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Quantum Hall liquid, Josephson efFect, and hierarchy in a double-layer electron system

Z. F. Ezawa
Department of Physics, Tohoku University, Sendai 980, Japan

A. Iwazaki
Department of Physics, 1Vishogakusha University, Ohi 2590, Shonan mac-hi 27/, Japan

(Received 8 September 1992)

Based on a bosonic Chem-Simons gauge theory, we present a microscopic theory of a double-
layer electron system in which even-denominator fractional quantum Hall (FQH) states have been
observed in a strong external magnetic field. In our approach electrons belonging to difFerent layers
are interpreted as two distinguishable anyons with appropriate statistics. Neglecting the Zeeman
energy, we find in semiclassical approximation that Hall states are realized as condensed states of the
bosonized electrons in both of the layers. We calculate the Coulomb energy of the Hall states as well
as some excitation spectrum as a function of the distance between the two layers. We also derive
the ground-state wave function, which is found to coincide with that of Halperin for a nonvanishing
interlayer distance. We fin a superfluidity mode in FQH states at the filling v = 1, s, s, . . . , in which
the interlayer tunneling acts as a Josephson junction in the states. It is manifest in our formalism
that the Josephson current is given by J = Asks po sin(eVt + hp) for a constant voltage V applied
between the two layers, where AsAs is the gap energy between the symmetric and antisymmetric
single-particle states and po is the average electron density in one layer. The observation of the
Josephson effect constitutes a direct experimental test of the existence of condensation of bosonized
electrons in FQH states. A hierarchy of the FQH states is also analyzed by using an efFective-field
theory of vortex solitons (quasiparticles).

I. INTRODUCTION

The two-dimensional electron system has a rich
ground-state structure. A most prominent discovery is
the fractional quantum Hall (FQH) efFect in a strong
magnetic field. i The FQH effect at odd-denominator fill-
ing factor is well known. Recently, it has been ob-
served also at even-denominator filling factor in a double-
layer electron system. ~ To understand these phenom-
ena, one usually makes a variational analysis with use of
trial functionss 4 or a numerical study on a few-electron
system. s 7 Landau-Ginzburg models have also been pro-
posed for the odd-denominator FQH effect in a single-
layer system. See also Ref. 12.

Recently, we have formulated a microscopic theory of
the planar electron system using the Chem-Simons (CS)
gauge theory, 3 where the electron is represented by
a hard-core boson obeying the Pauli exclusion princi-
ple. When the hard-core boson is expressed in terms
of the ordinary boson, a renormalization counter term
appears. This term gives a repulsive contact interaction,
and makes a distinctive feature of our formalism. Due
to the term we can explicitly see the degeneracy of the
states at the lowest Landau level in the absence of the
Coulomb interaction as well as the role of the Coulomb
interaction which resolves this degeneracy. Furthermore,
only with this term we obtain a Bnite quantum correction
to the ground-state energy. The short-range character-
istic behavior of the Laughlin wave function can also be
derived due to this term. Thus, some of essential physi-
cal features of the FQH efFect can only be revealed with

this term.
The aim of this paper is to analyze various aspects

of the double-layer electron system based on this Geld-
theoretical formalism. To simplify the problem, it is as-
sumed that the system contains no impurity and that all
spins are completely polarized. It is also assumed that
the interlayer tunneling is small enough. Then, we have
two sets of electrons, the spin-polarized electrons in one
layer and the spin-polarized electrons in the other layer.
This double-layer system may be simulated by a single-
layer system containing two distinguishable electrons;6'7
here, each electron is labeled by the layer index, which
we call pseudospin. Electrons interact with each other
via the Coulomb interaction depending on the interlayer
distance. It is found at the filling v = 1, 3 5 ., that
the tunneling acts as if a Josephson junction and that
the Josephson efFect is to be observed.

In our approach planar electrons are regarded as
anyons and we use the CS gauge theory to describe
them. We are free to represent the anyon by the boson
field or the fermion Beld, and for our purpose it is conve-
nient to use the boson Geld. The present system contains
two sets of electrons. Hence, we consider two distinguish-
able anyons with their own statistics parameters cr, P and
their relative statistics parameter p; here, n/vr and P/a
are odd integers while p/~ is an integer. Each anyon car-
ries two types of fluxes associated with two types of CS
gauge fields. Thus, in this scheme an electron is decom-
posed into a boson and two types of flux quanta. The
fact p g 0 implies that there is a statistical interaction
between electrons on the two diferent layers. Physically,
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additionally exists a constant solution, which describes
a Hall liquid, that is a uniform condensed state of
bosonized electrons (electrons bound to fluxes). Using
these classical solutions we explain why the system is
always compressible in the absence of the Coulomb in-
teraction. We also explain why the system remains com-
pressible even in the presence of the Coulomb interaction
when the filling factor does not take a magic number (1).
It is argued that the compressible ground state will be
given by a Wigner crystal made of vortex solitons at the
vicinity of the filling factor (1). We present a schematic
phase diagram of the system as a function of the filling
factor and these statistics parameters.

In Sec, IV, we take account of quantum fluctuations
around the classical ground state when the filling factor is
given by (1). In this way we evaluate the Coulomb energy
of the ground state as well as some excitation spectra as
a function of the distance d between the two layers. We
find that the ground state at (1) is an incompressible
FQH state unless n = P = p.

In Sec. V, we analyze the FQH state at n = P = p,
whose filling factor isill

g/ ) ) ) ) '
3 5 7 (2)

Here, a new feature appears peculiar to the double-layer
electron system. Namely, there arises a zero-energy mode
in the pseudospin density fluctuation. (Physically, the
energy of the state does not change even if we move
electrons from one layer to the other layer in this Hall

this would be due to the interlayer Coulomb interaction
and an overlap of their three-dimensional wave functions.
In the present two-dimensional simulation the latter ef-
fect may be taken into account by way of tunneling be-
tween the two sets of electrons. For the sake of simplicity
we suppress the tunneling in most cases. This is justified
in the case when its physical effect is negligibly small.
However, in some Hall states it plays an important role
of deriving the Josephson effect.

The contents of this paper are as follows. In Sec.
II, we present a microscopic Hamiltonian describing the
double-layer electron system without impurity. We ana-
lyze this Hamiltonian in the semiclassical approximation.
In the semiclassical approximation we first determine the
ground state by minimizing the classical energy of the
system: it is a solution of the classical field equations of
the Hamiltonian. Thus, we call it the classical ground
state or the mean-field ground state. We then consider
quantum fluctuations around the classical ground state
using the Gaussian approximation.

In Sec. III, we analyze the classical ground states by
switching off and on the Coulomb interaction. It is found
that the essential features of the ground state are deter-
mined by the classical solutions, which describe ensem-
bles of vortex solitons (quasiparticles) in general. How-
ever, when and only when the filling factor takes a magic
number

II. HAMILTONIAN OF DOUBLE-LAYER
ELECTRONS

We consider a double-layer electron system. Our strat-
egy is to regard electrons as anyons. Thus, we consider a
system containing two types of distinguishable anyons in
external magnetic field B, i.e., anyons with up (t') pseu-
dospin and down (j,) pseudospin. Physically, anyons with
up (down) pseudospin stand for the spin-polarized elec-
trons in the up (down) layers. We represent anyons in
terms of boson fields g~ and Q~ with the aid of the CS
gauge fields a& and ak~, . In a previous paper we have de-
rived a Hamiltonian containing two sets of anyons, which
we used to describe electrons and vortices in the single-
layer system. This Hamiltonian may also describe the
system containing spin-polarized electrons in different
layers by introducing the interlayer distance d into the
Coulomb potential. For the sake of simplicity we sup-
press the interlayer tunneling. We analyze the effect of
the tunneling in Sec. V.

