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Scattering-assisted funneling in double-barrier diodes: Scattering rates and valley current
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We describe the valley current of double-barrier diodes as a scattering-assisted tunneling current.
Scattering processes are included by using Fermi's golden rule between the unperturbed states of the tun-

neling structure, in a true three-dimensional calculation, without adjustable parameters. Intrinsic pro-
cesses (optical and acoustic phonons, alloy disorder) are treated as well as the contribution of interface
roughness. We apply it to several situations (geometry, doping, temperature, materials) and demonstrate
that the calculated valley current agrees well with observation both with regard to structure in the valley
current and peak-to-valley ratios.

I. INTRODUCTION

The interest in tunneling has been renewed in solid-
state physics' with electron-tunneling microscopy and
quantum semiconductor devices. The advent of epitaxial
growth techniques has made possible the Esaki-Tsu pro-
posal of band-structure engineering in order to obtain
new transport properties, in particular, the resonant tun-
neling effect: a structure consisting of two almost identi-
cal thin potential barriers (large gap material) separated
by a narrow quantum well (small gap material) exhibits
resonant transmission of electrons, once described by
Bohm. This quantum effect manifests itself macroscopi-
cally as negative differential conductivity (NDC) in the
current-voltage characteristics (I V), as obse-rved by
Chang, Esaki, and Tsu. The double-barrier diode was
becoming the first electronic device whose operating prin-
ciple relies entirely on a quantum size effect.

It was only ten years later, when Sollner et al. ob-
tained significant resonant current and associated NDC
that interest was stimulated by potential applications:
very high frequency microwave devices and new func-
tional logic devices. '

Apart from applications, this system has been exten-
sively studied with a view to understanding quantum tun-
neling. Qualitatively the I Vcharacteristic-s of resonant
tunneling structures are well understood ' by the direct
quantum-mechanical calculation of tunneling transmis-
sion through a double-barrier potential. For most ener-
gies the transmission probability is essentially the very
low product of the transmission probabilities of each of
the barriers; for energies close to the energy for which a
bound state in the quantum well exists, the transmission
increases dramatically and may even become unity if the
two barriers have the same transmission probability at
the resonance energy. This is analogous to the resonant
transmission through a Fabry-Perot etalon in optics. The
structure therefore acts as a strong energy filter and the
current is essentially the integral of the distribution of
electrons supplied times the transmission probability, so

if electrons are supplied around the resonance, current
can be strong; when the electrons supplied do not have
energies around the resonance, the current is very low.
An applied external voltage may sweep the resonance
through the whole range of energies for which electrons
are supplied leading to the characteristic current peak
followed by a minimum obtained when the bound state of
the well is below the lowest energy supplied with elec-
trons.

This is the picture in which all current in the structure
is carried by coherent tunneling. Electrons are injected
from the contacts into coherent states for which the par-
ticle has a certain probability of being transmitted or
reAected; after transmission or reAection the particle is
adsorbed in the emitter or collector contact, respectively,
without any other disturbance. The problems of this
theory are well known. Tunneling depends exponentially
on barrier heights and thicknesses, so that quantitative
calculations cannot be expected to give very accurate re-
sults, but more importantly the peak-to-valley ratios (one
indicator of the quality of the sample) observed experi-
mentally (see a tabulation and references in, e.g., Ref. 10)
are much smaller than those predicted by the coherent
tunneling theory. A more complete calculation is re-
quired for the design of resonant tunneling devices.

Several effects may be invoked to explain these
discrepancies: the real band structure, the charge distri-
bution, nonequilibrium effects, and scattering processes.
Our goal is to show that in double-barrier diodes the lack
of quantitative agreement is almost exclusively due to de-
viations from the ideal structure that disturb the system.
Since the coherent picture works for the main features it
is reasonable to base an improved theory on that picture
but treating the deviations as perturbations. We shall not
deal with macroscopic deviations such as inhomo-
geneities in layer thicknesses, since they may be described
macroscopically by having several diode sections in
parallel. What we are interested in here are microscopic
deviations: some are intrinsic and unavoidable such as
phonons and, if some of the material is a ternary alloy, al-
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loy disorder, and some are dependent on growth condi-
tions such as impurities and interface roughness.

The effects of scattering on the tunneling current have
been studied by several authors. Apart from phenomeno-
logical analyses, " ' there are microscopic models for
optical phonons, ' ' acoustic phonons, ' ' interface
roughness, ' impurity, ' or disorder 2s The main
drawback of those theories is that they are either models
containing more or less unknown parameters, or that
they are strictly one dimensional, or that they treat only
one type of interaction, so that comparison with experi-
ments remains almost qualitative.

Here we propose a simple approach to the problem.
We describe the system as an ensemble of tunneling states
extended over the whole structure between which transi-
tions can occur due to perturbing interactions. For volt-
ages above the resonant tunneling current peak the valley
current is viewed as a sequential process in which an elec-
tron from the emitter is first captured into the bound
state of the well by a scattering-assisted tunneling pro-
cess. Once it is in the well it can tunnel to the collector
side as easily as in the resonant situation, so that the
current is assumed controlled by the capture process.

The theory is then reduced to calculating matrix ele-
ments of interactions whose strengths are known from
bulk properties of the semiconductors. Our calculation is
then three dimensional and quantitative; for extrinsic in-
teractions, which vary from sample to sample, any theory
is limited by the lack of precise microscopic knowledge of
the system so one still has to resort to parametric models,
of course. Without detailed deviation some results of our
model have been presented elsewhere. Further ap-
plications of this model will be studied elsewhere.

The remaining part of the paper is organized as fol-
lows. In Sec. II, we describe the theory for scattering-
assisted tunneling and give the details of scattering rates.
In Sec. III we apply this model to several situations and
discuss the effects of various parameters: geometry, dop-
ing, temperature, materia1. Section IV contains our con-
clusion and a comparison with other models for the tun-
neling current in double-barrier diodes including scatter-
ing processes.

p
A' d 1

dz m*(z) dz

where the potential V(z ) is the sum of the band-edge po-
tential due to the modulation of the band edge by the
chemical composition of the semiconductors of the het-
erostructure, and the electrostatic potential due to the
distribution of mobile carriers and ionized impurities
when an external voltage 6 V, is applied between emitter
and collector. The former potential is fixed for a given
heterostructure, whereas the latter has to be calculated
more or less self-consistently.

