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Electron-phonon interaction in GaAs/AlAs superlattices
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Scattering rates of an electron in GaAs/AlAs superlattices are calculated in an envelope-function ap-
proximation which reproduces long-wavelength optical phonons almost completely. The polaron damp-
ing rate increases with decreasing layer-thickness at 300 K, while this dependence is smaller at 77 K. In-
tersubband relaxation rates decrease almost linearly as the layer thickness decreases. The results ob-
tained in the dielectric continuum model agree quite well with those in the envelope-function approxi-
mation and even the bulk-phonon model explains the layer-thickness dependence reasonably well. This
approximate model independence is explained by the completeness of the lattice vibration.

I. INTRODUCTION

High-mobility two-dimensional electron gas in
modulation-doped structures has attracted much atten-
tion from the viewpoint of pure physics and device appli-
cation. In devices with this structure, the most impor-
tant scattering mechanism of electrons is due to the in-
teraction with polar-optical phonons under usual operat-
ing conditions. Therefore, it is necessary and desirable to
understand the electron —optical-phonon interaction in
such heterostructures. Various models of optical pho-
nons have been used to calculate the electron —optical-
phonon scattering rates. ' ' However, the results of
these calculations are not consistent with each other and
is confusing especially regarding the layer-thickness
dependence of the scattering rates. In this paper, we cal-
culate the rates in GaAs/A1As superlattices in an
envelope-function approximation,

' which reproduces
long-wavelength optical phonons almost completely, and
try to resolve such confusion. A brief account of this
work was reported previously. '

At early stages, the electron —polar-optical-phonon in-
teraction was calculated within a bulk-phonon model in
which the usual Frohlich interaction with bulk LO pho-
nons of the material of the well layer is assumed. ' In
this model, the polaron damping rate, i.e., the scattering
rate of an electron at the bottom of the ground subband,
increases with a decrease of the thickness of the layers in
which the electron is confined.

It is known that optical phonons are strongly modified
by the presence of interfaces. ' The simplest model
that can demonstrate this fact is the so-called dielectric
continuum model, in which each layer is replaced by
a dielectric rnediurn with a frequency-dependent dielec-
tric constant. This model gives us two kinds of modes:
confined modes and interface modes. The confined
modes have amplitudes only in one kind of layer and fre-
quencies of either bulk LO or TO phonons. On the other
hand, the interface modes, sometimes called Fuchs-
Kliewer modes, have frequencies strongly dependent on
the wave vector and have amplitudes in both kinds of lay-
ers decaying exponentially away from the interfaces.
Various aspects of electron-phonon interactions have

been investigated in this model. ' ' ' ' For example,
Mori and Ando' calculated the polaron damping rate
and magnetophonon-resonance spectra for GaAs/A1As
single heterostructures and quantum wells at 300 K.
They found that the contribution of the confined modes
decreases and that of the interface modes increases with
decreasing layer thickness. The total scattering rate
turned out to be very similar to that of the bulk-phonon
model. They showed that this is closely related to a sum
rule existing among the form factors for the electron-
phonon matrix element.

Phonons in superlattices have been observed directly in
Raman-scattering experiments and the results of these ex-
periments have been analyzed on the basis of a linear-
chain model. In spite of the simplicity, this model is usu-
ally sufIicient in describing modes with a wave vector per-
pendicular to layers. It was applied to GaAs/A1As su-
perlattices and showed that optical phonons are com-
pletely confined within either GaAs or AlAs layers. '

This result is consistent with that of the dielectric contin-
uum model, since all optical modes are confined even in
the dielectric continuum model when the wave vector is
perpendicular to layers. However, if we look at the re-
sults more carefully, there is a significant contrast. In the
dielectric continuum model, the displacement of ions in
the z direction perpendicular to the layers can be max-
imum at the interfaces. In the linear-chain model, how-
ever, the displacement vanishes at the interfaces.

This disagreement has led to a strong doubt regarding
the validity of the dielectric continuum model and to pro-
posals of various phonon models. Sawaki calculated the
scattering rates in GaAs/A1As superlattices, assuming
that confined electrons interact only with LO phonons
confined to the same layer and having vanishing displace-
ments at the interfaces. The results showed that the pola-
ron damping rate decreases with a narrowing of the well
layer in contrast to the result in the dielectric continuum
model. Ridley imposed an artificial boundary condition
on the confined modes of the dielectric continuum model
that the z component of the displacement and the z
derivative of the parallel components should vanish at
the interfaces on the basis of the result in a hydrodynam-
ic boundary-condition model. The resulting polaron
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damping rate decreases almost linearly with decreasing
layer thickness and its absolute value is much smaller
than that obtained in the dielectric continuum model.
Huang and Zhu proposed another boundary condition
that both value and z derivative of the potential associat-
ed with lattice displacement should vanish at interfaces.
This leads to vanishing displacement at the interfaces in
agreement with the linear-chain model. This model was
also used for the calculation of the scattering rate and
gave a different answer.