Our microscopic Hamiltonian reads
'H = 'Rgy+ 4'8, (4)

where

and

(6)

with iD& ——iOg+at, —eA.A, . The Hamiltonian 'H~ is the
~ TL Tl

standard one, while AH is the renormalization counter
term on which we comment later. The CS gauge fields
are defined by the constraint equations

s,,B,a, = 2o.(@~[ +2p(@~]

s„B,a~ =2pfg)J'+2P[g~[ .

state. ) This zero-energy mode has already been known
at some filling factors in literature. We point out
that our analysis- exhausts all possible cases. When the
small tunneling is allowed, the zero-energy mode leads to
the Josephson current associated with the phase differ-
ence between the two layers. ' For a constant voltage
V applied, the Josephson current is given by

J = As~sposin(eVt+ho),

where AsAs is the gap energy between the symmetric and
antisyrnrnetric single-electron states; po is the average
electron density in each layer and bo is an arbitrary phase.

In Sec. VI, the wave function of the Hall state is
derived, which coincides with the one suggested by
Halp erin. 4

In Sec. VII, constructing an efFective-field theory of
vortex solitons, we analyze the hierarchy of the FQH
states in the double-layer system.

We have prepared an appendix for some detailed cal-
culations. In this paper we use the unit such that c = 1
and 5 =1.
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Anyons have the mass M and the electric charge —e.
They are interacting via the Coulomb potential V[/].
The external electromagnetic potential is taken in the
symmetric gauge as Ak = —-eBek&x~. We choose o, & 0,
P ) 0, and B ) 0 without loss of generality. It is un-
derstood that the precise ordering of the operator lOl2
is OtO; e.g. , lDA@l2 stands for (Di,@)t(Di,@). This con-
vention is always understood in what follows.

It is clear from (7) that two types of statistical fluxes
are attached to each anyon: the anyon with up (down)
pseudospin carries the at flux with strength 2o. (2p) and
the al flux with strength 2p (2P). These fluxes make the
anyons feel statistical forces of the other anyons. We call
p the relative statistics. See also Ref. 21.

The Coulomb potential V[/] is taken such that

V[~] = V"W+ V"[~]+V"[&]

with
2y" [O] = —' d2~d2u: (0"0'(~) p')—

28'

8"&'(~) —p'):1

I* —
ul

(9a)
2

yll[@]
' dz*d2V: (&lt ql (&) pl)
2G

x (q»@'(y) —p'):,1

l~ —
ul

(gb)
2

y"l[q] = — d2~d2y: gl~t@~(~) —pt)

(x g)2 + d2

x 8 "@'(~)—p'): (gc)
where s is the dielectric constant and we have added uni-
form background charges ept and epl to the Coulomb
term V for charge neutrality. (The average density of
each type of anyons is denoted by pt and pl. ) The pa-
rameter d in the Coulomb term Vtl stands for the dis-
tance between the two layers. In the system with d g 0
the conserved quantities are given by the total number of
electrons and the z component of the pseudospin. Phys-
ically, they are the numbers of electrons in each layers.
In Sec. V we introduce the interlayer tunneling, in which
case only the conserved quantity is the total number of
electrons.

We now comment on the term 6'H in (6). When we
express the anyon in terms of the boson, the boson should
satisfy the hard-core condition. (They are called hard-
core bosons. ) Namely, the wave function should vanish
when two of the hard-core bosons come to the same point.
However, it is very dificult to use the hard-core bosons in
the semiclassical quantization. Thus, it is convenient to
express the Hamiltonian in terms of the ordinary boson
field on which the hard-core condition is not imposed.
This is possible. The resulting Hamiltonian, which we
call the modified Hamiltonian, contains an explicit re-
pulsive contact interaction. It is determined so as to re-

Here, the unperturbed quantities Hp, Ep, and 4, are
those of the ordinary bosons without the hard-core con-
dition; Hpl@p) = Epl@p); the quantities Hi, Ei, and Ci
represent the first-order corrections in these parameters,
and the ellipses stand for the higher order corrections.

Now, the two-anyon system can be exactly solved
quantum mechanically. We also know some spectra of
the many-anyon system. ~4 Hence, we know what is the
correct first-order energy Ei. By an explicit calculation
we can prove that

E, = (epl(a, + ~a)lop), (12)
where the Hamiltonian density for AH is given by (6).
Consequently, in performing a perturbation expansion
with the unperturbed states being those of the ordinary
bosons, we need to modify the Hamiltonian (5) by adding
the repulsive term EH.

The contact term (5) is nothing but a renormalization
counter term which occurs in the Hamiltonian when the
"bare" field (hard-core boson) is expressed in terms of
the "physical" field (ordinary boson).

Adding the renormalization term (6) to (5), we obtain
(4) as the second-quantized Hamiltonian of the bosonic
CS gauge theory describing two sets of anyons with their
own statistics o;, P and the relative statistics p. Then,

produce the correct short-distance behavior and the cor-
rect energy spectrum by making a perturbation expan-
sion around the ordinary boson states. Let us briefly
review the essence.

The necessity of an explicit repulsive interaction can be
understood quantum mechanically as follows. 2s We con-
sider two anyons of the same type in an external magnetic
field. In general, anyon wave functions vanish with a frac-
tional power of r as Q&t ~(r) ~ r ~ when two anyons
come close. However, unperturbed boson states (n = 0)
do not involve this fractional power of r; their wave func-
tions vanish like r~ with E being angular momentum.
Hence, we cannot expand anyon states in terms of the un-
perturbed boson states which have the standard partial
waves. Instead of doing so, we may expand r
by using the standard partial waves. Schematically the
expansion looks like

()((() = r ( () )(t ) ()o)

where R"„are partial waves. This expansion leads to
a modification of the perturbation series of n/z. Espe-
cially, in the first order of u/r(, we have to add to the
naive Hamiltonian a 6-function type repulsive force with
the strength 2a/M, which leads to the (n/M): lgtl4:
term in (6) field theoretically.

The above quantum-mechanical result is also derived
by examining the energy spectrum. We solve the Hamil-
tonian (5) perturbatively with respect to the statistics
parameters n/m, P/7r, and p/vr. We expand the Hamil-
tonian, the eigenvalue, and the eigenfunction as follows:

Hg ——Hp+ Hg+
E = Eo+ Ey+
e =op+)-C;e, +
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using the Bogomol'nyi decomposition of the type

IDA:&I' = l(Di —»z)VI' ~~i &, (g'iDa@) :—~r2q'q:,

with ~g = aa —eAk and uiz = Diaz —Ozcui, we can
rewrite the modified Hamiltonian density precisely as

'H = [(D" —iDT)@~)~ + i~ @'it+~

+2M I(D& —iD2)4'I'+ 2~@'"&'+&[&I

where a surface term has been neglected and ~, is the
cyclotron frequency w, = eB/M.

The modified Hamiltonian (14) has been derived in the
first order of the statistics parameters. However, as we
shall see, it is also valid for any values of the statistics
parameters in the semiclassical approximation. Namely,
the correct energy and the wave function of the ground
state are reproduced for any values of them in the ap-
proximation. Therefore, we do not assume that u/vr,
P/vr, and p/vr are small quantities in what follows.

e" = v~"*", pT+ pl

(17a)

with constant phases and amplitudes into the self-dual
equation (15), and find that

a&
——a& ——eA. I, .T l (17b)

there exists only one type of anyons, Jackiw and Pi
have analyzed the self-dual equation in detail. In this
case, it is reduced to the Liouville equation, and all the
solutions can be obtained analytically. They are inter-
preted to represent nontopological vortices.

When the external magnetic field is present and when
there are two types of anyons, it is impossible to solve
all the solutions explicitly. Nevertheless, we can easily
derive some of essential features of the solutions without
knowing their explicit forms.

