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Anharmonic decay and the propagation of phonons in an isotopically pure crystal
at low temperatures: Application to dark-matter detection
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We consider the propagation and anharmonic decay of high-energy phonons introduced into a perfect
dielectric crystal at low temperatures. The phonon-decay rate is calculated for an fcc model with central
forces between nearest neighbors. We give an approximate relation between the parameters entering

into this model and the experimentally known properties of real crystals. A discussion is given of the

range of wave vectors over which slow transverse phonons are stable against anharmonic decay. These
results are relevant to the design of experiments to detect dark matter via the study of the phonons excit-

ed in a crystal when a dark-matter particle scatters off a nucleus. We discuss the primary phonon pro-
duction mechanism and the possibility that there is an anisotropy of the phonon flux that is related to
the direction in which the nucleus recoils.

I. INTRODUCTION

In this paper we consider what happens when high-
energy phonons are introduced into an ideal crystal (iso-
topically pure and free of defects) at low temperatures.
This problem is of considerable current interest because
of recent attempts to develop phonon-based detectors of
dark matter. ' In these proposed detectors a dark-
matter particle will scatter off a nucleus in a dielectric
crystal that is at a temperature below 1 K. The recoiling
nucleus will generate phonons in the crystal, and these
will be sensed by an array of detectors at various points
on the crystal surface. To consider in more detail what
happens in this type of experiment it is useful to divide
the detection process into the following steps.

(1) The recoiling nucleus loses energy via collisions
with other atoms in the crystal. A wide variety of phe-
nomena may occur as part of this process, and these
phenomena are dependent on the recoil energy, the na-
ture of the interatomic forces, and the crystal structure.
As part of this process some numbers of the atoms in the
crystal may end up in positions removed from their origi-
nal sites in the crystal.

(2) At the end of this stage a large number of high-
energy phonons are produced ("primeval phonons").
Without considering the details of step (1), it seems likely
that because a large amount of energy is available, excita-
tion will occur all across the phonon spectrum. Thus the
average phonon energy at this stage would be on the scale
of the Debye energy, which for silicon is 660 K, or rough-
ly 60 meV.

(3) Even in a perfect crystal the majority of these pho-
nons are unstable against anharmonic decay (lifetimes
10—100 psec). Thus, the distance that they can travel be-
fore decaying is very small compared to the size of the
crystal. However, after each decay process their lifetime
becomes longer by a large factor because the anharmonic

decay rate varies approximately as E . &hen a suf5cient
number of decays has occurred the phonon mean free
path becomes as large as the crystal dimensions. The
phonons then propagate ballistically until they reach the
surface of the crystal. For a crystal of dimensions of the
order of centimeters the typical energy of the phonons at
this stage is in the range 20—30 K, or 2—3 meV.

(4) At the end of stage (3) some fraction of the phonons
will enter whatever detectors are placed at the surface of
the crystal and will produce a signal. The phonons that
do not manage to enter the detecting device (or devices)
will bounce around the crystal. Calculations show that
because of the rapid dependence of the anharmonic decay
rate on the phonon energy the intrinsic anharmonic de-
cay rate wi11 not thermalize the phonon distribution on a
typical experimental time scale. In addition, elastic
scattering of the phonons at the surface of the crystal
does not lower the phonon energy. However, it is possi-
ble that interaction with defects in the crystal, some types
of defects at crystal surfaces, or with electrons in metallic
films deposited onto the crystal surface may cause a de-
gree of thermalization. Regardless of their energy the
phonons will continue to enter the detecting device and
will give a signal.

(5) Eventually the phonons escape from the crystal via
whatever heat links exist to the outside world.

The magnitude of the detected signal Ieither at the end
of stage (3) or while the phonon remnants are bouncing
around the crystal in stage (4)] can be used as a measure
of the energy of the recoiling nucleus. From the arrival
time of the phonons at different detectors at the end of
stage (3) it should be possible to determine where in the
crystal the scattering took place. In addition, it would be
a great advantage if the detected phonon signals could be
analyzed to determine the direction of recoil of the nu-
cleus. Knowledge of the recoil direction would provide a
powerful technique to reduce the interference from the
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internal radioactivity of the crystal. It is reasonable to
believe (see discussion in Sec. II) that the phonons initial-
ly generated by the recoil [i.e., the "primeval phonons" in
(2) above] have some degree of anisotropy with respect to
the recoil direction. By anisotropy we mean anisotropy
in addition to the usual phonon-focusing effects. For ex-
ample, if the nucleus recoils along the z axis the intensity
of the generated phonons propagating along the [001]
and [001] may differ from the intensities along [100],
[100], [010],and [010]. In a crystal containing a mixture
of different isotopes all phonons except those of very low
frequency undergo strong-elastic scattering, and the an-
isotropy in the phonon distribution will probably be lost
before the phonons reach the detectors. However, in
high-quality crystals of isotopically pure material it is
possible that some part of the anisotropy of the primary
phonons will persist, and so the track direction can be
determined.

As already mentioned, most high-energy phonons (en-
ergy E comparable to ks 8D, OD =Debye temperature)
decay very quickly into lower-energy phonons as a result
of anharmonic processes. These product phonons may
then undergo further decays. Since the rate I of decay
by these anharmonic processes increases rapidly with in-
creasing phonon energy E, the lifetime of the product
phonons is much longer than the lifetime of the original
phonon. As a consequence of this large increase in life-
time, Kazakovtsev and Levinson ' (KL) have proposed
that the evolution of the phonon distribution should be
viewed as a "succession of generations. " According to
their picture the largest part of the distance from the
source to a detector is always traveled by the last genera-
tion, because this generation has the largest lifetime. KL
refer to propagation under these conditions as "quasi-
ballistics. " They predict that the phonons will arrive at
a detector a distance L from the source at a time which is
longer than the time ts:L/u (u=pho—non velocity) that
would be taken by freely propagating ballistic phonons by
some factor a. The factor a is of the order of unity but,
of course, a & 1. The time aL/v is the average time for
the phonons to reach the detector; it is predicted that
there will be a broad and smooth distribution of arrival
times. The KL theory assumes implicitly that all pho-
nons are able to decay, whereas in fact there is a part of
the phonon spectrum that is stable. In addition, the
effect of phonon focusing' is not considered. In this pa-
per we discuss the effects that stable phonons and phonon
focusing have on the phonon propagation and we arrive
at a picture substantially different from KL.