The purpose of this paper is to resolve such controver-
sies and clarify the nature of the electron —optical-phonon
interaction in semiconductor superlattices. We calculate
the electron-phonon scattering rate in GaAs/A1As super-
lattices using the envelope-function approximation which
reproduces the results obtained by lattice-dynamical cal-
culations quite well, ' and compare the results with those
obtained in different models. Although microscopic cal-
culation of the scattering rates is possible, a reliable
continuum model of optical phonons in superlattices is
highly desirable because it can serve as a Frohlich model
in the bulk.

This paper is organized as follows. In Sec II the
envelope-function approximation is introduced. The
electron-phonon interaction in GaAs/A1As superlattices
is calculated in Sec. III. The method of calculation is
presented in Sec. III A and numerical results are shown
in Sec. III B together with those in the bulk-phonon mod-
el and the dielectric continuum model. In Sec. III C the
completeness of phonon modes is shown to be the origin
of the fact that scattering rates are nearly independent of
different models. Section IV is devoted to a summary.

II. ENVELOPE-FUNCTION APPROXIMATION

velope of the displacement of cations and anions, respec-
tively. In each layer, the envelope satisfies the equation

(co —coro)U(r) =H, , U(r) — E(r),8 0 8 Ze
lBX ling le

(2.1)

where co is frequency, co~ is the frequency of the TO
phonon of the bulk material of this layer, and M, is the
reduced mass defined as M„=M,M, /(M, +M, ) with M,
and M, the mass of a cation and an anion, respectively.
The effective charge of an ion Ze is given by

1/2 1/2
r 11 1

E' ~ COLO (2.2)

E(r) = —VP(r)

with the electrostatic potential

(2.3)

(2.4)

where P(r) is the polarization given by

with coL& the frequency of the LO phonon of the bulk, E'

the high-frequency dielectric constant which is assumed
to be independent of the constituent materials Eo

( =e„coLo/coro) the static dielectric constant, and n the
number of cation-anion pairs in a unit volume, i.e.,
n=4/a for zinc-blende crystals where a is the lattice
constant.

The macroscopic electric field E(r) is determined
through

In the envelope-function approximation, we consider
U(r)=U, (r) —U, (r), where U, (r) and U, (r) is an en-

P(r) =nZeU(r) .

Further, H is a 3 X 3 matrix Hamiltonian given by

(2.5)

H(q„, q, q, )=
Aq +B(q +q, )

Cqy qx

Cq, q

Cqx q

Aq~+8(q, +q )

Cq, q

Cqx qz

Cqy q~

Aq, +8(q„+q )

(2.6)

where q=(q„,q, q, ) is a wave vector. The parameters A,
8, and C can be determined so as to reproduce the bulk
dispersion in a long-wavelength limit. We determine
these parameters as A = —2. 14X 10, B = —0.75
X 10, and C = —1.38 X 10 for GaAs and 3 = —1.85
X 10, B= —0.67X10, and C= —1.18X10 for
A1As in units of cozoa .

For these parameters, phonons in the bulk have an iso-
tropic dispersion relation, and longitudinal and trans-
verse modes are completely decoupled even for wave vec-
tors in nonsymmetry directions. As discussed in Ref. 15,
a valence force-field model gives phonon dispersions
which are slightly anisotropic in GaAs and A1As. How-
ever, the anisotropy is not so appreciable and errors aris-
ing from the approximation are expected to be small.

For GaAs/A1As superlattices, we can safely neglect

the lattice mismatch and set a =5.653 A for both GaAs
and A1As. For simplicity, we use e =9.53, which is the
average of e„of GaAs and A1As. When e„varies be-
tween layers, the relation between the polarization and
the electrostatic potential becomes far more complicated
because of necessary image charge effects. Other parame-
ters are summarized in Table I.