First of all, let us show that a constant solution exists
only at a specific filling factor v = 27rp/eB. We substi-
tute

III. GROUND STATES IN CLASSICAL
ANALYSIS

From the constraint equations it follows that

ea = 2c pT + 2pp',

We analyze the Hamiltonian (14) in the semiclassical
approximation. For definiteness we use the notation QTl
for the quantum field and gtl for the classical field in
what follows.

Let us assume that the system consists of NT electrons
with up pseudospin and Nl electrons with down pseu-
dospin. In this section we analyze the mean-field ground
states, that is, the classical ground states described by
the c-number functions QTl minimizing the classical en-
ergy of the system. Using these classical fields we show
how we can understand the ground-state degeneracy and
its removal depending on the absence and the presence
of the Coulomb interaction.

eB = 2&~'+ 2A',
which are solved as

N~
T p —p

V a+P —2p
= p'= P)

Nl a
pl

V a+P —2p

where V is the volume of the system. Then, the filling
factor is uniquely determined as

A. Hall states and vortex: excitatians
(c) n+ P —2P

V (2P)

In this subsection we neglect the Coulomb term V.
Then, the classical ground state is given by solving the
self-dual equations

(DT iDT)qf P (Dl iDl )ql P

since it minimizes the classical energy. All the solutions
have the same energy; thus the corresponding states are
degenerate. It is clear in the Hamiltonian that the "clas-
sical" energy gives precisely the exact result

Eiv ——2h~, (NT + Nl), (16)

which is the kinetic energy of electrons, when all electrons
are in the lowest Landau level. Here, we have made ex-
plicit the h dependence of the energy. The formula (16)
suggests that there should be no quantum corrections to
the ground-state energy in the absence of the Coulomb
interaction, which we shall confirm in the next section.

When the external magnetic field is absent and when

c'= v~' '"'
(21)

with

a@ —@BI,O,T= GI QBA 8,l
(22)

as r —+ oo, where (r, 8) is the polar coordinate, and p and
q are integers. This vortex carries (p, q) units of statisti-

Equation (17b) means that the statistical fields of elec-
trons and the external magnetic field cancel each oth-
ers precisely. Physically, this is the condition for the
condensed phase of bosonized electrons (Hall liquid) to
exist. i3

Second, there are topological vortex solutions in addi-
tion to nontopological vortex solutions. The nontopolog-
ical vortex is characterized by the asymptotic behavior
@Tl —+ p, and it exists at any filling factor v. On the other
hand, the topological vortex is defined by the asymptotic
behaviors such that
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(0, +8 )u, (x) + eB = 2p) K,,e" ~*l

3

(24)

where Kqq = n, Kz2 = p, and Kq2 = Kzq = p. Analyz-
ing the equations, it is easy to see 7 that only antivor-
tices (vortices with p ( 0 or q ( 0) exist as classical so-
lutions. We conjecture that vortices with p & 0 or q ) 0
appear not as solitons but as bound states of electrons
and antivortex solitons. This difference in their charac-
ters causes a discontinuity in the chemical potential at
the magic filling factor (20).~s

Vortices with the minimum flux will be physically rele-
vant: When nP P pz, the antivortex with (p, q) = (—1, 0)
or (0, —1) is the quasihole, while the vortex with (1,0)
or (0, 1) is the quasiparticle. In what follows we consider
these vortices.

From the constraint equation (7) the pseudospin com-
ponents of the vortex soliton are obtained:

S ppvr —pq7r

~p —v' '

S AQ7t' —/PE
~p —v'

The quantities —eST and —eS~ are the electric charges
of the vortex soliton in the up and down layers, respec-
tively; recall that the electron carries the charge —e. It
is interesting that one vortex has necessarily the electric
charges on both of the layers. Thus, the vortex in the
double-layer system may be viewed as a dipole-like ob-
ject with the electric charge —eSt on one layer and the
electric charge —eSl on the other layer. The total electric
charge is given by eQ„= —e(S~ + S"), which we denote
as eQt and eQl for the vortex with (p, q) = (—1,0) and
(0, —1), respectively, where

(p- p)vr

~p ~2'
(26)

(o. —p)~
~p p2

The vortex may be considered to be composed of Qt or
Ql electrons, and hence it is concluded that its mass is
given by

MJl = M]Q»[, (27)

as in the case of the single-layer system. In particular,

cal fiuxes associated with the CS gauge fields (a&, a&). It
exists only at specific filling factors. Topological vortices
play important roles as quasiparticles.

Vortex solutions are explicitly analyzed by substituting

q'(x) = ~pexp[ug(x) + ipe),

q'(x) = ~pexp[u~(x) + iqe],

into the self-dual equations, which yield the modified
Toda equations:

when o. = P we find that

QT Ql

at the filling factor v; namely, the total electric charge is
—ve.1
2

For instance, the even-denominator filling factor v =
2

is realized with the choice of o. = P = 3vr and p = vr.

In this case, the total electric charge of the vortex with

(—1,0) or (0, —1) is Q =
4 e, which consists of s e on one

layer and —8e on the other layer. We note that four of
the vortices have precisely the opposite quantum number
of one electron in this Hall state.

On the other hand, when n = P = p, the quasihole is
the vortex with (p, q) = (—1, —1), which may be viewed
as a diatomic molecule with the electric charge 2ve on
each layer: thus, the total electric charge is ve.

B. Coulomb interaction and removal of degeneracy

By switching off the Coulomb interaction we have
shown that there are many nonuniform solutions to the
self-dual equations. All these nonuniform solutions have
at least two zero-energy modes associated with the trans-
lation of the system itself. Furthermore, at v = v~ ~ there
is the uniform (constant) solution in addition to nonuni-
form solutions. They are all degenerate. Therefore, the
system is compressible in the absence of the Coulomb
interaction.

Now, we switch on the Coulomb interaction between
electrons. When the filling factor does not take the magic
number (20), the constant solution does not exist. Thus,
a nonuniform solution with the minimum Coulomb en-
ergy is a ground state. It should be noted that the zero-
energy modes necessarily exist associated with the trans-
lational invariance of the system itself, and hence the
system is still compressible at v g v~0&. A candidate of
the ground state is given by a Wigner crystal made of
vortex solitons at the vicinity of the magic filling factor
(20), as we shall discuss soon after.

The situation is entirely different when the filling factor
takes the magic number (20). In this case the constant so-
lution exists and minimizes the Coulomb energy. Hence,
the corresponding state is the ground state. To find the
gap energy, we should consider perturbative excitations
and nonperturbative excitations separately. Nonpertur-
bative excitations are given by topological vortices and
described by a nonuniform classical solution, and hence
their creation costs a Coulomb energy. Actually the gap
energy is given by the creation energy of a pair of a vortex
and an antivortex. At v =

2 a numerical estimation2s of
such a Coulomb energy reads (V) —0.046e /s'lz for the
antivortex with unit flux when the interlayer distance is
taken as d = 2.5l~, here, E~ = 1/geB is the magnetic
length. The gap energy is approximately given by the
creation energy of four antivortices, which is of the or-
der of 4(V) at v = 2. Onthe other hand, the perturbative
excitations are given by Gaussian fluctuations around the
constant solution, which we analyze in the next section,
where we find that the ground state is incompressible at
the magic number (20) unless o. = P = p.

The case n = P = p needs a separate treatment since
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the classical ground state is not uniquely determined as
in (19). The form of the solution (17a) and (17b) is still
correct but pt and pl are not determined as (19); they are
arbitrary constants satisfying p = pT + pl. The ground
state is compressible and shows superHuidity even if the
Coulomb interaction exists, as we show in Sec. V.