II. GENERATION OF PHONONS

In this section we give a qualitative discussion of the
primary generation of phonons by dark matter in a crys-
tal in order to motivate the subsequent discussion of pho-
non decay. A review of dark-matter particle candidates
has been given by Primack et al." For the majority of
these candidates the interaction is with the nuclei in the
crystal, rather than with atomic electrons. The amount
of energy transferred to the nucleus is expected to be of
the order of 1 keV. The velocity of the nucleus is smaller

U(r)=e[(o /r)' 2(o. /r) ], — (2)

where U(r) is the potential when the atomic separation is
r, e is the depth of the potential well, and o. is the range.
In the simulations all atoms are initially at rest in their
equilibrium positions except the atom at the midpoint of
the chain which is given a recoil velocity vo. The intera-
tomic spacing is slightly less than o. because of next-
nearest-neighbor interactions. Starting from this
configuration we time develop the equations of motion of
the atoms until most of the energy has left the region
near to the recoil atom. Then we determine the fractions
f+ and f of the energy that propagate in the forward
and backward directions. Results are shown in Fig. 1.
When the energy of recoil becomes comparable to or
greater than e, most of the energy propagates in the for-
ward direction, i.e, f+ =1. Examination of the detailed
results from the computer simulations shows that to a
good approximation in this range of' recoil energies the
disturbance in the chain can be divided into two separate
parts. The first part consists of waves propagating away

than the velocity of the atomic electrons, and thus as a
first approximation the atom recoils as a unit. The recoil
energy is significantly larger than the energy Ed;, typical-
ly required to displace an atom from a lattice site. In Si,
for example, Ed;, is between 11 and 22 eV, depending on
the direction of recoil. '

Some of the physical considerations relevant to the
phonon generation are as follows. '

(1) For very low energy no permanent atomic displace-
ment will occur and the momentum p of the recoiling
atom will be suKciently small that the subsequent motion
can be well approximated by lattice dynamics in the har-
monic approximation. Then it is straightforward to show
based on classical lattice dynamics' that the energy ap-
pearing in the phonon mode of wave vector k and polar-
ization j is

Eq =(p eg~) /(2AM),

where X is the number of atoms in the crystal, M is the
atomic mass, and e& is the polarization vector of the
phonon mode. This formula holds for Bravais lattices
and also for crystals of the diamond structure (e.g. , C, Si,
and Ge). When this formula holds longitudinal phonons
are generated most strongly in the forward and backward
directions along the recoil direction. Transverse phonons
are radiated most strongly perpendicular to the track,
and these phonons are polarized parallel to the recoil
direction. Note that the phonon distribution should have
inversion symmetry, so that the intensity in the forward
and backward directions relative to the track are equal.
It is clear that Eq. (1) is valid only at very low energies,
i.e., much less than the energy required to produce atom-
ic displacement. Thus, in silicon the energy would prob-
ably have to be ~ 1 eV.

(2) When the energy is higher anharmonic effects be-
come important. As a very simple model we have con-
sidered what happens for a linear chain of particles (typi-
cally —200 atoms) interacting via a Lennard-Jones poten-
tial of the form
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from the recoil point in the forward and backward direc-
tions. The spatial form and velocity of these waves is
nearly independent of recoil energy. The front of these
disturbances propagates at the speed v„„„d of low-
amplitude sound in the chain equal to 8.6&@/M. The
second part of the disturbance is a solitary wave' propa-
gating in the direction of recoil with a speed greater than
U„„„d. As the recoil velocity increases, more and more of
the recoil energy appears in this solitary wave, and hence
a larger fraction of the energy propagates in the forward
direction. In Fig. 2 we show the distribution of particle
velocities in the chain when the recoil energy is 2e. This
distribution is for a time t =2o &M/E after the recoil.

(3) In higher dimensions several extra physical effects
enter, and these have a large effect on the symmetry of
the primary phonon generation. It is likely that the phys-
ics will be quite different depending on the crystal struc-
ture and the nature of interatomic bonding. Permanent
atomic displacements of various types can be produced,
e.g., Frenkel pairs, voids, disordered regions. The region
in which these occur may be surprisingly large. This is
because energy can be efficiently transported in specific
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FIG. 2. Velocity distribution of particles in a linear chain.
At time zero all particles were at rest in their equilibrium posi-
tions except for particle 0 at the midpoint of the chain. The
recoil energy of this particle was 2e.

NORNRL I ZED RECOIL ENERGY

FIG. 1. Fractions of energy propagating in the forward and
backward directions in a linear chain. The recoil energy is mea-
sured in units of the strength e of the interatomic potential [see
Eq. (2)].

a=sin '(U„„„d/v, ) (3)

with the cone axis on the propagation direction. In the
two-dimensional model considered the velocity of longi-

crystal directions by weakly damped excitations that car-
ry energy and mass. These excitations have been called
"focusons" and "dynamic crowdions. " These effects
have been studied by several workers by means of
molecular-dynamics simulations. However, the primary
interest has been in determining the nature of the damage
produced as a function of the recoil energy and the type
and strength of the bonding in the crystal. ' We are
unaware of any calculations of the phonon radiation pro-
duced in these processes. To perform a realistic calcula-
tion for a covalently bonded crystal, such as Si or Ge, is
extremely difficult because of the complexities of the in-
teratomic potential, particularly the contributions from
terms involving the angular positions of neighboring
groups of atoms. '

We have investigated the phonon generation in two di-
mensions in a very simple system. We took the same in-
teratomic potential as in Eq. (2) and in the equilibrium
configuration the atoms formed a hexagonal lattice. The
simulations started with all atoms at rest at their equilib-
rium positions except for the atom at the center of the ar-
ray which was given a recoil velocity vo in a direction 0
relative to one of the hexagonal axes. For small values of
uo the energy of recoi1 appears as low-amplitude waves
propagating away from the origin, with an equal amount
of energy going in the forward and backward directions
as expected according to Eq. (1). For larger Uo there ap-
pear, in addition to these waves, excitations akin to the
solitons found in one dimension. ' However, there are
some important differences as follows.