The kinetic-energy operator in Eq. (1) is related to the
continuity of I/m*(z)dg/dz, which is the connection
rule at the interface for material-dependent effective
mass and rigorously, a material-dependent effective
mass leads to a coupling of longitudinal and parallel
motion, which can be described by an effective variation
of the potential in Eq. (1):

where 5m(z) is the relative variation of effective mass
and all the parallel energy. We neglect this variation,
which at most is about 50%%uo of the Fermi energy, since
this coupling of parallel and longitudinal motion would
prevent the essentially one-dimensional treatment of the
motion in the z direction. For simplicity we assume that
emitter and collector are the same material.

We also do not intend to treat the possible mixing of
different valleys or bands, but assume that the transport
can be described as occurring only in the I band of the
electrons. This of course excludes X-valley tunnel-
ing and valence-band mixing of light and heavy
holes known to be important in hole tunneling, e.g. , see
Refs. 38—41.

We consider first the unperturbed system, i.e., coherent
tunneling. In Fig. 1 we show the one-dimensional (1D)
potential seen by the electrons. All states in the unper-
turbed system can be written as

Emitter Collector

II. THEORY

A. Coherent tunneling EF

We consider a standard III-V semiconductor hetero-
structure in which the modulation of chemical composi-
tion and doping along the growth axis creates a potential
in one direction denoted z (longitudinal or perpendicu-
lar). Since the potential does not depend on the direc-
tions parallel to the interfaces, wave functions can be
separated and the Schrodinger equation becomes essen-
tially one dimensional. In the single-particle, effective-
mass approximation, ' which we shall use everywhere in
the following, the component of wave functions in the z
direction (envelope wave function) is determined by a
BenDaniel-Duke Hamiltonian

h, V

FIG. 1. Potential seen by the electrons in the double-barrier
structure. States of type 1 are extended over the whole system,
states of type 2 are only connected to the collector. Resonances
in the active region indicated by thick lines are possible for both
types of states.
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Pk(r)= —gk (z)e', k=(K, k, ) .
1

(3)

ik z —ik z
e +rk e, z~ —oo

z

Here A=I. A is the volume of the system; in the direc-
tions parallel to the interfaces (R) the free motion is de-
scribed by plane waves; in the z direction, the longitudi-
nal motion is described by an envelope wave function gk, .
For most values of k„ it is essentially a reflected wave on
either the emitter or collector side of the barrier; for
select values resonant states exist with substantial occu-
pation probability in the well between the two barriers or
in the well formed by the accumulation layer in front of
the first barrier. Spin is conserved in coherent tunneling
and in all scattering processes to be discussed here, so
that it will not be specifically introduced.

The basis of tunneling states gk, is not unique. Our
choice is imposed by the postulate of ideal contacts, as
described in Sec. II B 1. These tunneling states are
characterized by their asymptotic behavior far from the
quantum structure because of the flat-band boundary
conditions imposed by highly doped contacts. They are
naturally written in the canonical basis of plane waves.
On one side, the state is composed of an incident plane
wave plus a reflected wave; on the other side, there is
only one transmitted wave. We take the emitter contact
band edge as energy zero and use the sign of k, to distin-
guish states of equal energy. For k, )0, E,, =Pi k, /2m *,

and the lifetime of the quasibound states is fi/b, s„where
hs, is the width of the resonance in Eq. (9).

Being the totality of linearly independent solutions to a
Schrodinger equation, the states of type 1 and 2 consti-
tute a complete set of wave functions

f dk, gk (z)g„„(z')=2~5(z—z') . (10)
z "z

They are specifically normalized in the sense that

This is easily shown by direct integration in real space.
The orthogonality of two degenerate states gk and gz z

poses a fundamental problem. It requires that

rk t*k +tk r*k =o.
z z z z

(12)

However, time-reversal symmetry and conservation of
probability current implies

and a particle which enters such a state will end in the
collector. In particular, a quasibound state is completely
described by the phase shift yk, ', it is a resonance in the
energy derivative of the scattering phase shift. The local
density of states (DOS) associated to this resonance is
given by

D„(s,)= 1 Gj

2K dE,

gk (z)=Qak
tk e ', z~oo,

z

(4) tk,
rk tk +tk r* — =0,

z

—kz
(13)

and for k, &0, c., =A k /2m* —5V,

ik z
tk e ', z~ —oo

z

0k (z ) QAk ik, z —k, z
e '+rk e ', z~oo,

z

with, respectively,

g2k 2 g2k 2

+AV,
2m 2m

and ek, the normalization factor

2

1 + lri, I' + ltk I'

In the expressions rk, and tk, are complex-valued quanti-
ties, which can be calculated only by solving the
Schrodinger equation for the Hamiltonian H in Eq. (1).
The solutions can be written for each energy as a 2X2
scattering matrix that relates the outgoing to the incom-
ing amplitudes.

A special case is found for —(2 mb, V)'~ (2k, (0.
Those states (designated type 2 in Fig. 1) are not connect-
ed to the emitter:

k,

z
(14)

and the conservation of probability current implies the
unitarity relation

Therefore Eq. (12) is fulfilled only in the case b, V=O and
the two states cannot be perfectly orthogonal when
b VWO. This result was suggested by Coon and Liu and
discussed by Stone and Szafer and is contrary to the
claim of Kriman, Kluksdahl, and Ferry, whose exten-
sion of a Lippman-Schwinger result is suspect.

It is not difficult to choose two combinations which are
orthogonal, of course, but we prefer to neglect the
nonorthogonality because use of those combinations
would be incompatible with the postulate of ideal con-
tacts which will be used in the following. We want to
point out that in most real systems, and in particular for
the valley current which is the object of our work,

l tk, l
((1,so that the problem is not quite so serious apart

from very special cases. In view of this approximation
we also neglect the deviation from unity of the normaliza-
tion factors ak, in Eqs. (4) and (5) in the rest of the paper.