Because frequencies of bulk optical modes of GaAs and
A1As do not overlap in energy, we can clearly separate
optical phonons into two kinds: GaAs-like modes and
A1As-like modes. The GaAs-like modes have a frequency
close to that of optical phonons of bulk GaAs and their
amplitude of displacement is almost entirely confined to
GaAs layers. Furthermore, the amount of dispersion,
i.e., the bandwidth, of bulk phonons is smaller than the
energy separation between optical phonons in bulk GaAs
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TABLE I. Parameters used for the present calculations. The mass of anions and cations are denoted
by M, and M„respectively, M„ is the reduced mass of anion-cation pairs, AcuLo and Ace&o are the ener-
gies of the bulk LO and TO phonons, respectively.

GaAs
AlAs

M, (a.u. )

69.72
26.98

M, (a.u. )

74.92
74.92

M„(a.u. )

36.11
19.84

AcoLo (meV)

36.19
50.10

Acozo (meV)

33.30
44.75

W(r)=+nM„(r)U(r) .

Because of the periodicity, it can be written as

(2.7)

exp(iq, md ) exp(iq ri)
W z(r) = g w~q(z

—md )
m=0 N

(2.8)

where w z(z) is defined only in the region —d2 &z &d „
L is the linear dimension of the system, N ( =L /d ) is the
total number of superlattice periods, r=(r~~, z)=(x,y, z),
the mode is specified by the index j, and the wave vector
q=(q~~, q, ) =(q, q, q, )( n/d &q, & vr/—d )..

Let us consider modes with dominant amplitude in the
GaAs layer. Within the GaAs layer, the reduced dis-
placement is expanded into

N 1/2

wj~(z)= g C
p=1 1

sin zP77

1

(2.9)

where C is the expansion coefficient and a ( =x,y, z)

and AlAs. Therefore, we can neglect the presence of
dispersion of phonons in the AlAs layer, i.e., set
A =B=C=O in Eq. (2.6) for the GaAs-like phonons.
This means that we employ the dielectric continuum
model in the A1As layer. The same applies to the AlAs-
like modes. We impose boundary conditions for the en-
velope in the GaAs layer that should vanish at a bound-
ary plane near the interfaces. In this paper, we assume
that the boundary plane is at the interfacial As plane, al-
though the actual boundary plane is known to be shifted
by roughly a monolayer thickness or less. This shift is
not important except in superlattices with extremely
small layer thickness.

The validity of the boundary conditions mentioned
above has been justified microscopically. These bound-
ary conditions become inappropriate and more sophisti-
cated conditions should be introduced when frequencies
of optical phonons of constituent materials overlap each
other. The envelope-function approximation reduces to
the dielectric continuum model when we set the pararne-
ters of the bulk dispersion as 3 =8 =C=O in both lay-
ers. Furthermore, neglecting the differences of pararne-
ters, co~z, Ze, etc. , between layers, we can get the results
in the bulk-phonon model.

We choose the origin of z in such a way that a GaAs
layer occupies the region 0&z &d, and an A1As layer—d, &z &0 and let d represent the superlattice period
given by d=d1+d2. We introduce a reduced envelope
W(r), which is convenient for calculating phonon modes
in inhomogeneous materials, defined by

represents the direction of displacement. We have intro-
duced a cutoff, N„equal to the number of layers of
anion-cation pairs in this layer, in order to make the
number of the optical modes in this approximation equal
to that in the actual superlattices. This cutoff is impor-
tant only when the layer thickness is small.

Because we employ the dielectric continuum model in
the A1As layer, the displacement in the A1As layer is pro-
portional to the macroscopic electric field, which decays
exponentially [ o- exp(+q~~z)] away from the interface.
Therefore, we have

2q
II

' 1/2

Xcosh[q~~(z+dz/2) ]

+C ~II2q

sinh(q~(d2 ) —q((d2

1/2

X sinh[qi(z +dz /2) ] (2.10)

for —d2&z &0, where the subscripts S and A denote
symmetric and antisymrnetric components, respectively.

Using Eqs. (2.1)—(2.10), we obtain an eigenvalue prob-
lem for 3(N, +2) unknown coefficients C's and phonon
frequencies. Because the dispersion is isotropic within
the plane parallel to the interface, we can choose q in the
xz plane. The y component of displacement is decoupled
from the x and z component, induces no macroscopic
electric field, and therefore can be ignored completely.
Thus, the eigenvalue problem can be reduced to the
2(N, +2) dimension. The same procedure is applicable
to obtaining A1As-like phonons.