(a) The excitations are disturbances that are confined to
rows of atoms that start at the atom at the origin (i.e., the
atom that is given the recoil velocity) and radiate out-
ward along the principal axes of the hexagonal lattice
(Fig. 3). If the direction of recoil coincides with one of
these directions there will be only one excitation pro-
duced and naturally it will propagate along this same
direction. For an arbitrary recoil direction n two excita-
tions are usually produced which travel along the two
hexagonal axes closest to n.

(b) The velocity distribution of the atoms in these rows
are very similar to the velocity distribution shown in Fig.
2 for the linear chain. The velocity U, of the excitation
increases with Uo. In units of &e/M, v, has the values 22,
34, and 54 when Uo is 5, 10, and 20, respectively. '

(c) In contrast to the result found in one dimension,
these excitation are attenuated as they propagate, and are
thus not true solitons. At any stage of propagation of the
excitation we can measure its amplitude in terms of the
maximum velocity v „that an atom lying in the row
reaches as the excitation passes by. This velocity de-
creases as the excitation propagates and the fractional de-
crease of v,„per lattice spacing decreases rapidly as
v „increases. This damping is the analog of Cerenkov
damping and can occur because the excitation travels fas-
ter than the velocity of sound. Phonon energy is radiated
by the excitation into a cone of angle
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tudinal sound is approximately 11&@/M.
Within this model the symmetry of the generated pho-

nons thus varies greatly according to the recoil energy.
One can divide the range of energy as follows.

(i) For a recoil energy smaller than the strength e of the
potential the energy radiated in the forward and back-
ward direction is equal. There may, however, be more
(or less) energy radiated perpendicular to the recoil direc-
tion than in the forward and backward directions [see Eq.
(1)].

(ii) For higher energies solitonlike excitations are gen-
erated but their velocity does not greatly exceed the ve-
locity of sound. Consequently, the angle a is large and
most of the phonon radiation goes approximately into the
forward direction.

(iii) Finally, at sufficiently high-recoil energies the soli-
ton velocity becomes much larger than v„„„d. The angle
e then becomes small. In this regime there is a small
forward-back anisotropy (in favor of the forward direc-
tion), but the radiation of energy is strongest in the plane
perpendicular to the recoil direction.

In our two-dimensional model the binding energy per
atom is Eb;„d-6e. The boundaries between the different
regimes are not sharp but the simulations we have per-
formed suggest that the transition from (i) to (ii) occurs at
a recoil energy of around Eb,„d/10, and from (ii) to (iii) at
about 3Eb;„d. Thus, if the recoil energy is in the range
around 1 keV, one is in regime (iii).

An interesting feature of the results is that the motion
of the system after an atom is given a recoil velocity is
not random but is "deterministic. " Thus, if the direction
or the energy of the recoil is changed by a small amount
the ensuing motion of the nearby atoms is changed only
slightly. This is in contrast to what would be expected
for chaotic motion where a slight change in the initial
conditions would cause the details of the resulting motion
to be substantially different.

The model we have just described may give a reason-
able qualitative description of phonon generation in
monatomic close-packed crystals in which the interatom-
ic potential can be approximated by the Lennard-Jones
form Eq. (2). These crystals include the inert gas solids
He, Ne, Ar, Kr, and Xe. We have also made a prelimi-
nary investigation of the dynamics of systems composed
of two types of atom with differing mass interacting via a
Lennard-Jones potential. In one dimension we again find
solitons provided that the recoil velocity is suKciently
large, but whether the damping is strictly zero, or merely
very small has not yet been determined. We are currently
performing numerical simulations to determine whether
the same type of effect (i.e., solitons) occur in alkali-
halide crystals, such as NaF. In alkali-halide crystals the
interatomic potential can be taken to be the sum of an
ionic contribution together with a repulsive term between
nearest neighbors. In crystals with covalent bonding
(e.g. , Si, Ge, GaAs) that have a more open structure the
physics is probably quite different, since rows of atoms
with close spacing do not exist and the openness of the
structure provides opportunities for a quasiparticle to
break up. Consequently, the motion in such systems will
probably be chaotic, as distinct from deterministic (see

above discussion). For these materials we are not aware
of calculations of even the final atomic displacement pat-
terns for energies in the range of interest here (around 1

keV), let alone details of the phonon radiation field. Esti-
mates of the range of a recoiling particle based on the
Lindhard model are given in the review of Smith and
Lewin. ' This model does not take into account the pos-
sibility of the formation of solitons.

III. PHONON DECAY PROCESSES

In this section we consider the anharmonic decay of
phonons in a perfect crystal at T=0 K, with particular
emphasis on the variation of the decay rate with the pho-
non wave vector and polarization.

A. fcc lattice

lt8=
3ap

(4)

WA VE FRONTS OF PHONON

NAVE FRONTS OF
PHONON RAD I AT ION

FIG. 3. Generation of phonons (denoted by the wavy lines)
via the production of "focusons. "

The simplest model to consider is an fcc lattice of
atoms of mass M interacting by nearest-neighbor central
forces. For this model several aspects of the anharmoni-
city have been studied by Maradudin and co-workers.
The model is attractive because the harmonic interac-
tions are completely specified by the value P" of the
second derivative of the interatomic potential at the
nearest-neighbor distance. This quantity can be related
to the bulk modulus B and the second-order elastic con-
stants C; via the equations
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where C is the specific heat per unit volume. From these
results it follows that we can uniquely determine the mi-
croscopic parameters in the model (P'", P", M, and ao) if
we require that these parameters be consistent with the
values of the four quantities y, p, B, and M. In Table I
we list values of these quantities for several crystals. For
LiF, NaF, Si, and Ge we have used the experimentally
determined value for the thermal expansion coefficient
at temperatures in the vicinity of OD to determine an ap-
proximate value of y via Eq. (7). For Ar, Kr, and Xe the
high-temperature value of the Gruneisen constant is
around 2.7. For Ne one cannot measure the thermal
expansion at a temperature near to OD, since the melting
temperature is less than OD. However, by the law of cor-
responding states the value of y should be the same in all
Lennard-Jones solids (at least ignoring quantum effects),
and so we use the value 2.7 also for neon.