Let us make a physical argument of the ground state at
the vicinity of the magic filling factor. We have already
argued that the mean-field ground state is described by
a nonuniform solution of the classical field equation. As
such a nonuniform solution there are topological vortex
solutions. We have noticed that four of the antivortices
have the opposite quantum number of one electron in the
instance of the v =

2 FQH state; see (26). Thus, when
we remove one electron from the FQH state, some an-
tivortices would appear. As more electrons are removed,
more antivortices are created. Similarly, vortices appear
when electrons are added to the FQH state. (Alterna-
tively, to create vortices or antivortices, we may decrease
or increase the external magnetic field B with the elec-
tron density kept unchanged. ) At the vicinity of the
magic filling factor the mean-field ground state must be
described by an ensemble of these topological solitons;
these solitons would make a Wigner crystal to minimize
the Coulomb energy. The relation between the filling fac-
tor v and the average vortex density p is easily derived
from the constraint equation (7):

hyperplane defined by (20), i.e. , on the lines in the figure.
At a point not on the hyperplane but in its vicinity, the
ground state is given by a Wigner crystal. In the analogy
with the single-layer system anyon superconductivity is
expected to arise at the point v i = 0 or B = 0, which is
also indicated in Fig. 1. In particular, the double-layer
semion superconductor is realized at o. = P
27t. . We discuss anyon superconductivity in a separate
paper.

IV. COULOMB ENERGY' OF HALL STATES

into the Hamiltonian density, where

(30)

In this section we analyze the case when the filling fac-
tor takes the magic number (20). As we have argued in
the previous section, there exists the constant solution
(QT" = /pl'1) with the minimum Coulomb energy. (We
may set 8l 1 = 0 without loss of generality. ) We now con-
sider small quantum Huctuations around it to evaluate
the Coulomb energy of the ground state as well as exci-
tation spectra. The results of this section are also used
in Sec. VI to derive the ground-state wave function.

We substitute

2TN w 1+ &Pv
eBV n n p

(29)
p+0

(31)
Detailed analysis of this Wigner crystal is given
elsewhere

We have depicted in Fig. 1 a schematic phase diagram
of the double-layer anyon system as a function of the
statistics parameter n and the inverse filling factor v
eB/2~p for the cases n = P with p integers. Note that a
similar diagram has been given for the single-layer anyon
system by Wilczek. 2s The FQH states are realized on the

ip x
~v

[ap, a ] = 6p„,t [ap, a~] = [at, at] = 0,

P'v &~) =4~ [bp, b~] = [bpt, b~~] = 0.

with V being the volume of the system, and

(32)

y=27t

We then diagonalize the Hamiltonian in the Gaussian
approximation by way of the Bogoljubov transformation

ap ——I'pAp + A@At p +. ApBp + TpBt

(33)

0

with appropriate coeKcients I"p Ap Op Tp and their
primed quantities: see the Appendix for details. We then
find that

FIG. 1. Phase diagram of the double-layer anyon system
for the cases n = P with p integers. The points denoted by
white circles are Hall states of electrons, which we denote by
(a/m, P/vr, p/vr). Typical points are as follows. The v =
Hall state is given by (3, 3, 1) on the line p = 7r. At v =

5
there are three Hall states (3, 3, 2), (5, 5, 0), and (1,1,4). The
Josephson effect is expected in the states (1, 1, 1) at v = 1
and (3, 3, 3) at v =

3 as indicated with black circles. Anyon
superconductivity may arise in the region 0 ( a = —p ( 1 at

1 0

with

[Ap, At ] = b~~,

[Bv B,'] =4~

[A„A,] = [At, At] = 0,

[B,B ] = [Bt,Bt] = 0.

The ground state is defined by

A~~g) = Bp]g) = 0.

H = 'N + Eq + ) (E—~At Ap + E' Bt Bp),
pro

(35)

(36)



47 QUANTUM HALL LIQUID, JOSEPHSON EFFECT, AND. . . 7301

Here, excitation spectra are calculated as a function of
the layer separation d as

p + + e plpl (1+L+K —~p[d)

with

2(~P '7 )P
M (n+ P —2p)M'

(3S)

P + I + PIPI (1 L K [p—(d)
2M ' ~M

(37)
2(~ —~)(P —~)~
(a+ P —2p)M '

while the ground-state energy is

e'~~ &1 1 K
I
-(1 + L) + — —'(1 —L) + — sin(dq)ci(dq) —cos(dq)si(dq)

2v 2sl@ (2 2 Cuc 7t

—sin(d2)ci(d2) —cos(d2)si(d2) + 0(& ),c

where E~ = 1/v eB is the magnetic length, and

dy = d+2Mcd d2 = d+2Mcu,'.
The functions ci(z) and si(2:) are the integral cosine and
sine functions:

ci(x) =—

si(x) =—

cos(t)
dt

t
sin(t)

dt

In (37) and (39) the parameters K and L are defined by

K= 4(~ —~)(P —~)
(~+0 —2W)'

'

(41)
(~ —P)'

(~+ P —»)'
Here, 1 6 [L + K exp( —IPId)] ) 0 for any values of the
statistics parameters; hence, E~ & 0 and Ep + 0. Note
that K = 1 and L = 0 when n = P.

We have obtained two excitation modes Ep and E'
with the gaps u, and u', . It is important to recognize
that there are no zero-energy modes in these quantum
fluctuations around the constant solution as far as cxP—
pz g 0 and o. g p g P. Therefore, in this case the
system is incompressible. We make a detailed analysis of
the zero-energy mode Ep that appears for n = P = p in
the next section.

In the previous section we have argued that, when the
Coulomb interaction is neglected, the uniform state is de-
generate with many nonuniform states containing topo-
logical vortices. One may wonder where all the associated
zero-energy modes have gone because no reminiscence of
these modes is found in the energy spectra (37). As we
have noticed in the previous section, these modes cannot
be generated by (perturbative) quantum fluctuations. It
occurs for instance by exciting topological vortices.

The quantum correction due to the fluctuation g to the
ground-state energy is given by Ez, which vanishes in the
absence of the Coulomb interaction (e2 ~ 0). The result

I

has been anticipated in the previous section. Namely,
the energy of the system should be given by z~,N when
e2 —+ 0; see (16). It indicates that our Hamiltonian (14)
is correct for any values of the statistic parameters in the
semiclassical approximation. We also comment that if
we did the above calculation without the renormalization
counter term 4'8 in (5) we would obtain a meaningless
divergence for the ground-state energy E„even in the
absence of the Coulomb interaction.

The ground-state energy Ez depends on the statistics
parameters and the interlayer distance d. It is easy to see
that E„(d) is a monotoneously increasing function of d for

p g 0 while it does not depend on d for p = 0. As a typ-
ical example we have depicted in Fig. 2(a) the function
E„(d) at v = s, where there are three FQH states charac-
terized by the statistics parameters: (a) a = P = 3+ and
p = 2vr; (b) n = P = 5vr and p = 0; (c) o. = P = m. and
p = 4x. They are called the (3, 3, 2) state, the (5, 5, 0)
state, and (1, 1,4) state; see Fig. 1. [We only consider
the cases of (a) and (b) for simplicity. ] It is notable that
the Coulomb energy of the (5, 5, 0) state is always smaller
than that of the (3, 3, 2) state for d P 0. (They are equal
at d = 0.) This fact may be understood physically as
follows. First, it is rather natural that the Coulomb en-
ergy is an increasing function of d since the Coulomb in-
teraction between electrons belonging to different layers
decreases as d increases. (Note that the Coulomb energy
is negative definite. ) On the other hand, the case p = 0 is
very special. In Sec. VI we derive the wave function of the
FQH state, which is the Halperin wave function4 as is ex-
pected; see (83). When p = 0 the Halperin wave function
is just a product of the two Laughlin wave functions de-
scribing two independent single-layer systems. With such
a wave function the d dependence of the Coulomb energy
is washed away. Indeed, in our formalism the ground-
state energy of the double-layer system with p = 0 is
the sum of the energy of the corresponding single-layer
systems. 3

It is reasonable that the (5, 5, 0) state is realized at the
large value of d because the double-layer system should
approach two single-layer systems as d ~ oo, where it
is necessary to have p = 0. However, our result naively
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indicates that the (5, 5, 0) state is always realized. This
conclusion is different from the one given in Ref. 6, where
the overlapping between the Halperin wave function and
the ground state of a few-electron system has been cal-
culated numerically. They suggest that there is a phase
transition at d = E~ and that the (3, 3, 2) state would be
realized at small d while the (5, 5, 0) state at large d. Let
us discuss this paradox.