In terms of rk, and tk, the reflection and transmission
probabilities are given by

{), z —+ —oo

Ik z Ip, —ik z(z)=
e ' +e 'e z~ oo

R(E, )+T(c,, )=1 . (15)

Around a transmission resonance c„, a Breit-Wigner
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expression applies, i.e., the transmission has Lorentzian
shape

1+ c,, —
2 (16)

(17)

in which the broadening and the transmission at reso-
nance are expressed in terms of partial width for decay of
the resonant level in the emitter or collector continuum

of current injected from collector to emitter (correspond-
ing to a voltage larger than the emitter Fermi energy).
The emitter provides electrons k, =(K,k, ) with the
Fermi-Dirac statistics f„o. The general expression of the
current density from emitter to collector, with a factor 2
for spin, is

J=2e g fFo(k, )j,(k, ) .

The z component of the current density of an emitter
state may be written as the product of the current inject-
ed by the emitter by the probability to reach the collector
(transmission probability)

In the Oppenheimer formalism ' these parameters are
expressed as a function of the coupling through the bar-
rier V, in a way that resembles Fermi's golden rule:

Ak, Ak,
j,(k, ) = T(k, )= T(s»E~~),Qm* ' Qm*

(20)

so that the current density may be written
(1&)

in which the 6 function describes the conservation of en-
ergy in direct tunneling from a contact state of energy c,
to the quasibound state in the well of energy c„. This
paves the way for a transfer Hamiltonian treatment of
resonant tunneling. ' '

However, the validity of this method is questioned for
thin barriers and in our quantitative calculations we rath-
er obtain the basis functions gk, (z) numerically. The
structure is divided into subunits (planes of atoms) within
which the electric field may be assumed constant and
solutions of Schrodinger equation are combinations of
Airy functions. The transfer matrix for the whole system
as well as the wave functions in the quantum structure
are obtained by multiplying the individual transfer ma-
trices of the subunits and using the connection rules at in-
terfaces. ' A material-dependent effective mass is used,
since it strongly controls attenuation of wave functions in
the barriers.

Scattering states are defined by a wave vector
k=(K, k, ). However, for emitter states, interesting
quantities such as transmission probabilities depend only
on longitudinal and parallel energy e, and

E~~ (due to rota-
tional invariance}, so for convenience we can equally well
describe an emitter electron by those two energies instead
of wave vectors.

B. Scattering-assisted tunneling

2e ooJ= dE, dE((D(E(()fFo(E, +E(()T(e„e[() .
h o

'
o

(21}

In this expression, D(E~~) is the parallel DOS without spin
degeneracy, which is constant in a 2D system

m
D(E )= =Do .

II

The reason we introduce the parallel DOS is discussed in
Ref. 30 where a magnetic field is applied to the structure.
Then many expressions will be generalized essentially by
considering the Landau-level DOS instead of Do.

2. Coherent tunneling

In the absence of scattering processes, the current
through the structure reduces to the coherent tunneling
current carried by the tunneling states. In the following
the superscript 0 shall indicate coherent tunneling. The z
component of the current density of an emitter state is

Ak,j (k)= Im Pk(r) gk(r) = T (k ) .m* k g k ~ g z (23)

In their original article, Tsu and Esaki assumed that
the current is dominated by coherent tunneling. Then, as
the transmission only depends on longitudinal motion, it
is possible to group together the states that have the same
longitudinal motion

1. Current density
J=—f de, T (c,, )F(e, ), (24)

The emitter and collector contacts are considered ideal
in the sense that any particle that arrives at the contact is
absorbed by scattering processes in the contact reservoir;
the contact furthermore populates all states that inject
particles according to the equilibrium Fermi-Dirac f„o
distribution with a temperature and chemical potential
determined by the doping of the contact and the external
voltage. In particular we will not consider deviations
from those equilibrium distributions due to scattering
processes in the active region.

In the following we will neglect the small contribution

F(E, ) =2f de)(D(e)))f Fn(E, +E)~),
0

(25)

m*k~T
F(e, )= log 1+ exp

EF —c.,
k~T

(26)

with Ez the Fermi level in the emitter. According to Eq.

in which the "supply function"' describes the statistics of
injected electrons:
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(17) and the analysis of Weil and Vinter, ' the resonant
transmission has a peak of order T;„/T,„,where T;„
and T „are the smaller and greater transmissions of the
two barriers. In particular, it becomes unity in the sym-
metry case; the width of the resonant peak is proportion-
al to T,„, so that the resonant current is proportional to
T;„, whereas the off-resonant current is of order
T;„T,„. Therefore this simple model predicts a peak
current to valley current ratio of order 1/T, „, inuch
higher than experimentally observed, by several orders of
magnitude, as will be apparent in the figures of Sec. III.

3. Va11ey current

To go beyond this coherent tunneling approximation,
one has to consider scattering processes in the active re-
gion which permit transitions between the tunneli. ng
states. To calculate the scattering rates we use Fermi's
golden rule in the Born approximation, so that if we
denote the perturbing Hamiltonians H~, where j can indi-
cate interaction with acoustic phonons, optical phonons
via the Frohlich interaction, alloy disorder scattering in
the barriers, interface roughness, or impurity scattering,
the scattering rate between state k and state k' is given by

S(k +k ) QNJ~((k ~&j~~k)
~ [1 fFD(k )j

j,(k, ) = g S(k,-+k') .
1

k'=k
W

(29)

Dividing by the Aow of electrons injected from the emit-
ter into the state k, defines the scattering-assisted tunnel-
ing probability that an electron starting in state k, arrives
at the collector:

can also neglect processes between nonresonant states of
the same sign since they both have almost equal probabil-
ity (either both near 0 or both near 1) of arriving at the
collector; their contribution really describes the access
resistance between the emitting contact and the barriers.
The only scattering processes that are important there-
fore involve at least one state that has nonnegligible prob-
ability in the well, i.e., a resonance.

In the valley region, i.e., for voltages above the reso-
nant tunneling current peak, the resonant state of the
well (k ) is pulled below the emitter conduction band
edge. Those states are then resonances of type 2 that
have no tunneling connection with the emitter and can
only be populated by scattering processes.

The main contribution to the current is then a process
by which the electrons in the emitter are trapped into the
resonant state in the well, from which they will eventual-
ly arrive in the collector contact (sequential tunneling):

X 5(Ek Ei,+Acuj )— (27)
8'(k, )= W( „~~)= y S(k, k') .