It follows from the general expression for the three-
phonon anharmonic decay rate I (kj) (the inverse of the
phonon decay time) that we can express this quantity in
the form

I (kj)=l G(kj),
where

2 2/3
I

M 5/3

where a0 is the lattice parameter, i.e., the nearest-
neighbor distance times &2. The density p of the crystal
is equal to 4M/a0. The phonon dispersion relation is
shown in Fig. 4.

The cubic anharmonicity is specified by the third
derivative P"' of the potential. It can be shown that for
temperatures near the Debye temperature or higher the
volume thermal expansions coefficient a is

3&2 k~P'"
A= (6)

4(t "'ao

Thus, the Gruneisen constant is

max

FIG. 4. Dispersion relation for phonons propagating in the
principal directions according to the fcc model. The maximum
frequency v,„ is (2$"/rr M)'i', v, =v,„/&2, and v2= v,„/2.

I (kj) =r,(v/v, „)'g(kj ) (10)

where g(kj) is a dimensionless function of the wave-
vector direction k and the polarization. Numerical re-
sults for g(kj) with k lying in [100I- and E110I-type
planes are shown in Fig. 6. As an alternative expression
of the result we can write

I (kj)=1 ivrH g(kj)

where vTH, is the frequency in units of THz, and

525/61060 g 2 3/2r ="
35/2 B5/2 (12)

This result is obtained by expressing v „in terms of B, p,
and M. Values of I, are included in Table I.

For the subsequent discussion it is important to know
which phonons are unable to decay. The possibility that
some phonons are unab1e to decay as a result of the re-
quirements of conservation of energy and momentum was
pointed out by Orbach and Vredevoe, and has since

and G is a dimensionless function. We have calculated G
for phonons propagating in the principal crystallographic
directions and the results ' are shown in Fig. 5.

For frequencies small compared to the Debye frequen-
cy the decay rate must vary as the frequency v to the fifth
power, as was shown by Herring. Thus, we can write
the decay rate as

TABLE I. Gruneisen constant y, density p, mass M, and bulk modulus B for several crystals. I 0 and
I 1 are constants entering into the calculation of the phonon decay rate [Eqs. (8) and (11)].

Ne
Ar
Kr
Xe
LiF
NaF

Si
Ge

2.7
2.7
2.7
2.7
1.6
1.5
0.58
0.72

p
g cm

1.51
1.77
3.09
3.78
2.65
2.85
2.33
5.32

M
10

—24

33.5
66.3

139.1
218.0
43.1

69.7
93.3

241.0

B
10' dyne cm

1.1

3.0
3.6
3.6

70
52
99
77

r,
1012 s

0.29
0.10
0.044
0.024
0.097
0.040
0.0032
0.0018

r,
10' s4

38000
4000
5900
7800

1.0
2. 1

0.045
0.46
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(a) directions where the phase velocity is small can decay, re-
gardless of the order of the process.

B. Silicon

stable

FIG. 7. Regions of the (a) (100) and (b) (110) planes in which
slow transverse phonons are stable against anharmonic decay by
the three-phonon process. These calculations are for the fcc
model described in the text.

Phonon decay in silicon has been studied previously by
several authors. Narasimhan and Vanderbilt have cal-
culated the decay rates for optical phonons with k along
symmetry directions. It appears that a11 of the optical
phonons have nonzero decay rates. Calculations of the
lifetime of acoustic phonons have been restricted to re-
sults for the decay rates of low-frequency phonons. Then
one can use experimentally measured values of the third-
order elastic constants to calculate the three-phonon ma-
trix element, and it is therefore not necessary to construct
a detailed model for the interatomic potential. This has
been done by Berke et al. for the longitudinal (L) and
fast transverse (FT) branches. For the ST branch we
have calculated the region of momentum space in which
phonons are unable to decay. These results are shown in
Figs. 9 and 10. The calculations in Fig. 9 are based on
the model of the lattice dynamics of silicon developed by
Tamura et al. , and the mesh of points was the same as
that used to produce Fig. 7. The results for low-energy
phonons in Fig. 10 use the same elastic constants as in
Ref. 32. The region in k space in which ST phonons are
unstable in silicon is much smaller than the correspond-
ing region for the fcc model. This is because in silicon
the dispersion curve for the ST branch exhibits a marked
flattening toward the Brillouin zone boundary.

unstable region cannot be greatly increased. They point
out that at least one of the decay products must always
have a velocity greater than that of the origina1 phonons.
Hence, neither ST phonons from the dispersive region
nor ST phonons of small wave number that propagate in stable

unstabl

stable

-10

stable

t001]
I

10
S

20

g (des)

30 4o [101]

FIG. 8. The shaded region shows the range of directions of
the phonon wave vector for which low energy ST phonons are
stable against anharmonic decay. These calculation are for the
fcc model described in the text.

FIG. 9. Regions of the (100) and (110) planes in which slow
transverse phonons are stable against anharmonic decay by the
three-phonon process. These calculations are for silicon using
the model described in Ref. 33.
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(15)

spectrum.
To analyze the stability of ST phonons we first consider

the decay of an ST phonon of frequency much less than
the Debye frequency coa. Then, the phase velocity U is al-

most independent of the magnitude of the wave vector,
i.e., we can write

ro(kj)=v(kj)k .

(a)

conc

[001] 10 20

0 («s)
30 40 [101]

FIG. 10. The shaded region shows the range of directions of
the phonon wave vector for which low-energy ST phonons are
stable against anharmonic decay. These calculations are based
on the measured elastic constants of silicon.

