated a dip
in the upper boundary of the metallic region near B =0.

The indication of an insulating phase in Fig. 4 between
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the metallic phase at v=1 and the quantized Hall state at

v=.1 is based on experiments which suggest a reentrant

5
Wigner crystal phase in this region.”®

If electrons with spin had been considered rather than
spinless electrons, the phase diagram would have been
generally more complicated, as states with varying
amounts of spin polarization may compete with each oth-
er in the phase diagram, and more possibilities arise for
forming quantized Hall states with even denominators,
through a mechanism involving formation of spin-singlet
pairs. The importance of the spin degree of freedom de-
pends critically on the effective g factor of the carriers,
which determines the size of the Zeeman energy relative
to the cyclotron energy and to the electron correlation
energies at a given filling factor.

For Landau-level filling factors less than 1, and for
large enough g factor, all electrons will have their spins
aligned with the magnetic field so that the spin degree of
freedom can be ignored. For electrons in a GaAs hetero-
structure, the Zeeman energy is anomalously small rela-
tive to the cyclotron energy, because the g factor is small
while m, ! is large, so that complete polarization cannot
be taken for granted.”’® For example, numerical calcula-
tions of small finite systems suggest that the quantized
Hall state at v=2% and at the particle-hole conjugate frac-
tion v=2 should be unpolarized at sufficiently low elec-
tron densities.!>’® Experimental evidence that the sys-
tem is not fully polarized has been found at v=4% for ap-
propriate samples,*®?®! but not in the case of v=2. There
also exists experimental evidence for lack of complete
spin polarization in the neighborhood of v=2 and  for
low-density samples.®!~%% (This might account for the
difference in the behavior of p,, near v=+ and i, re-
ferred to in Sec. VIIL.'}) However, we are not aware of
any evidence for lack of complete polarization at v=1
for GaAs samples.

Finally, we caution the reader that the diagram in Fig.
4 is only schematic, intended to emphasize the topology
of the phase diagram. Quantitative features such as the
relative heights on the diagram of various metallic re-
gions and quantized Hall states should not be taken seri-
ously.

X. CONCLUSIONS

In this paper, we have explored in some detail the
consequences of a theory of electrons in a partially filled
Landau level, where the starting point is a mathematical
transformation to a collection of fermions interacting
with a Chern-Simons gauge field. We find that the theory
is self-consistent and leads to a variety of predictions
which could be tested, at least in principle, by experi-
ments or by exact numerical calculations on finite sys-
tems. We find good qualitative agreement with experi-
ments that are currently available, although there exist
significant quantitative discrepancies. Since our quantita-
tive calculations are primarily derived from a random-
phase approximation, which is itself based on a perturba-
tion expansion in a parameter ¢ that is not small in our
problem, the quantitative discrepancies are perhaps not
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surprising. It is clear that further theoretical and experi-
mental work is needed, but we consider the successes of
the theory to be quite encouraging and we believe that we
have identified the proper starting point for describing
properties of a strongly interaction electron system in a
Landau level near to half-filling.

From a purely conceptual point of view, the most strik-
ing feature of the theory is the implication that, for an
ideal sample with no impurity scattering, precisely at
v=1 (and at various other filling fractions with even
denominators) there exists at 7=0 a sharp Fermi surface
of some kind. As discussed in Sec. VID, we believe that
there must be divergent renormalization of the effective
mass m* at the Fermi surface, whose precise form de-
pends on the assumed behavior of the electron-electron
interaction at large distances, and that there must be oth-
er modifications of the traditional Fermi-liquid theory as
a result of the strong interaction between quasiparticles
arising from the coupling to density fluctuations via the
Chern-Simons vector potential. Nevertheless, the most
important implications of a sharp Fermi surface should
survive.