We normalize the reduced displacement in one period

dlf Iw (z)I dz=l .
"2

(2.11)

Then, the reduced displacernent can be written in a form
of second quantization as

1/2

W(r)= g 2', (q)
[W (r)b z+W (r)bzq]

(2.12)

where b.
q

and bzq are the destruction and creation opera-
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tors for a phonon of mode j and wave vector q and coi(q)
is its frequency. This envelope-function approximation
reproduces long-wavelength optical phonons almost ex-
actly as demonstrated already in Ref. 15.

It should be noticed that as long as the present
envelope-function approximation is valid, the solution of
the eigenvalue problem W (r) satisfies within a good ac-
curacy the closure relation

exp[iq, (m —m')d ] exp[iqII (rII
—rI'I)]

g Wq(r)W~~q*(r')=5 ~ g g 6[z md (z' md)]
N

(2.13)

The scattering rate of an electron in subband
(=1,2. . . , ) at wave vector k to subband q' by phonon
emission and absorption is represented by Fermi's golden
rule as

r„„+(k) g g ~M„„+(k) [ n[co (q)]+ —,
'+

—,']

with

'Rco
n(co) = exp

B

X5[Ef E, +fico/(q) ], — (3.1)

(3.2)

where E,. and Ef are the electron energy of initial and
final states, respectively, kB is the Boltzmann constant,
and T is the temperature. The upper and lower signs
represent the contributions of phonon emission and ab-
sorption processes, respectively. The matrix element M
of electron-phonon interaction can be expressed as

corresponding to the completeness of the phonon modes,
where the summation over j runs over both GaAs- and
A1As-like modes.

When energy of light is close to or smaller than that of
optical phonons, interaction between the light and the
phonons becomes important and they are coupled into a
set of modes called polariton. " This polariton effect can
be important also in semiconductor superlattices. For
GaAs, for example, it is appreciable when the wavelength
of light and optical phonons is larger than 3 X 10 A. For
damping rates, however, the important wavelength is
determined by the energy and momentum conservation
for interaction with electrons and is much smaller. For
example, the typical wavelength determining the polaron
damping rate is about 2.5X10 A which is three orders
of magnitude smaller than that of polaritons. Thus, the
polariton effect can be neglected completely in the
present problem.

III. ELECTRON-PHONON INTERACTION

A. Scattering rates

'
1 /2

1

717T
sin z

1

(3.5)

for 0&z &d, and f„(z)=0 for —d2 &z &0, where
k=(kII, k, )=(k„,k», k, )( —m/d &k, &m/d). The corre-
sponding energy is independent of k, and is given by

E
II

—
2m* dl 2m* ' (3.6)

where m* is the effective mass at the conduction-band
bottom. This assumption is valid when the thickness of
the barrier and well layers is sufficiently large. For
GaAs/AlAs systems, the critical thickness is quite small
(estimated as -25 A using the effective-mass approxima-
tion) because of the large discontinuity of the
conduction-band bottom ( —1 eV). The explicit expres-
sion for the matrix element is given in the Appendix.

We will calculate the scattering rate of an electron at
the bottom of the ground subband, i.e., the polaron
damping rate. Only the absorption process contributes to
the damping rate. Furthermore, if the splitting between
the ground and first excited subbands is larger than the
phonon energy, there are no intersubband processes.
Therefore it can be calculated from Eq. (3.1) with

Mii. (0) and Ef E, =Ei(q ) —Ei(0)=A' q —/2m
For scattering of an electron at the bottom of the first ex-
cited subband, the following three processes are possible,
if the subband splitting is larger than the phonon energy:
(i) intrasubband transition with phonon absorption, (ii)
intersubband transition to the ground subband with pho-
non absorption, (iii) intersubband transition to the
ground subband with phonon emission. These rates can
be calculated by Eq. (3.1) with M, ziq+ (0) and

Ef E; =E, (qII ) —E—z(0) and with M&2 (0) and

Ef E =E2(qll) —E2(0)=A2q2II/2m" for the intersub-
band and the intrasubband transition, respectively. The
damping rate I is related to the corresponding relaxation
time r defined in Eq. (3.1) through I =A'/2r.

M„„/q+(k)= J dr/„*z+q(r)( —e)Piq(r)g„i, (r), (3.3) B. Numerical results

where PJ (r} is the electrostatic potential associated with
a phonon with mode j and wave vector q.