Lm*

z k'=k
W

(30)

for emission/absorption of a quantum A'co, where

1 N+=¹ +1
%co~

exp
BT

(28)

In the valley region the scattering processes then become
more important than direct tunneling because there is no
transmission state into which to scatter. Direct tunneling
from the emitter is entirely switched off and only scatter-
ing processes contribute to the current

are the Bose factors for an inelastic scattering process. In
Eqs. (27) and (28) A'co, is the energy transferred in the
scattering process; for elastic processes m =0 and
¹

= 1; it is assumed as usual that the different interac-
tions do not interfere. It is important to notice that even
elastic processes can change k„so that they act as inelas-
tic processes if one only considers energy due to motion
in the z direction.

The general problem of relating the current through
the structure to the scattering rates is very intricate be-
cause electrons may suffer multiple scattering events and
the zeroth order (coherent tunneling) is already a scatter-
ing problem. So here we will use simple approxima-
tions.

All scattering processes do not contribute equally to
the current through the structure. In resonant tunneling
structures there are quasilocalized levels in the structures
that give resonances in the coherent tunneling probability
as well as scattering probability: The matrix element in
the golden rule Eq. (27) requires an overlap of the wave
functions in the initial and final states in the region where
the interaction takes place. Specific to the double barrier
is that nonresonant states have a very small probability in
the well and even less beyond the second barrier. We can
therefore neglect contributions from scattering processes
between nonresonant states of opposite sign of k, . We

To(E ) W(E Eii) 1 (31)

T(E„sic)=W'(e„sic) .

For scattering process j, we have

(32)

yS, (k
z k'

(33)

A considerable simplification of the calculation can be
obtained by replacing the sum over final states near the
resonance by a truly bound state in the well:

(& )e iK.R1
(34)

The second inequality means that scattering processes
can be treated perturbatively. It will be shown to be well
satisfied in the quantitative results (Sec. II C 5). The first
inequality of Eq. (31) is a very interesting property of
double barriers compared to single tunneling barriers in
that it becomes possible to study the scattering-assisted
tunneling processes without a large background of direct
tunneling current.

The scattering processes are then responsible for the
valley current in the I-V characteristics of resonant tun-
neling structures and the final expression for the valley
current is given by Eq. (21) with
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This will be correct as long as the overlap of the emitter
states with the tail of the resonant state on the collector
side of the double barrier is negligible compared with the
overlap in the well. Numerically this means that we cal-
culate the wave functions in the modified potential illus-
trated in Fig. 2. The parallel energy in the we11 c~~ is
defined by energy conservation

AK W

W ~Z ~W + ~)I +~~J
2Pl

which gives a threshold for the process

Z +
E~~

+ ~W+~~J

(35)

(36)

Moreover, in this off-resonance situation, the well states
remain nearly empty so that we can replace the Pauli fac-
tor 1 —f„D(k') by unity. There remains an integration
over the angle 0 between emitter and well parallel
momentum, as shown in Fig. 3:

Q

with the matrix element

(37)

(38)

FICx. 3. Scattering process between a state (c.I, K&) and

(c2, K2) involving a transfer of energy Ace and a transfer of
momentum Q.

C. Calculation of matrix elements

Quantitative results on the valley current now require
the evaluation of the interaction matrix elements. They

f/ ~l/

r

I I o I I I n I I o I I n I o I I I I I t i I I I I I I I I n I I I n o I I I I I I L i I I I I I I I|I n I I I o & &&'QI II I I I I I I ilil I I I I I I i I I I II I I I I &

l
I
I
I

4aaaaaeeaaa

The tunneling wave functions are explicitly included in
the matrix elements, so that our model is not restricted to
thick barriers as is the transfer Hamiltonian formalism.
We have also introduced the parallel DOS of the final lev-
el. The Bose factor is equal to unity in case of elastic
scattering. For the parallel motion we assume a parabol-
ic dispersion with the emitter material effective mass.

are perfectly analogous to intersubband scattering matrix
elements in two-dimensional systems. ' We start with
longitudinal-optical (LO) phonon scattering which, in po-
lar semiconductors, is expected to be the dominant
scattering process allowing the transfer of a carrier from
the emitter to the well. Then we evaluate matrix ele-
ments for the other intrinsic processes: acoustic phonons
and alloy disorder. These processes are unavoidable.
Among extrinsic processes (elastic scatterers), we neglect
impurity scattering, ' ' since usually undoped spacers
are added to limit this scattering mechanism. We rather
concentrate on interface roughness scattering, which has
been recently suggested to be dominant in the fall of the
resonant current after the resonant peak and which is
unavoidable in all present epitaxial growth techniques.

The phonon modes interacting with electrons are con-
sidered to be the same as those of bulk material (contacts
and well). Only the polar optical-phonon (LO) and
deformation-potential acoustic-phonon (AC) interactions
are taken into account; other kinds of electron-phonon
coupling, such as the piezoelectric interaction, are much
weaker and not considered here. More refined models for
the coupling with phonon modes associated with the mul-
tilayered structure, such as interface or slab modes, exist
in the literature, but for simplicity we keep only the
bulk modes. The sum rule on form factors derived by
Mori and Ando gives some support for the validity of
the approximation. We also ignore screening.

The electron-phonon interaction is described by the
following Hamiltonian for phonons of wave vector
q = ( Q, q, ) and of frequency co:

FIG. 2. Idealized double-barrier potential used to calculate
the well bound state and any incident electron wave function.