Our above results have been obtained without includ-
ing the contributions of topological vortices. Let us guess
their contributions. Recall that the quantum correction
E„due to the fluctuation g to the ground-state energy
is essentially the Coulomb energy of the g quanta and
roughly speaking is proportional to the square of their
electric charge. We conjecture that the quantum cor-
rection to the ground-state energy due to the topologi-
cal fluctuations has a similar property. Now, the vortex
soliton with unit flux has the charge 5 e at v = 5, see
(28). On one hand, in the (5, 5, 0) state this charge is in-
duced only on one of the two layers. The Coulomb energy
would be proportional to —(1/25) e . On the other hand,
in the (3, 3, 2) state this charge is distributed on both of
the two layers, 5e on one layer and —5e on the other;
see (25). The Coulomb energy would be proportional
to —(13/25)e . Then, their contribution to the ground-
state energy would be bigger in the (3, 3, 2) state. Taking
account of them, we expect that the ground-state energy
would be modified as in Fig. 2(b). Hence, the (3, 3, 2)
state would realize at small d while the (5, 5, 0) state at
large d. In this way we may reconcile our formalism with
the result of a numerical computation.

V. INTERLAYER TUNNELING
AND JOSEPHSON EFFECT

s,,B,(al —al) = 0. (42)

The excitation spectrum (3?) can have a zero-energy
mode, which is the case if o. = p or P = p. Actually,
only the case o, = P = p is physically interesting. For in-
stance, if o. = p but P g p, we obtain pl = p and pl = 0
in (19). Namely, in one of the layers there is no conden-
sation and the corresponding CS gauge symmetry is not
spontaneously broken. In what follows let us assume that
o. = P = p, at which (38) reads w, = 2p/M and u,' = 0.
The gapless FQH state appears at the odd-denominator
filling factor v = vr/n; see Fig. l.

First we analyze the origin of the zero-energy mode
(37). In the double-layer electron system, there are the
U(l) x U(l) symmetry associated with the phase trans-
formation of the two fields goal. This symmetry is spon-
taneously broken by the condensation of the bosonized
electrons ((gl") P 0), producing two Goldstone modes.
However, for a general value of the statistics parame-
ters, these Goldstone modes are absorbed into the two
CS gauge fields and there are no zero-energy modes as-
sociated with the U(1) x U(1) symmetry. This is the
Anderson-Higgs mechanism, and what happens in the
case of the incompressible FQH state. However, when
o. = P = p, one of the Goldstone modes survives. Indeed,
in this case it is obvious from the constraint condition (7)
that

E

—2.6

(3,3,2)

Therefore, one of the CS gauge fields is redundant, and
hence one of the Goldstone modes survives. Without
loss of generality we may set a~ = a . This explains why
there is one Goldstone mode left over, as is indicated by
(37).

Consequently, the basic Hamiltonian density is given
by (14) with

—3.1

1 2 3 4

iD@ ——i D& ——iOy + ak —eAA. ,
T l

together with a single constraint condition

(43)

(3,3,2)

where we have set a, —:a, = a, . It is found that the CST l

gauge field aA. couples to the charge density current JA,

but not to the pseudospin current Ig, where

t 2 3 4 (45)

FIG. 2. The ground-state energy E as a function of the
interlayer distance d for the (3,3,2) and (5,5,0) states. The
distance is in unit of the magnetic length Ie (a) The groun. d-
state energy E„without the effects of topological vortices in
unit of e N/(2v 2el&). (b) An expected ground-state energy
with the efI'ects of topological vortices in an appropriate unit.

Therefore, there is the Goldstone mode only in the pseu-
dospin fiuctuation as in (37).

The constant classical solution representing a Hall liq-
uid is found as before. Substituting
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O' = Va'e"',

into the field equation we find that

pT+ pl

(46)

(47)

The Hamiltonian reads

(53)

2MI(Di —iD2)@sl'+
2

l(Di —»2)CASI

+2~ (l@sl'+ IQAsl ) + &IVs, QAs]
—&(I&I' —ICAs I')

Then, the constraint equation (44) yields

eB = 2ci(pT+ pl)

which determines the filling factor uniquely as

(48)

(49)

where the Coulomb energy V[gs, tPAs] is a symmetric
function of gs and /As. It follows that the energy gap
Esses between the symmetric state (gs) and antisym-
metric state (/As) is given by

+SAS = 2~.

Because there is only one constraint equation, the den-
sity of the electron in each layer is not fixed uniquely.
This ambiguity is physically the origin of the zero-energy
mode in the excitation spectrum. Namely, we can move
electrons bp in one layer to the other layer without cost
of energy.

The existence of the gapless mode has been known at
some filling factors in the literature. is is Our analysis
exhausts all possible cases at which this gapless mode
appears. At p -0, (37) implies

The energy gap As~s is of order of 1 K.
Due to the tunneling effect all electrons occupy the

symmetric state, lgsl = ~p with 6 = 8 . Thus, l@Asl =
~il~pT —~pal = 0, or pT = pi. It is reasonable that
the density of the electrons in each layer becomes equal
because of the tunneling.

We next see how the energy spectrum (37) is modified
by the effect of tunneling. It is straightforward to see
that the dispersion relation now reads

7l e pd
(50)

E' =2k (55)

for d g 0. This behavior is consistent with the previ-
ous results obtained in different ways. i6 The gapless
mode implies that the ground state is a superfluid. We
emphasize that to get the linear dispersion relation (50)
the existence of the Coulomb interaction (e2 g 0) is es-
sential.

The zero-energy mode has actually appeared because
interlayer tunneling has been suppressed. In a recent
paper in collaboration with Wu we have analyzed the
effect of the interlayer tunneling. The tunneling is easily
incorporated by including a term A(@Ttgi + @~t@T) into
the Hamiltonian:

p(qTt@l + qitqT) (51)

where '8 is given by (14) with (43). For the consistency of
our two-dimensional simulation, the tunneling is assumed
small relative to the creation energy of topological vor-
tices. To see the effect of the tunneling to the above Hall
state we diagonalize the tunneling term. Let us introduce
the symmetric and antisymmetric Beld operators by

(CT+ 4")1

(52)

eV
p T

2 '
eV

pl
2

' (56)

The Hamiltonian is modified by adding a term (pT l@T
I

+
p~l@" I2) to (53). The Lagrangian reads

near p —0, instead of (50). Thus, the gapless mode
disappears and the ground state becomes incompressible.

Although the ground state is incompressible its prop-
erty is very different from that of the other FQH states
where a g p g P. In these cases the Hall-state conditions
uniquely determine pT and pl in a condensed state as in
(19): Namely, the state not satisfying (19) is no longer a
Hall liquid. On the other hand, in the present case where
a. = P = p, even if pT g pi, the state can still be a Hall
liquid with the bose condensation as long as the Blling
factor takes the magic number (49). This characteristic
feature originates in the presence of the zero mode for
A = 0, or the looseness of the Hall-state condition (48).
Therefore, in the present Hall state, if we supply an ex-
ternal voltage between the layers, electrons bp move from
one layer to the other layer while keeping the Hall-state
conditions. Thus, we expect the Josephson current3 to
be induced as a result of tunneling.