We assume that an electron is completely confined to
the GaAs layer and adopt the wave function

exp(ik, md ) exp(ikII. rII)
g„j,(r) = g P„(z—md }

N L

(3.4)

1. Polaron damping

Figure 1 compares the layer-thickness dependence of
the polaron damping rate in the GaAs/AlAs superlat-
tices for di =d2 at 300 K calculated in the envelope-
function approximation, the dielectric continuum model,
and the bulk-phonon model. The figure contains the
separate contributions of GaAs-like and A1As-like modes
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)
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GaAs/AlAs d1-d2 T-300K-
EFA

Total ——DCN

smaller than the above results. Both the zigzag depen-
dence and the sudden increase are expected to remain to
some extent, because they are due to changes in phonon
properties.

In systems with a thick layer (dI ) 150 A), the contri-
bution of A1As-like modes is much smaller than that of
GaAs-like modes, but it increases as the layer thickness
decreases and may even exceed the contribution of
GaAs-like modes. In Fig. 1, we also show the damping
rate in buIk GaAs, firoLoaFn(ro„o), i.e., in the case that
there is no confinement for both electrons and phonons,
where

1 1 1 e
CXF 2 E oo QP QQ)LO

1/2
2m NLO

(3.7)

Qp I II

0 50 100 150

Layer Thickness d& {A)

200

FIG. 1. Layer-thickness d
&

dependence of the polaron damp-
ing rate calculated in the envelope-function approximation
(solid line), the dielectric continuum model (dashed line), and
the bulk-phonon model (dotted line) at 300 K. The thickness of
barrier layer d, is equal to that of the well layer d&. For the
envelope-function approximation and the dielectric continuum
model, the separate contributions of GaAs-like and A1As-like
modes are also shown. The thin horizontal line represents the
damping rate in bulk GaAs. In the hatched region, the assump-
tion that an electron is completely confined to the well layer be-
comes inappropriate.

for the envelope-function approximation and the dielec-
tric continuum model. In the envelope-function approxi-
mation, we can calculate the rates only at an integral
multiple of one monolayer thickness a/2 and straight
lines are drawn between these points. The results calcu-
lated in these three models are very similar. In particu-
lar, the result in the dielectric continuum model is almost
in agreement with that in the envelope-function approxi-
mation. The damping rate increases with the decrease of
the layer thickness. This is because the electron
confinement tends to enhance the electron-phonon in-
teraction.

In the thin-layer region (d, (15 A), the result in the
envelope-function approximation shows a zigzag depen-
dence on layer thickness and exhibits a sudden increase
for very small d, . This increase is due to a lowering of
phonon energies by the confinement effect and resulting
increase in the number of thermally activated phonons.
This effect is overestimated because of the approximation
of parabolic phonon dispersion and the assumption that
the effective layer thickness is not (N, + 1)a /2 or
(NI+0. 5)a/2 as in Ref. 15 but N, a/2. The zigzag
shape is caused by the reduction in the number of phonon
modes with decreasing layer thickness. (Three optical
modes disappear, whenever the layer thickness decreases
by one monolayer. ) Strictly speaking, in the hatched re-
gion d& (25 A, electrons are no longer confined in GaAs
layers and the actual damping rate is expected to be

1.5
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DCM
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I
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FIG. 2. Calculated layer-thickness d& dependence of the po-
laron damping rate at 77 K. d2 =d &.

is the Frohlich coupling constant.
In the region d, ) 80 A, the damping in the superlat-

tice is smaller than in the bulk. This difference increases
with the layer thickness. However, when d t & 170 A the
subband splitting between the lowest and first excited
subbands is smaller than the phonon energy and intersub-
band transitions should strongly increase the damping
rate beyond the bulk value. Hence, the reduction of I in
the superlattice from I" in the bulk is at most about 20%.

At 77 K, I is much smaller than at 300 K as shown in
Fig. 2 because of the decrease of the number n(co) of
thermally activated phonons [n(ro„o)=0.33 and 0.17 for
GaAs and A1As, respectively, at 300 K and
n (roLo) =4.3 X 10 and 5. 3 X 10 at 77 K]. The
difference between I calculated in the envelope-function
approximation and in the bulk-phonon model is larger
than at 300 K. This arises from the fact that the reduc-
tion of the number of higher-energy A1As-like phonons
compared to that of GaAs-like phonons is not properly
taken into account in the bulk phonon model. The
difference of I between the envelope-function approxima-
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FIG. 3. Calculated layer-thickness d& dependence of the po-
laron damping rate at 300 K. d2 =4d &.

tion and the dielectric continuum model is also slightly
larger than at 300 K. In the dielectric continuum model
I is underestimated, because the reduction of the phonon
energy due to confinement is not considered at all. The
region in which I in superlattices is smaller than in bulk
CxaAs extends up to d

&
& 30 A.