C. Conditions for phonon decay

The stable phonons discussed above exist because for
certain values of kj it is impossible to find decay products
k&j& and k2j2 such that the conditions of energy and
momentum conservation are satisfied. These conditions
are

co(kj) =co(k,j, )+co(k2J'2),

k=k, +k~,

(13)

where co is the angular frequency. To discuss the ex-
istence of solutions of these equations it is convenient to
use a construction introduced by Herring and shown in
Fig. 11(a). Choose the k and j for the phonon whose de-
cay is to be studied. This determines tv(kj). Then choose
some fixed value for the frequency for one of the phonons
(say 1) produced in the decay. The set of phonons that
have this frequency and a particular polarization j &

lie on
some surface S& in k space. Since the frequency of pho-
non 1 is fixed, the frequency of phonon 2 can be calculat-
ed from Eq. (13). One can now draw with origin at the
point k a surface Sz containing the wave vectors of all
phonons that have the polarization j2 and the required
frequency. At any point of intersection of the surfaces S&
and S2 the equations of energy and momentum conserva-
tion are satisfied and so this corresponds to a possible de-
cay process. S, and S2 are surfaces of constant frequency
(CF).

Using the Herring construction it is straightforward to
show that acoustic phonons from the longitudinal and
fast transverse branches can always decay. Optical pho-
nons can also decay provided that the frequency of the
optical modes is no more than twice the maximum fre-
quency of the acoustic modes. Thus, stable phonons
can exist only from the slow transverse branch of the

FIG. 11. Herring construction for decay of low-energy ST
phonons in silicon. (a) Decay of a phonon with wave vector on
a concave part of the constant frequency surface. In this exam-
ple the phonon wave vector is in the [001] direction, and (110)
sections of the constant-frequency surfaces for the ST phonons
are shown. (b) Decay of a phonon from a convex part of the
constant frequency surface. In this example the ST phonon
wave vector lies in the (100) plane, and the sections of the
constant-frequency surfaces lie in this plane. The inset shows
an expanded view of the region enclosed by the dashed line.
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kz vs(k)=U(kz),

where v (k) denotes the group velocity of phonon k.

(16)

For the decay of an ST phonon into two other ST pho-
nons it then follows from Eq. (15) that the surfaces S,
and Sz will make tangential contact at a point where k,
k„and k2 are all paralle1. We call this point the collinear
point since it corresponds to a collinear phonon decay
process. However, even when co«ma there will be a
finite but small amount of dispersion. Assuming that this
dispersion is of the usual sign, one finds that instead of
tangential contact there is a small gap between the two
surfaces, i.e., the surfaces will be as drawn in Fig. 11(a).
Whether or not there will be some allowed decay process-
es will then depend upon whether the S& and Sz surfaces
intersect in places away from the collinear point (noncol-
linear processes).

If the CF surfaces are concave outward near the col-
linear point [as drawn in Fig. 11(a)] it is clear that, pro-
vided the residual e6'ect of dispersion is not too large,
there must be other intersections away from the collinear
point. Since Fig. 11(a) is in fact a section through the
various three-dimensional CF surfaces, a sufhcient condi-
tion for the existence of decay modes is the existence of at
least one negative principal curvature of the CF surface.
Hence, ST phonons with wave vectors lying in such re-
gions of the CF surface can never be stable excitations.
In Figs. 8 and 10 we have indicated the concave and sad-
dle regions in which at least one principal curvature is
negative. One can see that, while all phonons in these re-
gions are indeed found to be unstable, not all unstable
phonons come from these regions. Thus, as stated above
a negative principal curvature is a sufficient but not a
necessary condition for instability.

One can see from Figs. 6 and 8 that the decay probabil-
ity for ST phonons becomes very large near to the para-
bolic lines (zero Gaussian curvature) on the CF surfaces.
The peaks of the ST phonon decay rate at 0=14 in the
(100) plane and also at 0=12' in the (110) plane rotated
away from the [001] direction occur at the zero-curvature
points of the CF surface as can be seen in Fig. 8. Also
the enhancement at 8=60 in the (110) plane at the
boundary occurs at the boundary between saddle and
convex regions.

We have investigated these decays that occur from
convex regions of the CF surface. We find that in these
decay processes the energy of the starting phonon is usu-
ally divided very unequally between the two product pho-
nons. An example of a Herring diagram for such a pro-
cess is shown in Fig. 11(b). This shows the decay of an
ST phonon in silicon with wave-vector direction L9=20
and /=0' and the section shown is normal to the (100)
plane. The original phonon is split into phonons of ener-

gy 0.14 and 0.86 of the energy of the original phonon. In
geometric terms the decay of ST phonons from convex
regions is possible if near to the collinear point there is a
cusp on the CF surface [as in Fig. 11(b)], or a region with
negative curvature. Starting from Eqs. (13) and (14) it is
straightforward to show that decay of a phonon k into
phonons k, and k2 with k2 « k, is possible if

IV. PHONON PROPAGATION YVITH DECAY

A. General features

We consider a situation in which a source injects into a
crystal a broad distribution of phonons, i.e., a distribu-
tion with wave vectors all across the Brillouin zone and
with all polarizations. The evolution of such a distribu-
tion will be governed by the following considerations.

(1) All phonons except the part of the ST spectrum that
is stable will decay into pairs of lower energy phonons.
Some of the decay products will be ST in the stable re-
gion. The remainder will undergo further decays. The
end point of this chain of processes is when all phonons
have become either ST lying in the stable region (S pho-
nons), or are of such low energy that, although in princi-
ple unstable, their lifetime is long compared to the time
scale of the experiment (LE phonons). The LE phonons
include ST phonons lying in the part of momentum space
where this branch is unstable.

(2) As far as we can see, the largest part of the energy
should end up as stable ST phonons, rather than as LE
phonons. This is based upon the following considera-
tions. Assuming that the time scale of the experiment is
set by the time to propagate across a macroscopic crystal
(e.g. , a crystal of dimensions several centimeters) the LE
phonons typically must have a frequency below about a
tenth of the Debye frequency. This is necessary so that
their lifetime is greater than the transit time across the
crystal. A high-energy phonon introduced into the crys-
tal can therefore lead to the production of an LE phonon
in one of two ways. The first possibility is that a decay
process occurs in which one of the daughter phonons has
a much smaller energy than the other. Thus, an LE pho-
non is produced in a single step. However, the probabili-
ty of this is small because the majority of decays produce
two phonons of roughly equal energy. The second pos-
sibility is for the LE phonon to be produced after a se-
quence of several decays of higher energy phonons.
However, as has been emphasized by Lax et al. , in each
decay at least one of the product phonons must have a
smaller phase velocity than the original phonon. The
phonons of smallest phase velocity are the stable ST pho-
nons, and so the Lax condition tends to force the decays
into the stable ST phonons. This argument is
strengthened by a detailed analysis of the decay modes of
the unstable ST phonons. This shows that the majority
of decays are into stable ST phonons.