A first success of the theory is that it provides addi-
tional insight into Jain’s explanation for the existence of
prominent fractional quantized Hall states at filling frac-
tions v=p /(2p+1). These states are regarded® as in-
teger quantized Hall states of the v=1 quasiparticles in
an effective magnetic field AB which is the deviation of
the applied magnetic field from its value at v=1. The
asymptotic form of the energy gap at v=p /(2p +1) ob-
tained from our mean-field theory fits very well to numer-
ical calculations of the gap for the states v=1, %, and 2,
as discussed in Sec. V. When we include the logarithmic
corrections expected from gauge field fluctuations, as-
suming Coulomb interactions between electrons, we find
that the fit is less good, as noted in Sec. VIF. However,
there are relatively large uncertainties in the gaps at v=12
and %, and the values of p may be too small to allow an
accurate fit to the asymptotic form (6.44).

A second important success of the theory is the ex-
planation it provides for the observed occurrence of an
anomaly in surface acoustic wave propagation in GaAs
samples with a two-dimensional electron system near
v=1, 3, 1, and . Experimental results for both the
sound velocity shift and attenuation coefficient are
parametrized by a single quantity, which one may identi-
fy with the longitudinal conductivity o, (q) of the sys-
tem, at the wave vector q equal to the wave vector of the
acoustic wave. We predict that o, (q) should increase
linearly with g, for g larger than the mean free path of the
quasiparticles, which is in good agreement with experi-
ment. We also predict that near v=1 the anomalous
portion of o,,(q) should occur over a range of magnetic
fields AB which is proportional to g. This feature also is
in good agreement with the experimental results. The ab-
solute value of o,,(g) predicted by our RPA theory is
too small, however, by a factor of approximately 2, while
the width AB is close to the experimental values.

Another area where the theory has a qualitative suc-
cess but quantitative difficulties is in our predictions for
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the quasiparticle mean free path, or for the macroscopic
resistivity p,,. Our analysis is based on a model in which
the source of the impurity scattering is a layer of uncorre-
lated charged impurities, with a density n;,, equal to
that of the electrons, set back a distance d; from the elec-
tron layer. Our approximations predict, correctly, that
for kpd; >>1, the resistivity at v=1 is small compared to
Pyx, but large compared to the zero-field resistivity. As
was discussed in Sec. VIII, the theory also predicts
correctly that, for v=n +1, the value of p,, decreases
with increasing n. However, there is no quantitative
agreement between the theory, which is based on the first
Born approximation, and experimental measurements of
Pxx-

In addition to resistivity and surface acoustic wave
propagation, we discussed in Sec. VII several other possi-
ble experiments which could eventually provide evidence
for the validity of the theory. The wave-vector- and
frequency-dependent conductivity p,,(q,®) may be
probed in principle by infrared absorption in the presence
of a grating, or by Raman-scattering measurements with
significant in-plane wave vector q. With a suitable choice
of q and of the deviation AB of the magnetic field from
the value at v=1, it may be possible to see resonant
structure at a frequency ;(g) which is of order
2Aw}=2eAB/m*c.

Another possible experiment is to perform transport
measurements in a sample with a periodic modulation
along one direction in the plane. Our theoretical analysis
leads us to predict size-effect oscillations as a function of
the field deviation AB, the period in (1/AB) determined
by ky and the period a of the modulation according to
Eq. (7.3). Similar oscillations are predicted for surface
acoustic wave measurements at high frequency, where
the period in (1/AB) is now determined by k. and the
acoustic wave vector g, according to Eq. (7.14). Observa-
tion of either of these oscillatory effects should provide
strong support for the validity of the theory.

Note added in proof

In a recent paper, independent of our work, V. Kal-
meyerand and S.-C. Zhang [Phys. Rev. B 46, 9889 (1992)]
have considered the effects of impurities on the electron
system near v=1, in an approximation which emphasizes
the effects of static gauge fluctuations, as in Sec. V of the
present paper. They do not present a quantitative esti-
mate of the mean-free path, and they do not discuss the
logarithmic corrections to the conductivity (6.48) which
we find arising from the combination of interaction and
disorder effects, but their general conclusions, including
the overall topology of the phase diagram, are similar to

ours.
Recently, R. R. Du, H. L. Stormer, D. C. Tsui, L. N.