(39)
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The interaction is delocalized in all the structure and not
restricted to the well. The first term leads to emission
(+ ) and the second to absorption (

—). Assuming the
phonon dispersion is much smaller than the electronic
dispersion we find the matrix element of Eq. (38) as

2. Acoustic phonons

1/2

aq =aAC+q aAC =
2P Vs

In case of acoustic phonons,

(47)

(I +)=g laql (40)

The exp(iQ R) dependence of the phonon potential
leads, upon integration in the plane parallel to the inter-
faces, to conservation of parallel momentum:

Qe=+[K —K (8)], ge=(K +K —2KK cos8)'

(41)

Only the summation over q, remains:

M —(E„Qe)= f dq, aq q l(gk le iq, zip— ) l (42)

1. LOphonons

A LO phonon creates in a polar, crystal, like GaAs, a
polarization wave. Associated to this polarization wave
is an electric potential on which electrons can be scat-
tered. For LO phonons (dispersionless Einstein band), we
use the Frohlich interaction strength

+LO
1/2

e %COLO
(43)

where I/e =I/e„—I/E„e„e„being the static and
high-frequency limit permittivities, respectively. The
summation over q, in Eq. (42) gives' '

The lack of definite momentum for the electrons in the z
direction leads to the dependence of the matrix element
on ge, a dependence not considered in one-dimensional
models, e.g. , by Cai et al. ' Note the cancellation of the
normalization factor of extended states over the whole
structure (1/VL ).

where = is the acoustic deformation potential, p is the
density, and v, is the sound velocity. As well as the in-
teracting electrons, the phonons which take part in the
scattering process are near the zone center. Hence acous-
tic phonon scattering is quasielastic and we may use the
Debye approximation co =v, q. For a suKciently high
temperature (k~ T ) 1 meV), acoustic-phonon statistics

may be approximated by

k~T++
q

k, T~a%——=a
q q AC

S

(48)

Then integration over q, is straightforward, and sum-
ming over absorption and emission, we get

AC(E ) 2 a2 FAC(E )z p AC Z

S

with the form factor for acoustic-phonon scattering:

F (e, )=f dzlg~ (z)l'lg (z)l'.

(49)

(50)

Above the threshold ~, + Ell & c„, the capture probability
due to acoustic phonons is then

2~m*= ksT F (E, )
W (e„Eii)= D(eii )

g2 2 k,
(51)

3. Alloy disorder

V (r) = 5, V6x (r) where b, V= V~ —V~, (52)

In an alloy A„B& „C with atomic potentials V„and
Vz, alloy disorder scattering (AL) is usually treated '

by
a contact potential

aLo F (e„ge)
M (s„g )=

0
(44)

with the following assumption on the concentration Auc-
tuation 5x:

where we have introduced the form factor for LO phonon
scattering:

F" (E„g)=f dz f dz'gk (z)g (z)e

(6x(r)5x(r') ) =Box(1—x )5(r —r'), (53)

where Q0 is the primitive cell volume. Configurational
average leads to the same term as for acoustic phonons

X/1, (z')g*(z') . (45)

2
LO— e GpLomW" (s„eii)=

2AE

+ 1
NLo D(E~i~ )

Above the threshold c, +c.
ll

& c.„+A~Lo, the capture is
possible with the probability

(1—x) 1

Q

so that the square matrix element becomes

M "(E,)=QohV x(l —x)F (E,),

(54)

(55)

FLO( gx dO
0 0

(46)

This expression accounts for the 3D interaction process,
involving a transfer of parallel momentum, as described
in Fig. 3.

with the following form factor for alloy disorder scatter-
ing:

F '(., )=f dzlg„(z)l'lg„(z)l'. (56)

Above the threshold c, + Ell & c, the capture probability
due to alloy disorder is then
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2m. m 'Qob, V x(1 —x ) FAL( )IV"'(.„.„)=
Z

(57)

4. Interface roughness

The usual model for interface roughness is a distribu-
tion of terraces of monolayer thickness 6 and of lateral
size described by a Gaussian distribution with a charac-
teristic correlation length A. ' ' The perturbing potential
can therefore be described by

V' (r) =
Vb b6(z —z; )F(R),

with the correlation function for the fluctuations

(58)

IR —R'I'(F(R)F(R')) = exp (59)

1 2 iq~R R
d Re exp (60)

where Qe=K —K~(8), so that the square matrix element
becomes

Q2 A2
M' (e Q )=vrA Vt, b F' (s, ) exp (61)

where Vb is the barrier height and z; is the average posi-
tion of the interface. The configurational average gives

& I & K IF(R)IK.(i)) & I'&.,

tained by Leo and MacDonald. They treat the disorder
as a perturbation to the tunneling wave-function basis in
the general Lippman-Schwinger formalism, but at the
end they keep only the first-order term, which gives ex-
actly our result; in their Eq. (11) the integral over E,' can
be identified as 2mlg (z;)I in our notation, when the res-
onant state is narrow, so the two expressions are identical
if one takes

NT g2 GIR
T A (66)

where the notation on the left-hand side is that of Leo
and MacDonald. The two models therefore closely
resemble each other. However, if we take the small Q
limit in our expression for G, the right-hand side of Eq.
(66) becomes m.A . The value of A is usually determined
by fitting mobilities obtained with the full correlation

2function to experimental data, so the value of 40 nm for
the coupling constant in Eq. (66) used by Leo and Mac-
Donald seems lower than one would expect from the ex-
perimental value of A=6. 5 nm. 63,64

5. Comparison of capture probability

In Fig. 4 we show as an example the total (summed
over K') scattering rates into the resonant state of the
well in a situation where the well level is 20 meV below
the emitter conduction band edge in a standard structure
of two Alo 4Gao 6As barriers of 5-nm thickness and a well
of 5 nm. The abscissa is the component of energy in the z
direction of the incoming state c, We stress that the

with the form factor for interface roughness scattering

F' (e, )= leak (z;)I' lg (z;)I' . (62)

-2
0 I ~ ~ ~

/
~ ~ I I ~ P I

/
~ I ~ ~

)
4 ~ 1 I

l
I I I ~

T=300K

We define

=~A exp
(K +K„)A

Q
2 A2

G' (E E )=A f dOexp
0

EK„A
Io

(63)

(64)

10
I—

CQ

~0'—0
CC
CL

&0'
CC

I— W

~0':—
D

AC
LOA

where Io is the modified Bessel function of order zero.
Above the threshold c., +c.

lI

& c, the capture probabili-
ty due to interface roughness is

2~m *b, Vb F' (c,, )

z
Z

(65)

This is the contribution of one interface, the quality of
which is characterized by A. Then the contributions of
all the interfaces must be added, with their respective
qualities. Despite the usual asymmetry in growth quality
between top (Al Ga, As on GaAs) and bottom inter-
faces, we have taken the same value for all interfaces.