To study the problem we introduce the electric poten-
tials associated with the voltage:

Zz = @Tt(iso+ ao)vpT—
2M I(Di —iD2)0

I
+ 0 (ioo+ ao)g l(Di iDz)4 I2M

--,' .(I~TI'+ I~"I') —~I~]+ ~(~Tt~'+ ~"~T) —~TI~TI' —~'I~'I'— (57)

which reproduces the Hamiltonian and the constraint equation. Here, i Di, = i Bi, + aq —eAq. The field equations are
given by
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(iBO+«)g = — (Di+iD2)(Di —iD2)g + —+ p Q —AQ +T= 1
2M 2 B@Tt '

1
(iBO + «)@ = — (Di + iDg)(Di —tD2)g + —+ p Q —AQ +2M 2 Built

'

(5s)

(59)

together with the constraint equation (44).
We solve Eqs. (58) together with the constraint equa-

tion (44) to obtain a uniform but a time-dependent solu-
tion. Here, we require aA, = eAI, so that the ground state
is still a Hall liquid. Then, the equations are reduced to

iB qT @T Apl
eV
2

V = Vo+ vcosut, (65)

with v « Vo, the dc supercurrent is observed at

cu = eVO. (66)

Similarly in the system with current feed, the voltage be-
tween the layers does not appear until the current exceeds
a critical value J, given by

I

we apply a dc voltage we get b(t) = eVt. However, the
net current is zero because the sinb(t) oscillates rather
rapidly. On the other hand, when the high-frequency
voltage is applied in addition to a dc voltage Vo such as

(60) = 2Apo = &sAspo ~ (67)

iB.qi =-' q1 —Apt,
2

q T i pg J, (t) eig (&) (61)

into (60) we obtain

BOPT(t) = 2A/PT pi sin—b(t),

Bppi(t) = 2A+pt'p" sinb(t),

(62a)

(62b)

Bob(t) = —eV(t) + A cosb'(t),
V P~pi

(62c)

where b(t) is the phase difFerence across the interlayer
separation, b'(t) —= 8"(t) —81(t).

Before applying the external voltage, the system is in
the ground state where p~ = pi = po and b'(0) = 0.
When it is applied, the phase difference starts to develop
as b(t) = —eV(t)Et, and the Josephson current

1 = Bop = —2Aposinb(t), (63)

begins to flow. The resulting density difference will
be immediately compensated by the external supply.
Namely, pT = p~ in the actual system. Thus, in the
presence of the external supply, we can neglect the last
term of (62c) and integrate it as

by neglecting the Coulomb correction. Here, we have
solved «as « = —zu„which is consistent with (59).
The constraint equation (44) states simply that the filling
factor is given by (49).

The set of equations (60) is precisely the one determin-
ing the Josephson current when two superconductors are
jointed with a thin insulator; see Eq. (21.40) of the text
book of Feynman. Substituting

Here, the Josephson current is generated by the phase
difFerent bo as J = J, sinbo. The Josephson effect in
the double-layer electron system is within the reach of
present experimental technology.

In the absence of the external voltage, we cannot ne-
glect the last term in (62c). Let us set V = 0 and study
a small fluctuation of the phase difference b. For b « 1,
we may solve the coupled equations (62a)—(62c) as

pT(t) = pe(l —csin(2At)),
(6s)

b(t) = csin(2At),

where c (( 1. This is the coherent mode in (55) which
gives the gap energy 2A due to the tunneling effect. This
coherent mode is a very distinct one characterizing the
Hall state with the Josephson current.

Finally, we mention that some of the results on the tun-
neling and the Josephson current have also been argued
by Wen and Zee in their heuristic work. Our formalism
of the double-layer system gives a systematic treatment
of this phenomenon. It is as clear as in the case of the or-
dinary Josephson junction in the superconductor. The
check of the Josephson current gives a justification of
our formalism of the FQH effect based on the bosonic
CS gauge theory.

VI. WAVE FUNCTIONS OF HALL STATES

We proceed to derive the wave function corresponding
to the classical ground state given by the constant so-
lution (17a). The ground-state wave function is defined
by

b(t) =—6'(t) —8'(t) = e dt'U(t') . (64) = (0IO'(zi)" 0'(~~r)@'(&i) "&'(&~i)l&)

The Josephson current is given by (63) with (64). When (69)
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with g(xTl)lo) = 0. The wave function of electrons is
constructed by performing a singular gauge transforma-
tion to the wave function 4z of the bosonized ones.

We first note that the ground-state wave functions of
the general N electron system are exactly solvable when
the Coulomb interaction is switched oK The ground
state lg) is determined by the eigenvalue problem

Hlg) = 2icu, (NT+ Nl)lg),

(Di —&D2)@'lg) = o (D' —iD')@'lg) = o. (71)

We introduce the complex coordinate zT and zl for each
electron with up and down pseudospin ZTl z Tl + jyTl
Then, the self-dual equations yield the following equa-
tions in terms of the wave function defined by (69):

when all electrons are in the lowest Landau level, which
is equivalent to solving the self-dual equations

c! eB
T

o( - 1

r 0 eB-l ~ 1 7 . 1
+ Z

l

(72)

It is easy to solve these equations, and we obtain

@g(zT;z ) = f(zT;zl) lz„—z
l

r&s
1

t)u
lz —z l~) lzT —z l~~ exp — ) lzT +) lzPl (73)

where f (zT; zl) is an arbitrary entire function of the z T and z, .
The electron wave function is obtained by using a singular gauge transformation:

@,(z;z ) = f(z;z ) (z —z )~ ~ (zl —zl)!')"
r)s t)u r, t

(z„" —z,")~ exp () [~Tl[2 ~) !l(2)

which has a Laughlin-type expression. In our convention
the conjugate coordinate z appears instead of z.

The above ground-state wave functions are the most
general ones. They just describe an ensemble of two sets
of electrons making cyclotron motions independently in
the lowest Landau level. The fact that f is an entire func-
tion implies that all electrons are in the lowest Landau
level, and the fact that it is an arbitrary function implies
that the ground state is highly degenerate.

In the presence of the Coulomb interaction, it is impos-
sible to obtain the ground-state wave function exactly.
However, we can do it in the semiclassical approxima-
tion. We make the following reasoning. Because the
Coulomb interaction V removes the degeneracy, a certain
function F(zT, zT; zl, zl) must be fixed uniquely instead
of f(zT; zl) in (73). In the limit of vanishing Coulomb
interaction (e2 —+ 0), F is to approach one of the entire
functions f in (73), which we denote by fg We then have.

F = f~+e G+O(e ). Our idea is to determine the func-

l

tion fg semiclassicaly. This method was first used in the
single-layer electron system, where the first-order correc-
tion term G is also calculated; here, the derivation is
refined and the statistics parameters are not assumed to
be small. In what follows let us assume o. = P to simplify
calculations. Then p T —pl —

p = p
We decompose the field operator into the real part and

the imaginary part:

0 "(~) = ~o+ ~C "(~)e' '*'

~pen" (*))( ~co (75)

with

ppTl
Tl(x) = + ieTl~p

2
(76)

where iTT1 is defined in Sec. IV. Substituting (75) into the
definition (69), we find

= ~o "(olg)
r&s

=
~D
"

(Ola) (r(s

s

(olqT( T)qT( T)lg)

co(olg)

~e1(~.—&.)/S o
I 4 h

r&s r, s

(oln'(*!)n'(*!)Ig)
)

(77)
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within the Gaussian approximation, where

(0ln'(x)n'(0)lg)
(ol.)