Pfeiffer, and K. W. West have reported a measurement of
the energy gaps at a series of quantized Hall states with
v=p/(2p +1). They find a linear dependence on
AB =B —B,,,, in good agreement with the present
theory as given by Egs. (4.11) or (6.44).
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APPENDIX A: LAGRANGIAN FORMULATION

In this appendix we present a Lagrangian formulation
which describes fermions tied to flux tubes and includes
the long-range Coulomb interaction between the fer-
mions. We write

Z= [ DyDa;Dage ", (A1)
where, in the imaginary time formalism,
s=[faratr s (A2)
0
and the Lagrangian density is
L=9*(3,—iag)h— ——¢*(3, —ia, +e 4,
2mb
_ 190 iy g — gty (A3)
2d i H '

We work in the Coulomb gauge so that 3;a;=0. The
next to last term in (A3) is the Chern-Simons term intro-
duced by Zhang and co-workers,”” so that integration
over a, enforces the constraint that the two-dimensional

curl of a is given by
VXa=e¥d,a;=2mdp*(r)y(r) , (A4)

which is in agreement with Eq. (2.6). In addition, we can
introduce a Coulomb interaction between the fermions of
the form

L

%fdzr’ P (OP(rv(r—' ) P*(r')Y(r') . (ASa)

Using the constraint (A4), this can be written as
b2 (2rg)2
The quantum-mechanical problem defined by the La-

grangian L +.L, is equivalent to the problem defined by

the Hamiltonian H =K + V, given in Egs. (2.5)-(2.8).

The random-phase approximation may be obtained in
the Lagrangian formulation by making a saddle-point ap-
proximation, where we expand about the point where
apy=(a—e A)=0. In the vicinity of this point, we may
integrate out the fermion fields, and derive an effective
action for the gauge field by writing
Z=2Z, [ DayDaexp(— [ L.q), where Z,, is the partition

JIVXa(r)o(r—1)[V Xa(r')]dr . (A5b)



7340

function with no fluctuations of the gauge fields. Up to
second order in the gauge fields, one finds

1 _
La=% 3 3 a1(0,0,)0,(q,0,)a,(q0,), (A6
q,0, #,v=0,1

where a,(q,w,) is the fluctuation at wave vector q and
Matsubara frequency w,,,

0 o -4
L Foo O 27¢
D=0 90,1 | —ig wig)g® | (A7)
27 (2md)?

and 7{2V is the sum of the two free-electron bubbles indi-
cated in Fig. 1.

The second term in (A7) is U !, where U is given by
Eq. (2.16). Thus we obtain the RPA result for the gauge-
field propagator

D=(H'+U"H . (A8)

Finally we note that upon integrating out a, and a; in
L .+ we obtain the correction to the free energy AF given

in (6.8).

In order to obtain the RPA gauge-field response func-
tion Dﬂv(q,a)) for frequencies on the real axis, or the cor-
responding density-current response function
K(g,w)= U '—U"'DU ! discussed in Sec. II, we must
analytically continue D to the real frequency axis in the
standard way.

APPENDIX B: THE CONDUCTIVITY TENSOR 0 ;(q,®)

The conductivity tensor is generally defined as the
response to the total electromagnetic field 4,. By con-
trast, it is the external field 45" which appears in Eq.
(2.14) defining the density-current response function XK, .
In practice, the actual magnetic field generated by a two-
dimensional electron system is always very small, so for
the vector potential there is no difference between A and
A.,,. For the scalar potential, however, the Fourier com-
ponents e A,(q) and e 4§ (g) differ by the Coulomb po-
tential v(q)j,(q) arising from the electron-density fluctua-
tion jy(q). [We confine ourselves here to the case of a
Coulomb interaction, where v(g)=2me?/eq.]