It is interesting to consider the e6'ect of phonon decays
on the phonon-focusing patterns. ' ' In a phonon-
focusing experiment phonons are injected at a point on
one surface of a crystal and the intensity of phonons ar-
riving at an opposite face is studied as a function of the
position. " In the simplest experiment of this type the in-
jected phonons are of low energy. Consequently, even if
the phonons are allowed to decay by the conservation
laws they are unlikely to actually decay while traveling
across the sample. The variation of the intensity with po-
sition occurs because even if a uniform angular distribu-
tion of phonon wave vectors is generated, the angular dis-
tribution of group velocity vectors will be nonuniform
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due to the crystalline anisotropy. It is found that the in-
tensity may be very large in certain directions. The
group velocity vector is normal to the constant frequency
CF surfaces. Hence, in the vicinity of points on the CF
surface where one of the principal curvatures changes
sign there wi11 be a large number of k values with almost
the same direction of vg(k). Thus, in the real space
direction corresponding to the direction of this vg(k)
there wil1 be a very large phonon intensity.

As far as we can see, such sharp features should be ab-
sent when one injects a broad distribution of phonons
into a crystal at low temperature, and the phonons propa-
gate subject only to anharmonic decay. The decays lead
to a phonon distribution that consists primarily of ST
phonons from the stable region of k space. As discussed
in Sec. III C this does not include the regions of k space
that give rise to the strong peaks in phonon intensity in
the focusing directions. As the simplest possible model
we assume that the distribution produced after the decays
have occurred consists entirely of ST phonons in the
stable region of k space, and we assume that in this re-
gion there are the same number of phonons for each wave
vector. We consider a point source and calculate the to-
tal (lux passing through a (100) plane at some distance
from the source as a function of the position in the plane.
For silicon the result is shown in Fig. 12. One can see
that the intensity distribution is devoid of the sharp
features characteristic of normal phonon-focusing experi-
ments. 4'

3 g k„+ky —2,
g k„+k +k,

(17)
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where the sums are over a11 phonons. For the initial dis-

tribution k, is zero and so y = 1, whereas if the directions
of the wave vectors are random y=O. When a phonon
decays the product phonons do not have the same propa-

B. Quasiballistics

- 0.4 0 0.

As mentioned in the Introduction, Kazakovtsev and
Levinson ' have proposed that the propagation of pho-
nons under the conditions discussed here (anharmonic
decay and absence of impurity or defect scattering) could
be considered in terms of a "succession of generations"
model. In this theory it is assumed that high-energy pho-
nons injected into a crystal will undergo an endless chain
of decays. ' It appears from the arguments we have
given that most decay chains will, in fact, end rather
quickly with the production of a number of stable ST
phonons, and that the assumption on which the
Kazakovtsev-Levinson theory is based is therefore in-
correct.

C. Memory of source polarization
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In Sec. II we discussed the way in which a recoiling
atom might generate phonons in a crystal. We showed
that, at least for simple crystals in which the atoms in-
teract via a Lennard-Jones potential the primary phonons
should be radiated preferentially with k vectors perpen-
dicular to the recoil direction. A key question is the ex-
tent to which this anisotropy will survive the randomiz-
ing eA'ect of the decays of these primary phonons.

Let the recoil direction be along the z axis, so that the
primary phonons have wave vectors in the x-y plane. As
a rough measure of the degree to which the rnernory of
the recoil direction is retained we can consider the quan-
tity y defined by

—0.4

' '0
1

YCJ . . ~» &C.
I

0
ca. & 4

0.4
tan 8

FIG. 12. Focusing pattern of low-energy ST phonons in sil-

icon in the (100) plane for (a) a uniform distribution of wave

vectors k space and (b) a uniform distribution of wave vectors
within the stable regions. 0 is the polar angle measured from

the f100] axis in real space.
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gation direction as the original phonon, and so decay pro-
cesses tend to lower the value of g from its initial value.
We have calculated this loss of memory on the basis of a
model in which the phonons have a linear dispersion with
transverse and longitudinal sound velocities v, and vh, re-
spectively. In this model the transverse modes are degen-
erate, and so there is no loss of memory associated with
the transverse phonon part of the initial phonon distribu-
tion. For typical values of U, /Ul (i.e., -0.6) the loss of
memory that occurs when longitudinal phonons decay
into transverse is about 50%. Thus, if equal energy goes
into longitudinal and transverse phonons the loss of
memory is only 25%%uo, and so it appears that analysis of
the anisotropy of the phonon flux could be used to deter-
mine the recoil direction.

For covalent crystals (Si, Ge) the situation is much less
clear. One does not have an understanding of the pri-
mary phonon generation process, so the degree of
anisotropy of the primary flux is not known. Simple esti-
mates indicate that an anisotropy of the optical phonon
distribution is unlikely to lead to a significant anisotropy
of the final ST flux after the decay cascade is complete.
However, anisotropy in the ST component of the primary
phonon flux should survive.