(0lrI'( )rj'(0) lg)

(o le'(x) n'(0) lg)"( ) -=(,l,)

(78)

gi(x) o.= ——1n(Ci lxl),
pp

gz(x) n= ——»((-"ilxl)
pp 7r

gs(*) = ——ln(Cs lx l),
pp 7T'

with t; being a constant, or

t Tl /

gi(x)
Kp(lxl v eB) — Kp(lxl v eB'),2' 27r

+ &K.(l.l&.B) 'K—.(l-l~.B ),
po 27r 27r

(79)

gs(x)
pp

Kp(lxl&eB) + Ko(lxl v'eB')

where B'—:(c(, —p)/(o;+ p)B, and Kp(y) is the modified
Bessel function. See the Appendix for their derivation.

Because the Gaussian approximation is valid for de-
scribing the short-distance behavior of the system where
the kinetic term p2/2M dominates, the wave function
(77) is correct in this region. Hence, taking the short-
distance limit (lxl « E~), we get

We calculate functions g, (x) in the vanishing limit of the
Coulomb interaction (e ~ 0), which is enough to de-
termine the function f~ Usin. g the definition (36) of the
ground state lg) and the explicit forms (33) of the Bo-
goljubov transformation, we can explicitly evaluate them
as

I z I

r)s
(81.)

apart from an overall constant factor. To see the long-
distance behavior we have to go beyond the Gaussian
approximation. The wave function (81) is to be compared
with the wave function (73).

We comment on the exponential factor in (73), which
may be rewritten as

exp — lx„l
eB

r)s
(82)

where x stands for xt~, and we have separated the co-
ordinate of the center of mass from those of the relative
motions. Our wave function does not contain the term
depending on the center-of-mass coordinate because of
the translational invariance in our semiclassical approx-
imation. Furthermore, the remaining terms 4~ lx„—x,

l

do not appear in the short distance.
Consequently, we have found that the ground-state

wave function (69) is given by (73) with f = const, or

@z(zZ;z") = (z„—ZJ) (z" —z„)Z~ (z„—z )e exp — () ~z
~
+) ~z,

~ )r)s t&u r'i t
(83)

This wave function has the correct property of the anyon
statistics. Namely, when one anyon moves around an-
other anyon, the correct phase factor is generated. For
the normalizability of the wave function it is necessary
that p ) —vr. The wave function (83) is precisely the one
suggested by Halperin.

Finally, we wish to remark that the origin of the power
behaviors of the ground-state wave function (83) is traced
back to the terms np /M, Pp~/M, and 2py pTp~/M
which dominate as pz ~ oo in (A2) in the Appendix.
But, these terms have come from the renormalization
term (6). Thus, the renormalization term is crucial to
derive the correct behavior of the wave function. This is
quite reasonable because the term has been introduced so
as to reproduce the correct short-distance behavior of the
wave function in the perturbation theory with respect to
the statistics parameters.

VII. CONDENSATION OF VORTICES
AND HIERARCHY

We have noticed in Sec. III that there are topological
excitations of vortices (quasiparticles) on the FQH state
at the magic filling factor. When the external magnetic
field is increased (decreased), antivortices (vortices) must
appear to balance the magnetic flux and the statistical
Aux. We have argued that the ground state at the vicin-
ity of the magic Ailing factor must be described by such
an ensemble of the vortices and that they would form a
Wigner crystal in order to minimize the Coulomb energy.
When vortices are sufficiently created, they will eventu-
ally condense. We would then obtain a new condensed
phase of electrons and vortices (new Hall liquid).

In order to describe this new phase, it is convenient to
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construct an effective-field theory of vortices. In previous
papers 3 we have proposed such a scheme in the single-
layer system, where a field-theoretical realization of the
Haldane-Halperin hierarchy is presented. Because the
present theory is its simple generalization we briefly de-

scribe how to derive the effective-field theory of vortices.
Using it we discuss the hierarchy structure of the FQH
states in the double-layer electron system.

We start with the Lagrangian describing the double-
layer electron system. It is given by

~~ = @»(ta. + ao)y — i(D', —tD,')@ i'+ q"'(t~. + a.')O' — i(D,' tD—,')O'I' —-', ~.(l@'i'+ l4'I') —~N

a„a& — s a 0 az — s a„O,a& — s a„B a&.p» T g T p» l l p» T l p» l T

4Z (84)

Here, parameters X, Y, and Z are defined by

CP —v'

(85)

grangian (84), we obtain

g + ~gvortex

with

(89)

~2 crP

@Tl ~ e&fr" @Tl aTl ~ aTl+ g fTl (86)

where f"l(x) = —+„8(x—zTl), and e(x —z"l) is the
azimuthal angle. (We set the minus sign here since the
vortices are actually antivortices. For vortices we should
set the positive sign. ) We then get

The Lagrangian has been constructed so as to reproduce
the Hamiltonian (14) and the constraint equation (7).
Notice that X, Y, and Z are singular for a =
P = p and we should use the Lagrangian (57) in this
case.

We would like to construct a local 6eld theory of vor-
tex solitons with vorticity n = +1. Although vortex soli-
tons are extended objects, we take the pointlike limit.
Then, their local field theory describes correctly the ef-
fects whose scale is larger than the scale E~ of the vortex
soliton. For deflniteness, we treat the case of antivortices
(n = —1) explicitly but the case of vortices (n = 1) can
be similarly discussed.

A pointlike vortex is a flux concentrated in a small
domain. Such a flux is easily introduced by considering a
singular gauge transformation. To create them at zT (zl)
in the upper (lower) layer, we perform a singular gauge
transformation

~gvortex aTKTP, + aJ. KTP.X~ Z~
+l ~ls + +T ~le

y 8 Z
+crGT + PGl + pG. (90)

Here,

KTl" = ) zTl"62(x —zTl)

which represents world lines of the vortices; zT»
(t, zTl"). On the other hand,

GTl (I/g~) ) KTlvct g(x —zTl)

G = (1/4vr) ) [KTvcj 8(x —zl) + Klan e(x —zT)j.
7,S

These quantities describe the linking of world lines of vor-
tices. We have created vortices on the two layers with a
and P representing their own statistic and p their relative
statistics. They are given by the generalized reciprocal
relation

E tjOt' aj ~ s;j0;a~
—2 7rp„(x),Tl . . . Tl Tl

where

p»(x) =) ~'(x-z»)

(87)

(88)

—2jt Q) (93)

describes a set of local vortices sitting at x" = z„"Tl(t) in
the two-dimensional space at time t, where r labels the
vortices.

Applying this singular gauge transformation to the La-

with p, q, r being integers.
Integrating AZ "'" over the two-dimensional space

and adding the kinetic terms of the vortices we get
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.MT dzT" 2 M& dz~"gvortex )™v r )™v r d2 ggvortex
2 dt 2 dt

=&-™.(";;).(-;' —;')';; (-;' —
)

) g(zT zT) + ) g(z~ zi) + ~ ) g(zT z~) (94)
r&s r&s r)s

H vortex
T ) [pT" —QTeAg —c~T(z„)]z

+ i ) Ipi" —Q~eAA, . —c"„(z„)], (95)

together with the constraint equations:

8'~&t9~c = 20,'~v + 2~~v&

~„a,c! = 2pp„'+ 2/jp„',

(96)

where pTi is defined by (88). In (95) we have set QT =
x/X+ sr/Z and Q" = ir/Y+~/Z. The quantity eQTi is
the electric charge of the vortex. Using the definition (85)
for X, Y, and Z, we find that QT" is precisely the same
one as (26) derived for the classical topological soliton.