Let us define the 2 X2 matrices

v(ig) O
_ 1 0 iq
_;55 —ig 0|’ (B2)

so that the interaction matrix U, defined in (2.16), may be
written as U = V+C~_1. Let us also define the 2 X2 ma-
trices I1,,,(q,) and K ,,(q, ®) such that

K '=K '+U (B3a)
=1"14+V. (B3b)

Thus II consists of the sum of all Feynman diagrams for
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K which are irreducible with respect to the Coulomb in-
teraction V, while K includes only those diagrams which
are irreducible with respect to the Chern-Simons interac-
tion C ! as well as to V. The random-phase approxima-
tion (2.15) consists of replacing K by the noninteracting
fermion response K°.

For simplicity, we choose the wave vector q to lie in
the x direction. Then we define the conductivity tensor
Uij(q’w) by84

P2
oxx(lq,w) z% noo(lq,w) B Hm(lq,o) ,  (B4a)
U”(q’w):%[n“("""’”nu‘q’oﬂ » (B4b)
0,(q0)=—0,(q,0)
:éno‘(q"") ‘ (B4o)

Similarly we may define an intrinsic ‘“‘quasiparticle con-

9 ~

ductivity tensor” &;;(q,w) by

)

L g 1 1 ., (B5a)
Tu(qo) o | Kyplg,0) Kgig,0)
5yy(q,w):%[E“(q,w)—g'“(q,m] , (B5b)
axy(q’w)=—5.xy(q’w)

=jl?m(q,w) . (B5c)

In the limit q=0, o(q,w) becomes the frequency-
dependent conductivity tensor o ;(w) which describes the
response to a uniform electric field at frequency w. Also,
using Egs. (B1), (B3b), and (B4a), one may establish the
general relation

2 .
1 _ 2me + 1 —— iw ‘ (B6)
Ky(q,0) g y(q,0) g0, (q,0)
It follows from Eq. (B3) that
n'=K '+c'. (B7)

We shall be interested in situations where the diamagnet-
ic term K ,,(g,0) in Eq. (B5) is of order g2 and where the
compressibility Ky(g,0) is finite in the limit g—O0.
Therefore, if we limit ourselves to the frequencies
@ >> @i, With @, Toughly of order g2, the behavior of
K is determined by &(q,w). Moreover, for o >>wy,;, we
see that o and & are related through the following se-
quence of matrix equations:

azp_1 s (B8)

p=pt+p. > (B9)

p=c !, (B10)

p E—ziﬁ-é o 1 (B11)
s="_2 [1 0
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Note that p ., which is associated with the Chern-Simons
term in the Lagrangian, is the resistivity tensor that cor-
responds to a quantized Hall system at v=1, with the
choice $=2. The result (B9) that one should add the
resistivity tensors is a general feature of systems where
constraints are enforced by gauge fields.®’

Let us first consider the case where &,,=&,, =0,
which occurs at v=1, at least in the RPA. Then we have

1

Pxx(q,w):t“ﬁ , (B12a)
UXX q’a)
(g,0)=—1 (B12b)

In the limit ¢ —0, if we use the Drude formula for 6(w),
we obtain

Pxx(@)=p, (0)=po(l—ioTy), (B13a)

2t

Pr= Py =5, (B13b)

with pp=m*/(n,e*r,.) as in Sec. VI. Taking the limit
w—0, we recover the formulas of Sec. V, if we calculate
the transport scattering rate 7,, ! using the Born approxi-
mation for the model described in that section. Similarly,
if we calculate &(q,®) for free fermions in the absence of
impurity scattering, we recover the clean limit formulas
of Secs. II, VI, and VII.

The case v#1 may also be treated if we make a semi-
classical approximation for the motion of the fermions at
the Fermi surface, in the presence of the effective magnet-
ic field AB. Following the standard methods,’® one ob-
tains

© F_(n)F(n)'
F,(q,0)=" — , (B14)
i'd Po 2 1—ilo—nAo*)r,
(ny_ 1N
F=270.X), (B15)
(o idJ,(X)
Fr=—r" (B16)
X=qR}, (B17)

where J, is the Bessel function, R} =%ks/eAB is the
effective cyclotron radius, and AwX=eAB/m* is the
effective cyclotron frequency. (We set ¢ =1, though we
have restored factors of #.) In the limit w—0, these
equations reduce to

= GIM(X)
Er',»j(q):i >, !

o 2 Tinma (B18)
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nZ
G,‘,;”=}3[J,,(X)]2 , (B19)
2
o |42, (0
y; = —ax | (B20)
2 dJ,(X)
Gw=—6p="Lr = (B21)
A=I/R}, (B22)

where [ =vp7,, is the mean free path. It should be noted
that Eqs. (B14)-(B22) are actually derived under the as-
sumption of isotropic impurity scattering rather than
small-angle scattering, which we expect to be the dom-
inant loss mechanism in the present system.