D. Eft'ect of isotopic impurities

These calculations assume that the elastic scattering
due to isotopic mass differences can be neglected. To ob-
serve the effects we have discussed here (particularly the
"memory" of the polarization of the source) the mean
free path for elastic scattering of the slow transverse pho-
nons must be at least as large as the sample dimensions.
For cubic crystals with one atom per unit cell, and also
for Si and Ge, the phonon lifetime ~;„due to scattering
by the variation of isotope masses can be expressed in the
form

2

vr"oxen g(co)
(18)

where g(co) is the phonon density of states and

x;

2

(19)

Here x; is the fraction of isotopes that have the mass M;
and M is the average mass. It is necessary to have

)Lvt +iso— (20)

8M v,x~
&L COD

(21)

where L is the linear dimensions of the sample.
Unless the crystal is composed of elements that occur

naturally as a single isotope, it is difticult to satisfy condi-
tion (20). Since g(co) is normalized to 1, the order of
magnitude of g is cuD '. Suppose that there is a majority
isotope of mass M and one minority isotope of concentra-
tion x and mass differing from M by one amu. Then con-
dition (20) is equivalent to

where we have assumed that the transverse phonons typi-
cally have a frequency of ~D/2, and M is measured in

0
arnu. v, /coD is typically of the order of 1 A, and so that
condition becomes

M(3~ ]0 8

L
(22)

Hence, for a silicon crystal (M =28 amu) of size 1 cm, x
has to be less than 3 X 10 . Thus, a high degree of isoto-
pic purity is required in order for the stable ST phonons
to propagate ballistically.

V. SUMMARY

Dark-matter searches are currently being attempted
using low-temperature phonon-based detection schemes.
When a dark-matter particle scatters off a nucleus in a
crystal, the recoiling nucleus will lose its energy to the
lattice and high-energy phonons will be produced. These
phonons will propagate away from the interaction point
and the majority of them will decay into lower energy
phonons before they reach the surface of the target crys-
tal. We have investigated the extent to which the distri-
bution of phonons searching the surface has an anisotro-
py that reflects the direction of recoil of the nucleus. If
this phonon anisotropy exists it might be possible to use
measurements of the phonon flux to deduce the direction
of nuclear recoil for individual events, or at least some
statistical information about the recoil distribution. This
could be an important factor in the operation of a suc-
cessful detector. Because of the motion of the Sun
through the galaxy there should be a large anisotropy in
the distribution of nuclear recoil directions such that
there are many events in which nuclei recoil in the direc-
tion opposed to the motion of the Sun. This anisotropy
is a characteristic feature of recoil events arising from
dark-matter interactions, and could be used to identify a
genuine signal rate that arises from dark matter from
other processes such as the internal radioactivity of the
target material.

The calculation of the phonon anisotropy consists of
two parts. (1) The first is a consideration of the anisotro-
py of the primeval phonons, i.e., those that are produced
immediately after the scattering event has taken place.
This part of the calculation requires a consideration of
the details of the interatomic forces and the structure of
the particular crystal under consideration. For close-
packed monatomic crystals in which the atoms interact
via a two-body potential of the Lennard-Jones form (such
as the inert gas solids) we show that the phonon distribu-
tion produced by nuclear recoil is likely to have a
significant degree of correlation with the recoil direction.
Based upon classica1 molecular-dynamics simulations we
find that the phonon flux should be larger in the plane
perpendicular to the recoil direction than in the forward
or backward directions (Sec. II). There may also be a
small forward-back anisotropy. We have not attempted a
detailed calculation for more complex crystals (such as Si
and Ge), and without such calculations it is not clear
whether a significant anisotropy in the phonon flux will
exist. In Sec. III we have calculated the decay rates of



738 HUMPHREY J. MARIS AND SHIN-ICHIRO TAMURA 47

the primeval phonons in a simple model system as a func-
tion of wave vector and phonon polarization. For slow
transverse phonons the decay rate was found to be zero
over a large part of the Brillouin zone. We find (Sec. IV)
that the decay products of high-energy phonons intro-
duced into a crystal will primarily be slow transverse
phonons with wave vectors lying in the part of the Bril-
louin zone where decays cannot occur. Thus, these pho-
nons will make the major contribution to the signal seen
by a phonon detector. Finally, we show that, at least in
crystals with one atom per unit cell (and therefore no op-
tical modes) the phonon distribution after the anharmon-
ic decays have occurred retains a significant amount of

memory of the anisotropy of the original phonon distri-
bution.

ACKNOW) WI,EDGMENTS

The authors would like to thank B. Cabrera, T. More,
and B. Sadoulet for helpful discussions. This work was
supported in part by the NSF through the Center for
Particle Astrophysics, through DOE Grant No. DE-
FG02-86ER45267, the Suhara Memorial Foundation,
and the international exchange program at Hokkaido
University.

See, for example, B. Sadoulet, B. Cabrera, H. J. Maris, and J.
P. Wolfe, in PHONONS 89, edited by S. Hunklinger, W.
Ludwig, and G. Weiss (World Scientific, Singapore, 1990), p.
1383.

B.Cabrera, in PKONONS 89 (Ref. 1), p. 1373.
For a short reveiw of molecular dynamics simulations of radia-

tion damage in crystals, see D. N. Seidman, R. S. Averback,
and R. Benedek, Phys. Status Solidi 144, 85 (1987).

4The only exceptions are some of the slow transverse (ST) pho-
nons. The range of wave vectors for these stable phonons is
calculated in Sec. III C.

For example, in silicon the time for the average phonon enegy
to decrease to 0.1 K via anharrnonic processes is of the order
of 1 year; see H. J. Maris, Phys. Rev. B 41, 9736 (1990).

G. L. Slonirnskii, Zh. Eksp. Teor. Fiz. 7, 1457 (1937).
7D. V. Kazakovtsev and Y. B. Levinson, Pis'ma Zh. Eksp.

Teor. Fiz. 27, 181 (1978) [JETP Lett. 27, 169 (1978)].
Y. B. Levinson, in Nonequilibrium Phonons in Nonmetallic

Crystals, edited by W. Eisenmenger and A. A. Kaplyanski
(North-Holland, Amsterdam, 1986), pp. 91—143.

9See Ref. 8, p. 122.
B. Taylor, H. J. Maris, and C. Elbaum, Phys. Rev. Lett. 23,
416 (1969);Phys. Rev. B 3, 1462 (1971).
J. R. Primack, D. Seckel, and B. Sadoulet, Ann. Rev. Nucl.
Part. Sci. 38, 751 (1988).

'2F. W. Clinard and L. W Hobbs, in Physics of Radiation Effects
in Crystals, edited by R. A. Johnson and A. N. Orlov (North-
Holland, Amsterdam, 1986), p. 392.