To avoid unnecessary complications let us assume a =
P and ct = P in what follows. Then,

The mass of the vortex is given by (27). This de-
scribes the particle mechanics of vortices interacting with
the background CS gauge fields a&~~ and among them-
selves. Because these vortices live on the condensate of
bosonized electrons, we substitute the mean-field value
in (17b) for aP, i.e. , a&

——eAg.
From the Lagrangian (94), the particle-mechanical

Hamiltonian is derived: 3

s,,c),c =2nf@ I'+2pl@ I',

s'&~*c,' = 2714TI'+ 2~14'I'
(100)

which follow from (95) and (96) by the correspondence
principle. Compare these with the Hamiltonian density
(14) and the constraint equations (7) of the electrons.
They are formally identical except that there is no term

representing the cyclotron motion of vortices.
This is physically correct because vortices are really col-
lective modes of electrons in the lowest Landau level.

The derivation of the Hamiltonian (98) is by no means
rigorous. We have included the kinetic term of the
vortices by hand. It may well be that there are self-
interaction terms of PTi which may result, e.g. , from the
finite size of actual vortices. However, the form of the
Hamiltonian is severely restricted by the condition that
vortices are really collective modes of electrons in the low-
est Landau level. Our efFective Hamiltonian (98) would
be the simplest one that satisfies this criterion. In this
sense it is plausible and it seems to be practically correct.

Because of the formal similarity of the vortex Hamil-
tonian and the electron Hamiltonian, the ground-state
structure can easily be derived without any further
calculations. Thus, the uniform condensed state of
vortices exists only when the vortex-filling factor v =
2vrp„/( eQB) takes a—magic number

(97)
27r

&v = — -)n+p (101)

We also have MT = Mi—:M„= MQ.
Second quantization proceeds straightforwardly once

the quantum-mechanical Hamiltonian is given. We in-
troduce field operators PT~ which annihilate vortices.
Since the vortices are anyons, we need to add appropriate
renormalization counter terms like (6). Then, the second
quantized Hamiltonian density reads

as corresponds to (20). (Note that we have assumed
n = P.) It is necessary to relate this to the electron-
filling factor v = 2+p/eB. After the singular transfor-
mation (87) generating vortices, the constraint equations
(7) read

s'~~*a,' = 2~1@'I'+ 2~14 "f'+ 2~p"

(102)
~vortex 1(DT(i) tDT(i) )pT

I

z
1 2 s'~~.a," = 2~14 TI'+ 2~1@'I'+ 2~p'

(98) Using the mean-field values we find that

with an appropriate Coulomb interaction term for vor-
tices and

D»'" = O, +»+ (99)k A; ~

Here, ckT,
~ are subject to the constraint equations

1k+
4(p+ )

(103)

~h~~~ k = (ct + p)/2'. Note the similarity of this for-
mula to the corresponding one in the single-layer case:
see Eq. (8.2) in Ref. 13. Repeating the same procedure
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we can produce the full hierarchy of the FQH states in
the double-layer electron system.

Hamiltonian (14), and taking only terms up to quadratic
in g, we obtain

VIII. CONCLUSION

In this paper we have analyzed the double-layer elec-
tron system based on the bosonic CS gauge theory, where
the FQH effect has been experimentally observed at even-
denominator filling factors. We have used the semiclas-
sical approximation. At the magic filling factor (1), Hall
liquids are identified with the states in the condensed
phase of bosonized electrons. Furthermore, we have
shown that the wave functions of the Hall states are pre-
cisely the ones suggested by Halperin. In their derivation
the renormalization counter term (6) has played a crucial
role.

An interesting prediction of our formalism is the
3osephson eKect realized at the filling factor v=
1, s, s, . . .. Although this effect has also been pointed
out by Wen and Zee, their argument is heuristic and
rather ad hoc. On the contrary, our argument is as clear
as in the case of the ordinary Josephson junction in the
superconductor. 2

In our formalism quasiparticles (quasiholes) are iden-
tified with vortex (antivortex) solitons. A characteristic
feature is that a soliton has the electric charges on both
of the layers. For instance at v =

2 the electric charge
of the antivortex with unit fIux is 4e, which is the sum

of the charges -e and —-e on each layer. In this ex-
8 8

ample the gap energy of the Hall state is roughly given
by 4 times the Coulomb energy of a single antivortex,
which is numerically estimated2s as 0.18 x (e2/slur) Re-.
call that in the single-layer case the Coulomb energy of
the antivortex is precisely proportional to the square of
its electric charge, and hence proportional to the fill-

ing factor. Therefore, the gap energy is estimated 3 as
0.40m x (e2/alar). There is no such a simple relation in the
double-layer Hall state with p g 0. This is because the
Coulomb energy of the soliton is a sum of three terms,
that is, each Coulomb energy associated with the charge
in each layer and the relative Coulomb energy between
the two charges in the two layers.

We have also calculated the Coulomb energy of the Hall
state as a function of the interlayer distance d. However,
the calculation is not suFicient because the contribution
of vortex solitons has not been taken into account in our
semiclassical approximation. This problem is presently
under study.

H = ) (sr + 2U~~)apTa~+ U~~(aT aT ~+ a~a ~)
pro k

+(s, +2U')b,'b + U,'(b'b' +b b )

+Vp(at bt + apb p + at bp + bt ap)

+~co,N+ UpT+ U~l—
~e'p)

Ix I )
'

(Al)

2~2pT2 + 2p2pTpl ~pT +e2pT

2/3'p" + 2~'p'p'
Mp2 M /p/

4~V'pT p'(~pT + Pp')»V'pT p'
P Mp2 M

27l 8 QpT pl

Ipl

(A2)

In these expressions gpTl = {@Tl)are functions of o, , P,
and p as given by (19).

Let us first diagonalize (Al) except for the term pro-
portional to Vz by way of the standard Bogoljubov trans-
forrnations. Thus, into the Harniltonian (Al) we substi-
tute

T I
p, Ta~ = g a' —h a'

-bp ——g b' —h b'

with (hTl)2 (g Tl)2 1 and

+ 2UTl
(g,")'= — ' „' +1 (A4)

gTl hTl hTI

p2' =2m' ETl 2 +4 UTl (A5)

The resulting Hamiltonian is
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APPENDIX
with

+~co,N+ 2(ET + El) —z~

pT + ppl 7re pl
M ipse

(A6)

In this appendi~ we give some detailed formulas which
we used in Secs. IV and VI. Substituting (30) into the

Vp ——V~(g T —hT ) (gl —hl ).
We next substitute

(A7)
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a' = GpAp+ HpAt + IpBp+ J Bt
(A8)

into the Hamiltonian (A6). With appropriate coefficients
Gp Hp Ip Jp and their primed ones, it is tedious but
straightforward to show that the Hamiltonian is diago-
nalized as in (34).

The explicit forms of the coefficients in (A8) are very
complicated. Here, for simplicity we present them only in
the case of n = P and the vanishing limit of the Coulomb
interaction (e ~ 0):

1 Ep+ Ep+(uc
p

2(e'p + uc)Ep

~p gp Gp Jkp Hp

+p gp Hp Qp Gp

Op ——gpIp —h, p Jp,
Tp ——gp Jp —hpIp.

(A10)

(0lapa, le) = '
q „' 'bp, -q(0la)

w, n, +r,r,

P P
(A11)

with r' = I, A' = A, n' = -n, r' = —T.
In order to obtain the ground-state wave function, we

note that the ground state is defined by (36), where Ap
and Bp are related to the original operators ap and bp
as in (33). It follows from these equations that

1 Ep —ep —uc
p

2(s + (u, )Ep

1 Ep+ ~p+~,'
p

2(E'p + M~)Ep

(A9)

which give

—B'

B/

B'
1 E~ —6'p —4P

2(E'p + (dc)Ep

where Ep = E~ = E&, with G' = Gp, H' = Hp, I'
Ip and J' = —Jp . Combinations of these coefBcients

with gled and hi~ in (A3) give the coefficients in (33) as

1

2' d2p e'P" = Ko(~x~v'eB),
1

p~+ eB

it is pasy to derive (80) in the text.

where use was made of (A9). Now, since
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