In Figs. 3 and 4, we show the results in the case
dz=4d, . At 300 K, the contribution of the GaAs-like
modes is smaller than that in the case d2=d& and the
contribution of the AlAs-like modes is larger. Conse-
quently, the total damping rate does not change much.
At 77 K, the reduction of the damping rate from that in
bulk GaAs is slightly more pronounced than for d2 =d, .

r
)

& & & (
I

i & s &

(
s

Ga As/ AlAs d2=4d1 T=77K

FIG. 5. Layer-thickness d
&

dependence of damping rate of an
electron at the bottom of the first excited subband calculated in
the envelope-function approximation (solid lines), the dielectric
continuum model (dashed lines), and the bulk-phonon model
{dotted lines} at 300 K. d, =d &.

2. Intersubband relaxation

Figure 5 shows calculated damping rates of an electron
at the bottom of the first excited subband at 300 K as a
function of the layer thickness. The damping rate of in-
trasubband transitions is similar to the polaron damping
rate given in Fig. 1. The damping rate for the intersub-
band transition with phonon absorption is a sublinear

1 g ~

7 -GaAs/
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FIG. 4. Calculated layer-thickness d& dependence of polaron
damping rate at 77 K. d2 =4d ~.
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0 ~IIIII~I~ r" r r ~ t
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2 0 sorption
absorption
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FIG. 6. Layer-thickness d
~ dependence of damping rate of an

electron at the bottom of the first excited subband at 77 K. The
contribution of intersubband transition due to phonon emission
is much larger than those of the other two processes.
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function of d i and that with phonon emission is a super-
linear function of d&. This difference comes from that of
the wave numbers where the energy conservation is
satisfied. The results in different approximations are al-
most indistinguishable for the intersubband absorption
process, while in the emission process the result in the
bulk-phonon model is slightly lower. This is again due to
differences in the phonon frequencies.

Figure 6 shows calculated damping rates at 77 K. The
damping rate due to phonon absorption processes is
smaller by roughly two orders of magnitude than at 300
K, while that of emission processes remains almost the
same.

C. Discussion

In the preceding section, it has been found that the re-
sults in the dielectric continuum model agree quite well
with those in the envelope-function approximation and
even the bulk-phonon model explains the layer thickness
dependence reasonably well. In order to clarify the
reason, we separate the total scattering rate into contri-
butions of different phonon modes. One way to achieve
this separation is to consider the Eliashberg function
a {co)F{co)describing the contribution of phonons having
frequency co, defined by

I = dcoa2 cu F co n co

(a) (b)
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FICx. 7. Histogram of the Eliashberg function for the polaron damping rate in a (GaAs)~p(AlAs)&p superlattice calculated in the
envelope-function approximation (a) and the dielectric continuum model (b), and in a (GaAs)4p(AlAs)4p superlattice in the envelope-
function approximation (c) and the dielectric continuum model (d). Solid lines show results when the frequency interval is 1 meV and

dashed lines 10 meV. The dotted lines represent the result in the bulk-phonon model.
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Aq
X 5[co (q) —co]5 fico-

2m*

Figure 7 gives histrograms of a (co)F(co) given by
co +Ago

E„— f d co a ( ci) )F( co )

(3.9)

(3.10)

with co„=n b,co (n is an integer} for GaAs/AlAs superlat-
0 0

tices with d] =d~ =28 A and d, =dz=113 A. In these
figures, we show the results with Ace = 1 meV and
Ace=10 meV. For 6~=10 meV the total scattering rate
is separated into the contribution of GaAs-like modes

I

where a (e]) is an effective electron-phonon coupling
function and F(co) is the phonon density of states. For
the polaron damping rate, we have from Eq. (3.1)

a (co)F(co}=srg g ~M» (0)~

0
and AlAs-like modes. For d1=d2=113 A, the histro-
grams calculated in the envelope-function approximation
and the dielectric continuum model are quite similar even
for Ace=1 meV. This shows that the dielectric continu-
um model is accurate in superlattices with wide layers.

0
For d, =d2=28 A, the histograms with b,~=1 meV
differ between the envelope-function approximation and
the dielectric continuum model, showing that the latter
breaks down for narrow layers, while those with 6~=10
meV do not. This suggests that the total scattering rate is
not sensitive to the details of the model even though
differential contributions of individual modes are quite
different. We also notice that the sum of the contribu-
tions of GaAs-like modes and AlAs-like modes is almost
equal to that calculated in the bulk-phonon model.