It is worth comparing this expression with that ob-

~ ~ ~ I ~ ~ I ~ I ~ ~ I ~ ~ ~ ~ I ~ ~ I 3 ~ I I

20 30 40 50

ENERGY (meV)

60

FICr. 4. Example of scattering transmission rates via the reso-
nant state for the different interactions as a function of c„at
300 K. Scattering by optical-phonon emission (LOE) and ab-
sorption (LOA), by interface roughness (IR), by alloy disorder
(AL), and by acoustic phonons (AC), as well as the direct tun-
neling transmission (TUN) are shown. The structure has a 5-nm
well, 5-nm A104Cxa06As barriers and the contact doping is
10' /cm . The resonant state is 20 meV below the emitter
conduction-band edge, and the transmission rates are shown for
E =0 (upper curves) and 25 meV (lower curves); only LO and
IR processes depend on cII.
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TABLE I. Parameters used in present computation.

m* (m, )

AE, (eV)
E, (cQ)

(~0)
Elec)LQ (meV)

:- (eV)

p (kg/m )

V, (m/s)
QQA VA~(A eV )

GaAs/
Al Gal „As

0.067+0.083x '
0.8x

12.9'
10.9'

12.0g

5320
5220'

175

GaQ 47InQ 53As/
A10.48In0. 52As

0.041/0. 075 '
0.53'

13 73
11.36
32.7'
5.89

5590
4810

175

'S. Adachi, J. Appl. Phys. 58, R1 (1985).
T. P. Pearsall, GaInAsP Alloy Semiconductors (Wiley, New

York, 1982).
'D. Olego et al. , Appl. Phys. Lett. 41, 476 (1982).
H. Kroemer, Surf. Sci. 174, 299 (1986).

'Y. Sugiyama et al. , Jpn. J. Appl. Phys. 25, L648 (1986).
'J. Blakemore, J. Appl. Phys. 53, R123 (1982).
B.Vinter, Phys. Rev. B 33, 5904 (1986).

scattering processes (LO and acoustic phonons, alloy dis-
order). The peak-to-valley ratio becomes 40 at 4 K (rath-
er than 235 when no scattering is taken into account) and
6 at 300 K (rather than 19).

Alloy disorder scattering and LO phonon emission
(LOE) increase only little with temperature. On the con-
trary, acoustic phonon scattering and LO phonon absorp-
tion are very sensitive to the temperature. The scattering
currents decrease with increasing voltage, whereas the
tunnel current increases. Therefore, the valley voltage is
shifted from the termination of resonant tunneling to a
higher value. Between these two voltages, the tunnel
current increases approximately from 5% to 50% of the
total current. As for the rest of the current, it is shared
at low temperature between LOE (90% to 75%) and alloy
disorder scattering. At room temperature, the ratios be-
come 70% for LOE and around 10% for each of alloy
disorder scattering, acoustic-phonon scattering, and LO
phonon absorption.

scattering probability due to acoustic phonons or alloy
disorder does not depend on parallel motion. For optical
phonon scattering and interface roughness scattering the
two curves correspond to a kinetic energy parallel to the
interfaces of 0 and 25 meV, respectively. It can be seen
that all the scattering processes are more important than
the direct tunneling probability, but they are all much
smaller than 1 as claimed in Eq. (31), leading to the first-
order approximation Eq. (32). Thus the valley current is
primarily controlled by the capture rate from the emitter
into the weil and is given by the sum over the trapping
rates of populated initial states.

In the results shown the parameters used for phonon
and alloy disorder scattering are given in Table I and for
interface roughness we have used the values A=6. 5 nm
and b, =0.3 nm (one atomic layer of GaAs) found by mo-
bility measurements.

III. RESULTS

In this section we show some characteristic quantita-
tive results of our theory, in particular on the structure
and magnitude of the current beyond the resonant peak.
The parameters used in the calculations are listed in
Table I.

A. Intrinsic scattering processes

We first consider the case of a "standard" structure
with 5-nm Alo 4Gao 6As barriers, a 4-nm well (so that
there is only one resonant level in the well), and a contact
doping of 10' cm . In Fig. 5 we show the coherent tun-
neling current in the resonant regime and compare
coherent tunneling current and scattering current in the
off-resonant regime, at low temperature (4 K) in Fig. 5(a)
and at room temperature in Fig. 5(b). At room tempera-
ture, coherent tunneling current beyond the resonance is
mainly thermoionic. We have included only intrinsic
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FIG. 5. Calculated characteristics of a double-barrier diode
(4-nm well, 5-nm A10 4GaQ 6As barrier, doping: 10"/cm') at 4 K
(a) and 300 K (b). The coherent tunnel valley current is shown
by the dashed line (TUN) and the contribution of scattering
processes by the solid line (SCAT) ~
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B. Interface roughness scattering

In Fig. 6 we show results for the contribution of inter-
face roughness to the valley current calculated for the
same structure as in Fig. 5 at 4 and 300 K. We show the
dependence on the correlation length A for 2, 5, and 10
nm. Two features are noteworthy. The contribution to
the nonresonant part of the current from interface rough-
ness is mainly important in the fall after the resonant
peak and is comparable in magnitude with the LO pho-
non emission contribution, and the dependence with A is
not trivial because of the function G' (A) defined in Eq.
(63). Experimentally, values of A of 5 —7 nm are found
for the GaAs/Al„Ga, „As system, ' so we see that the
interface roughness can be expected to roughly double
the valley current determined by intrinsic processes. In
all the following simulations a value of 6.5 nm has been
used for the interface roughness correlation length.

The most systematic investigation of I-V characteris-
tics has been carried out by Gueret et al. on double-
barrier structures of varying barrier thickness but a con-
stant rather low barrier height. They conclude, based on
a simplified diffraction model, that the most likely cause
for the observed large valley current should be interface
roughness. From our study we believe it is mainly in the
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FIG. 6. Interface roughness scattering in the same structure
as in Fig. 5, at 4 K {a) and 300 K (b). Three values of the corre-
lation length are compared: 20 A (dashed line), 50 A (solid line),
and 100 A (dash-dotted line). The monolayer thickness is 3 A.

fall of the resonant current that interface roughness is
dominant, and Gueret's deduction of a reasonable corre-
lation length of A=8 nm is indeed based on the broaden-
ing of the resonance peak. One should not conclude,
however, that the nonresonant current is always dominat-
ed by interface roughness scattering; the relative impor-
tance of the different scattering mechanisms depends on
structure, voltage, and temperature in a nontrivial way.