This discussion assumes that the majority of the recoil energy

goes into phonon production, and not into ionization.
~4This result can be derived using the expressions connecting

the normal mode coordinates and the momentum and dis-

placement of atoms in a crystal lattice which are given in A.
A. Maradudin, E. W. Montroll, and G. H. Weiss, Lattice Dy-

namics in the Harmonic Approximation (Academic, New

York, 1963), Chap. 2.
~~For some studies of solitons in Lennard-Jones chains, see F.

Yoshida and T. Sakuma, Frog. Theor. Phys. 61, 676 (1979);
Y. Ishimori, ibid 68, 402 (1982); M. A. Collins and S. A. Rice,
J. Chem. Phys. 77, 2607 (1982); L. Solheim and M. K. Ali,
Prog. Theor. Phys. 71, 487 (1984).
For recent work on silicon, see A. M. Mazzone, Nucl. In-
strum. Methods B18,253 (1987);B33, 776 (1988).

~7The interatomic potential in silicon has been discussed recent-

ly by E. Kaxiras and K. C. Pandey, Phys. Rev. 8 38, 12736
{1988).

These excitations are the same as the "focusons" originally
discussed by R. H. Silsbee, J. Appl. Phys. 28, 1246 (1957).

~ These are dimensionless recoil velocities in the approximate
numerical range relevant to dark-rnatter experiments.
For a discussion of the Lennard-Jones potential, see C. Kittel
Introduction to Solid State Physics (Wiley, New York, 1971),
Chap. 3.

~P. F. Smith and J. D. Lewin, Phys. Rep. 187, 203 {1990).
A. A. Maradudin, P. A. Flinn, and R. A. Coldwell-Horsfall,
Ann. Phys. (N.Y.) 15, 360 (1961).

~ A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589 (1962);
A. A. Maradudin, A. E. Fein, and G. H. Vineyard, Phys.
Status Solidi 2, 1479 (1962).

24The values of y for LiF, NaF, Si, and Ge were estimated from
the data reported in H. R. Shanks, P. D. Maycock, P. H. Si-
dles, and G. C. Danielson, Phys. Rev. 130, 1743 (1963); H.
Ibach, Phys. Status Solidi 31, 265 (1969); T. H. K. Barron, J.
G. Collins, and G. K. White, Adv. Phys. 29, 609 (1980); y for
Ne, Ar, Kr, and Xe is discussed by P. Korpiun and E.
Loscher, in Rare Gas Solids, edited by M. L. Klein and J. A.
Venables (Academic, New York, 1976), p. 816.
The results were obtained with a modification of the Brillouin
zone-integration method originally devised by G. Gilat and L.
J. Raubenheimer [Phys. Rev. 144, 390 (1966)] for the calcula-
tion of the one-phonon density of states. In the application of
this method to the calculation of the decay rate for
kj~k&j&+k2j2 the first Brillouin zone of k, is divided into
small cubic cells with sides of length ~/na, where a is the lat-
tice constant and n is typically 30—40. One then finds those
cubic cells within which there is a section of the surface on
which the quantity ~(kj) —co(k&j& ) —co(k —

k&j2 ) vanishes.
To obtain the contribution to the decay rate from a particular
cell one then makes a linear approximation to the variations
of m{k&j, ) and co(k —k&j2) with k& so that the integral over
the cell can be evaluated. The matrix element of the anhar-
monic potential is taken to be constant throughout each cell.
The strong enhancement of the decay rate for longitudinal
phonons near to the X point occurs because these phonons
have a very large number of possible decay products. This is
a special feature of the dispersion relation for phonons in the
fcc lattice with nearest-neighbor central forces, and is unlike-

ly to occur in real crystals.
C. Herring, Phys. Rev. 95, 954 (1954).

28R. Orbach and L. A. Vredevoe, Physics 1, 91 (1964}.
9H. J. Maris, Phys. Lett. 17, 228 (1965). In this paper the range

of wave vectors of the ST phonons that cannot decay was es-



ANHARMONIC DECAY AND THE PROPAGATION OF PHGNQNS. . .

timated using a very coarse mesh of points in k space. Conse-
quently, some fine details of the range were missed in this cal-
culation. For example, the fact that phonons with small wave
vectors near to the ( 111) directions can decay was missed.
M. Lax, P. Hu, and V. Narayanamurti, Phys. Rev. 8 23, 3095
(1981).
S. Tamura and H. J. Maris, Phys. Rev. B 31, 2595 (1985).
A. Berke, A. P. Mayer, and R. K. Wehner, J. Phys. C 21, 2305
(1988).
S. Narasimhan and D. Vanderbilt, Phys. Rev. B 43, 4541
(1991).
S. Tamura, J. A. Shields, and J. P. Wolfe, Phys. Rev. 8 44,
3001 (1991).

~~If the optical frequencies are higher than this, it may still be
possible for the optical phonons to decay by a higher-order
pl ocess.
By the "usual sign, " we mean that it is of the same type as
occurs in a linear chain of particles interacting via nearest-
neighbor forces.

This follows from the results shown in Fig. 5, together with

the parameters listed in Table I. The decay rate has to be less
than about 10 s

~8M. T. I.abrot, A. P. Mayer, and R. K. %'ehner, J. Phys. C 1,
8809 (1989).
H. J. Maris, J. Acoust. Soc. Am. 50, 812 (19'71).
For a review of recent experimental work, see J. P. Wolfe, in

PHONONS 89 (Ref. 1), p. 1335.
'See, for example, p. 121 of Ref. 8.
Note that this is a much stronger condition than the require-
ment that the elastic scattering rate be less than the anhar-
monic decay rate for phonons that are allowed to decay.

4~See, for example, H. J. Maris, Philos. Mag. 13, 465 (1966).
44There is usually a peak in the density of states in the range

near to the highest frequency of the ST phonon spectrum.
Consequently, the order of magnitude estimate we have given

of the density of states is probably somewhat too low.
~~The anisotropy is calculated by D. N. Spergel, Phys. Rev. D

37, 1353 (1988).