The reason that the dielectric continuum model and
even the bulk-phonon model give reasonable results can
be understood by the completeness of phonon modes as
follows. ' In general, we can write the scattering rates as

g g 5[E, Ef+Aco/—(.q)](]n [co~(q)]+—,
'+

—,
'

I

X fdr] f dr', f dry fdr,'p„'„+~(r])p„„(r])p„k+~(r,)p„*],(r&)

(r] —r]).PJq(rI) (r, —ri) P,*q(ri)
(3.11)

with

Pi&(r) =WJ&(r) g nZ]e
1

I=1,2 nM„I

1/2

8](z ), (3.12)

where M„] and Z]e are the reduced mass and effective charge, respectively, in layer l, and 8](z)=1 in the layer l and
8](z ) =0 in the other layer.

Let us assume that the frequencies of all optical modes are about the same and can be replaced by an averaged fre-

quency co,„. Because the energy of an electron is independent of k„q~~ is determined as ~q~~~
=Qq„+q =qo" to satisfy

the energy conservation and q, is arbitrary ( —irld (q, (ir/d ). The summation over j and q, in Eq. (3.11) can be per-
formed with the use of the closure relation Eq. (2.13),

(k)

2

, 5(,— '"
)[ (,„) —,

' ——,
' ]

X f dr3 f dr& fdr] f dz] f dr& f „dzz"2 "2
N —1 N —1

X g g Q„'.q+q(r] )Q„],(r] Wi„.],+q(r~)Q„*],(r~ }
I I

m =0 m =0
1 2

[r, —(r', +m ', de, ) ] [rz —(rz+ m &de, ) ]

e ~r] —(r']+ m ']de, ) ~ ~ri —(rz+ m &de, ) ~

exp[iq, (m', —mz)d]
X5(z', —zi)

exp[iq~~. (r]~~ rz~~)] nZ] e 8, (z', )
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I =——yAJ(qo, )coJ(qoJ )n [coJ(qof )]VJ(qoJ ),
2

J
(3.14)

where j is the mode index, qoj is the norm of the two-
dimensional wave vector for which the energy conserva-
tion is satisfied, A is the coupling constant, and VJ is a
form factor. For example, in the case of confined modes
in each layer, A =aF for co =coLo and A. =0 for
coj' coTo They found that the form factors obey a sum
rule,

This shows that the scattering rate does not depend on
the details of the displacement of each phonon mode.

This sum rule corresponds to that noted by Mori and
Ando' in the dielectric continuum model for single
heterojunctions and single quantum wells. They ex-
pressed the damping rate as

9.0

N

I—

oc85
C
U

(( aAs)7(A(As)7
EFA——Confined

(3.15)
8.0

0 30 60 90

where Vii is the form factor in the bulk-phonon model.
It means that as long as AJcoJ n (co. ) is nearly independent
of j, the damping rate is close to that in the bulk-phonon
model. This is the reason why the bulk-phonon model
explains the layer-thickness dependence reasonably well.
This sum rule is a direct consequence of the closure rela-
tion Eq. (2.13).

Note that the validity of the bulk-phonon model is lim-
ited to GaAs/AlAs systems at 300 K and that the situa-
tion is likely to be quite different in superlattices consist-
ing of other materials. Mori and Ando' showed within
the dielectric continuum model that the scattering rate
can be considerably smaller than that calculated in the
bulk-phonon model in AISb/InAs/AISb and
Ge/InAs/Ge quantum wells.

We have shown in Fig. 7 that a E averaged over
GaAs-like modes and over A1As-like modes in the
envelope-function approximation and the dielectric con-
tinuum model are in good agreement. This suggests the
presence of a completeness relation for GaAs-like modes
and A1As-like modes separately. To prove this, we con-
sider a model in which the displacement is confined to
one type of layer with LO-phonon frequency coLo and the
other layer is replaced by an effective medium with a
dielectric constant e(coLo). In this confined model, the
lattice displacement satisfies the completeness in each
type of layer. Figure 8 compares the resulting 0 depen-
dence of optical modes with a frequency close to that of
optical phonons in bulk GaAs with the results in the
envelope-function approximation at the I point, where
tanO=q /q, . In Fig. 9, we show the displacement for a
GaAs-like mode at 0=~/4, where the amount of the
dielectric response of the A1As layer is reinterpreted as
the lattice displacement. The calculated polaron damp-
ing rate is shown in Fig. 10 together with the result of the
envelope-function approximation. All these figures show
that the confined model is almost equivalent to the
envelope-function approximation.