C. LO phonon satellite

The direct signature of the LO phonon interaction in
the double-barrier structures is the appearance of phonon
replicas of the main elastic peaks in the valley region. In
comparison, the phonon effect is extremely difficult to ob-
serve in single barriers where it is masked by much larger
elastic tunneling. In fact, it is not a direct replica of the
resonance but rather the manifestation of the threshold
for LO phonon emission found in Eq. (46): LO phonon
emission only begins for voltages such that
EF & c +AcoLQ. The coupling then gives a maximum just
after the threshold when EF—c„=A~LQ followed by a
more slowly decreasing tail. In the cases described above
with a highly doped emitter and a Fermi energy larger
than the phonon energy this threshold occurs during the
resonant process so that we just get the tail of the LOE
satellite. In order to resolve the phonon peak it is there-
fore necessary to have a lower doping near the emitter
barrier: EF &i5~LQ

This was precisely the case in a structure studied by
Goldman, Tsui, and Cunningham. Their observation of
a LO phonon satellite was the first experimental proof of
scattering processes in the valley current tsee the inset of
Fig. 7(a)j. In Fig. 7 we have tried to recover their obser-
vation using the same parameters (barrier width 8.5 nm
with 40% Al, well width = 5.6 nm, doping = 2X10'
cm ). The difference from our earlier result is that the
inhuence on the potential shape has been taken into ac-
count in a Thomas-Fermi-like manner. The resonant
current is calculated as purely coherent and the current
beyond resonance includes interface roughness scattering.
It can be seen that excellent agreement with the experi-
ment is obtained for the shape of the characteristics (par-
ticularly the sudden drop of the resonant current) and for
the relative intensity of the peaks: 4% experimentally,
4.5%%uo theoretically. We find a much lower current scale,
by a factor of 40 (the calculated resonant level width is
10 meV). Our simulations (varying the barrier thick-
ness and height and the effective mass in the barriers)
show that, contrary to the current scale, the general form
of the characteristic is not very sensitive to the tran-
sparency of the barrier. Although Goldman, Tsui, and
Cunningham, (and Leadbeater et al. ) conclude that
they observed A1As LO phonons (47 meV), our calcula-
tion has been done for the GaAs LO phonon, since our
model is not adapted to localized phonon modes. In Fig.
7(b) the logarithmic scale allows the comparison of the
various contributions to the valley current and their
dependence with the bias. This figure shows that there is
no general rule for the valley current. In the fall of the
resonant current, interface roughness dominates among
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lta e LOEelastic scattering processes. At higher voltag,
dominates. But for intermediate voltages, there may e a
strong contribution of alloy disorder.

Our result is very similar to the one of Wingreen,
Jacobsen, and Wilkins. ' However, they have considered
a very large width of the resonant level (7.2 meV) and

hence obtain a very large current density 2000 times
larger than observed experimentally. Our result is also
comparable with the simulation of Rudberg' as far as
the amplitude of the phonon replica is concerned, but we
note that he obtains a "shoulder" to the main peak rather
than the expected threshold for phonon emission. on-
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cerning the phonon active in the tunneling we mention
the model calculation of Jauho on resonant tunneling in
the presence of inelastic scattering, in which it seems
that barrier phonons are of minor importance.

D. Comparison of material performance
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Starting from the structure described in Sec. III A, we
discuss the inAuence of the intrinsic scattering processes
on the peak-to-valley ratio at room temperature, as a
function of the thickness of the two identical barrier lay-
ers. This ratio is calculated in Fig. 8(a) with (i) and
without (ii) scattering. Apart from the quasilinear depen-
dence of the ratio (i), it is interesting to note that it is not
proportional to the ratio (ii), that is to say not simply
governed by the overlap of wave functions. The peak
current (also shown) is another essential parameter for
the design but we see that optimization of such a device
requires proper account of the scattering processes. The
reduction of peak-to-valley ratio is remarkable, and since

E. Intersubband scattering

We now focus on another situation occurring in a
double-barrier structure with at least two levels, for volt-
ages such that resonant tunneling is possible through the
second level (see Fig. 9). Then there is competition be-
tween the resonant tunneling and scattering processes be-
tween the two levels in the well. Figure 10 shows on log-
arithmic scale a case where this intersubband scattering
dominates. The detail of the different scattering contri-
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those curves are calculated without interface roughness
scattering, we see that our results describe very well the
fact that peak-to-valley ratios of more than 4 in the
GaAs/Al Ga, As system have rarely been observed,
the highest ratio to date being 4.9 in a structure with 3-
nm barriers and 60% Al concentration.

Other materials containing indium have been shown to
give much higher peak-to-valley ratios. The smaller
effective masses allow a better contrast between the width
of the resonant level and the off-resonant transmission.
Moreover, for a given transparency of the barriers,
higher barriers practically eliminate the thermoionic
component of the valley current up to room temperature.
Let us illustrate these points in the case of the
Alo 48Ino 52As/Gao 47Ino 53As system, where we have
studied a structure described by Lakhani et al. ' (barriers
of 7.2 nm, well of 4.3 nm, doping 10' cm ). At 77 K,
we find a peak-to-valley ratio of 123 instead of 9000
without scattering; at 300 K, this ratio becomes 19 in-
stead of 144. Experimentally, these ratios are 39 and 7 at
77 K and 300 K, respectively. Using 530 meV for the
barrier height, the calculated peak current density is
17A/cm, a factor of 20 lower than the experimental
value. In Fig. 8(b), we compare the performances of this
material with GaAs/Al Ga, As for comparable
current densities. Scattering currents are reduced as well
as coherent tunnel current, but in addition the ratio be-
tween thee contributions depends strongly on the materi-
al.