For the analysis of surface acoustic wave propagation,
we wish to know the value of 0,,(g,®) for =v,q, where
v, is the sound velocity. Since v, is small compared to vg,
we would like to identify o,,(q,») with a “low-
frequency” conductivity o,,(q), which we obtain from
(B8)—(B11) using the zero-frequency limit for & given by
(B18). This identification is only valid, however, if o is
large compared to the frequency w,;,, below which we
may have to take into account the static diamagnetic sus-
ceptibility and compressibility in (B5). As remarked
above, @, is roughly of order g2. More accurately, if we
use the values of the compressibility and susceptibility
appropriate to v=1, we find o,,~fig2(m*kgl)"" or
Omin=#g*(m*kpl)”!, whichever is larger. The inequali-
ty o >>wy;, is in either case well satisfied for the wave
vectors employed in the experiments. We note also that,
for g of order 1/R}, the inequality v, <<vy also implies
o <<Aol.

If the field AB is chosen so that the system sits at one
of the principal quantized Hall states, and if the tempera-
ture and impurity scattering rate are sufficiently small
compared to the energy gap, then the compressibility and
diamagnetism may become very different from the value
at v=1, and the inequality & >>w_;, may not be satisfied
at long wavelengths. Of course, one cannot use the semi-
classical formula to calculate the conductivity tensor un-
der those circumstances.

We note that the semiclassical result (B14) for & ij(q,a))
at finite frequencies leads to a result for K(q,») with a
form that is very similar to the form of K°, which we dis-
cussed in Sec. III for calculating the RPA response at
v=p/(2p+1), provided that we take the limit
Aw?T,— . The most important difference is that in the
RPA the lowest branch of the spectrum, corresponding
to n =0 in (B14), is absent at T=0, since all the carriers
are frozen out in the quantized Hall state.

The semiclassical approximation with short-range
scatterers, which led to (B18), can be evaluated quite sim-
ply in the case of AB =0, giving

(@)= 1 __Po g’r’
Pyy 5@ 2 (1+g2)/2—1 "

This reduces to the results (7.11) in the appropriate limits

(B23)
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of large or small g/. We note that for AB =0, one can in-
vert I?W(q,a)), trivially, and one can use (B23) to obtain
the conductivity o(q,w) at arbitrarily small frequency,
without regard to the restriction ® > @,

The formulas for p,,(g) obtained from (B18) reduce to
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(B23) in the limit AB—0. In the limit ¢ —0, for any
fixed / and AB, the values of p,, and p,, obtained from
(B18) become equal to the resistivity p, at AB =0, while
the Hall resistance p,, takes on its classical value

xy
2ah/ve?.
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FIG. 4. The hypothesized phase diagram, for spinless elec-
trons, at very low temperatures. The phase diagram is sketched
for a fixed electron density, as a function of magnetic field B,
and as a function of the disorder strength, ignoring the logarith-
mic divergence at T=0, which arises from “weak localization”
or from density fluctuations in the presence of Coulomb interac-
tions and disorder. The unshaded regions, labeled by integers
or by fractions with odd denominators, indicate quantized Hall
states (or an insulator) where o,, =0 at T=0, and o,, has the
indicated value, in units of e?/h. Shaded regions labeled by
fractions with even denominators are metallic states where
.70, as is the region labeled M. The value of pyj,l should
vary continuously in the metallic regions, passing through the
value indicated by the labeling fraction near the center of each
region. Further details are explained in the text.