FIGa 8. (a) ES'ect of the barrier thickness on the peak-to-
valley ratio at room temperature. Dashed line, coherent tunnel-

ing only; full line, intrinsic scattering processes included (pho-
non and alloy disorder). The materials are GaAs/Alp 4Gap 6As;
the well width is 4 nm; the doping is 10' /cm . The peak
current density (dotted line) is also shown. (b) Same figure for
Gap47Inp 53As/Alp48Inp, 2As (well width 4.3 nm) in the same

range of current density.
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FIGa 9. Potential and wave functions squared in the situation
of resonant tunneling through the second level.
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FIG. 10. Comparison of scattering currents (SCAT) and
coherent tunneling current (TUN) in a double-barrier diode
with two resonant levels (8-nm well, 5-nm Alo 4Ga0 6As barriers,
doping: 2X 10' /cm, 4 K). These curves show the LO-phonon
satellite after the first resonance and the dominance of scatter-
ing around the second resonance.

butions is published elsewhere. Then, the transport
mechanism is truly sequential: electrons tunnel through
the first barrier into the second level of the well, then are
scattered down to the first level from which they tunnel
out of the well into the collector. Note that the calculat-
ed case corresponds to a low doping in the mitter so that
the LO phonon satellite is visible between the two reso-
nant peaks. Evidence of such sequential tunneling was
reported by Payling et aI. from magnetotunneling mea-
surements (see Sec. III) and confirmed by Skolnick
et al. using a photoluminescence experiment. Both
techniques show a large charge buildup on the lower well
subband during second-level resonance.

IV. CONCLUSION

We have described the valley current of a double-
barrier system as a scattering-assisted tunneling current.
The major calculational work is in the evaluation of ma-
trix elements of the perturbing interactions and the in-
tegrations over initial and final states. The theory shows
very satisfactory quantitative agreement with experimen-
tal valley current in several systems of different geometry,
materials, doping, and temperature.

As mentioned earlier other theories for transport in-
cluding scattering in resonant tunneling structures have
been published, so it is worth pointing out the similarities
and differences with the other main models. In fact
phonon-assisted tunneling (or hopping) has earlier been
described for superlattices several years ago by Tsu and
Dohler in the high-field case and more recently by Pal-
mier and Chomette for the low-field situation. It should
also be mentioned that our work is a fairly natural exten-
sion of calculations of phonon-assisted tunneling between
two coupled quantum wells, enlarged to treat other
scattering processes by Ferreira and Bastard.

For resonant tunneling structures the inhuence of the
coupling to optical phonons has been studied in various

Green's-function formalisms by Wingreen, Jacobsen, and
Wilkins, ' Jonson, ' Rudberg, ' and Cai et al. ' Those
models are all essentially one dimensional and the
transfer of momentum between perpendicular and paral-
lel motion is at most considered in estimating the one-
dimensional effective coupling. On the other hand, the
models can be completely solvable and show multipho-
non processes.

Another difference from our model is also in the
description of the electron-phonon coupling, which in
some models is restricted to the well. This means that
the spectrum of the well state is changed to contain pho-
non satellites; this enhances the density of final states for
emitter electron to tunnel into, but the tunneling matrix
element remains unchanged and the escape rate of the
electron initially in the well is unchanged by the coupling
to the phonon. A coupling between emitter states and
the well state through phonon interaction in the barriers
seems to open up an additional channel for tunneling into
and out of the well and some estimates have been made
by Wu and McGill. ' Apart from these specific
differences it seems that, as in the case of interface rough-
ness scattering, the first-order approximations to the
models are equivalent to our approach.

In the case of elastic-scattering processes it is clear that
a 3D model is necessary in order to obtain a contribution
to the valley current. Such models have been described
for impurity scattering in the well by Fertig, He, and Das
Sarma and (for the broadening of the transmission reso-
nance) by Gu et al. We have already shown the
equivalence between our model and that of Leo and Mac-
Donald for the interface roughness scattering in Sec.
IIC; results without configurational average have been
published by Liu and Coon. ' For completeness we also
mention the phenomenological description of 1D double
barriers including quasielastic scattering by Buttiker. '

As for less perfect barriers, phonon-assisted resonant
tunneling via a pointlike state in the barrier has been
studied by Glazman and Shekter and strongly disor-
dered barriers have been modeled by Schulz and
Gongalves da Silva. 25

It can be seen that our method is related on many
points with those described above. The main contribu-
tion of our work is therefore the complete quantitative
treatment of all the scattering processes. This is the only
way to be able to show that the valley current is not dom-
inated but rather controlled by interface roughness
scattering in some voltage intervals and by optical pho-
non scattering for other voltages. It is also the only way
to verify if the usual scattering processes sufBce to ex-
plain the characteristics of double-barrier diodes.

We believe the results we have obtained indeed show
that for most resonant tunneling structures the valley
current, peak-to-valley ratios are well described even
quantitatively by our first-order Born approximation in
the basis of the transmission wave functions imposed by
the contacts so that the double-barrier diode is an in-
teresting system to study scattering processes.

On the other hand, we are well aware that our method
has its limitations. The first-order Born approximation
excludes contributions due to virtual transitions or in-
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terference effects. The effect of multiple-scattering pro-
cesses might well be important in the resonant regime.
Then an assumption of uncorrelated successive scattering
processes may allow to study the broadening of the reso-
nant transmission.

The second limitation comes from the fact that the sys-
tem is treated as if the electrons were completely in-
dependent with equilibrium Fermi-Dirac distributions on
emitter and collector states. This is the case for all the
theories that only discuss the transmission probabilities.
The Pauli exclusion principle introduces a factor
I —f„D(k') in the scattering term of Eq. (27). In the off-
resonance situation, the well states remain nearly empty,
so that the factor can be neglected. The main effect on
the current will therefore come from nonequilibrium pop-
ulation of the resonant states. Furthermore, the assump-
tion of independent electrons excludes genuine many-
body effects, such as screening of the interactions, ex-
change, and correlation. Those effects are beyond the
scope of the present theory.

It is clear that only dc characteristics have been de-
scribed, and an extension to dynamic problems is not ob-
vious; also the specific nature of resonant tunneling struc-

tures with a quite well-defined resonant state in the well
in which the current is controlled by the double-barrier
structure rather than access regions has been utilized at
many points. For shrinking barriers this becomes gradu-
ally invalid and then it is necessary to apply a theory that
allows a description of quantum transport far from equi-
libriurn. Many aspects of this problem are discussed ex-
tensively by Frensley but we believe that the scattering
processes are a more important ingredient in ordinary
double-barrier diodes than the quantum correlations to-
tally neglected by the Born approximation in Fermi's
golden rule.

In Ref. 30, the scattering-assisted tunneling formalism
is applied in the situation of two-dimensional injection
and extended to the case where a magnetic field is applied
parallel to the current.
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