We can immediately derive an expression of the
separate contribution of GaAs- and A1As-like modes to
the relaxation time similar to Eq. (3.13) except that the

8 (deg}

FIG. 8. Dependence of the frequency of modes lying in the
vicinity of the LO and TO phonons of GaAs on the wave-vector
direction 0( tanO= q, /q, ) at the I point. The solid lines
represent the results calculated in the envelope-function approx-
imation and the dashed lines those of the confined model.
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FIG. 9. Calculated displacements of ions for a mode at the I
point with wave-vector direction 0= m. /4 and frequency v= 8.08
THz. The solid lines represent results calculated in the
envelope-function approximation and the dashed lines those in
the confined model. The thin vertical straight lines indicate the
position of the interfacial As planes and the vertical dotted lines
the interface position in the envelope-function approximation
(Ref. 15).
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Sawaki calculated the scattering rate in superlattices,
assuming that the optical phonons are completely
confined in either layer, and claimed also that the in-
trasubband scattering rate decreases as the layer width
decreases. This is because he completely neglected effects
of A1As-like phonons which become important with de-
creasing layer thickness.
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FIG. 10. Layer-thickness d& dependence of polaron damping
rate calculated in the confined model (dashed lines) and the
envelope-function approximation (solid lines) at 77 K. d2 =d).
The results in the envelope-function approximation are the
same as those given in Fig. 2.

sum over l is replaced by a term in which l =1 or l =2
and that the image effect should be properly included in
the relation (2.5) between the potential and the polariza-
tion. Therefore, the total contribution of GaAs- or
A1As-like modes is independent of the details of each
mode as long as its frequency can be approximated by an
average. The same is applicable to the dielectric continu-
um model, since a similar confined model is equally valid.
This explains why the dielectric continuum model suc-
cessfully gives the electron scattering rates even in super-
lattices with narrow layers although it cannot describe
each phonon mode correctly. It should be noted that the
envelope-function approximation is more general than
the simpler confined model.

The present calculations show that the
electron —optical-phonon interaction becomes stronger as
the layer thickness decreases. Opposite results were ob-
tained by some authors. In particular, Riddoch and Rid-
ley calculated the scattering rate of an electron confined
in a thin ionic slab, using the dielectric continuum model,
and showed that it decreases as the layer thickness de-
creases. We can obtain a similar result by neglecting the
potential associated with lattice displacements in all lay-
ers but the GaAs layer in which an electron is confined.

IV. SUMMARY

In this paper, we have investigated the
electron —optical-phonon interactions in GaAs/AlAs su-
perlattices. The envelope-function approximation which
reproduces long-wavelength optical phonons quite well
was employed. We have found that the results in the
dielectric continuum model agree quite well with those in
the envelope-function approximation and that even the
bulk-phonon model explains the layer-thickness depen-
dence reasonably well.

The Eliashberg function was calculated to determine
the extent of contribution of individual modes to the elec-
tron scattering. It shows that the dielectric continuum
model is quite accurate in superlattices with wide layers
but fails to describe individual modes for narrow layers.
The total scattering rate, however, turned out to be the
same even for narrow layers. This approximate model in-
dependence of the total scattering rate was understood in
terms of the completeness of the lattice displacement. As
a matter of fact, the global completeness of all modes in
GaAs and A1As layers explains why the bulk-phonon
model can give a reasonable layer-thickness dependence.
A simpler model was introduced in which displacements
are totally confined in either GaAs or A1As layers and
other layers are replaced by a continuum which has an
appropriate dielectric constant independent of frequency.
The approximate validity of this model was established
by comparison of frequencies and displacements with
those calculated in the envelope-function approximation.
The completeness within this confined model explains
why the dielectic continuum model gives accurate total
scattering rates for both GaAs- and A1As-like modes
even in thin-layer superlattices.
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APPENDIX: ELECTRON-PHONON MATRIX ELEMENTS

1

VNL 2~ (q)
2me

n'wq (—A matrix element can be calculated from Eqs. (2.4) —(2.10), (2.12), and (3.3). We have
1/2

x f 'dz f „'dz'
"2
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+g„".(z )g„(z )e ~~ P (z') [ —ie~ +sgn(z —z')e, ] ',—
qll lz —z'l

(A 1)

2' 1

2coj (q)
(A2)

where eq and e, are unit vectors in the direction of qll and z, respectively. The integration over z and z can be per-

formed analytically for the electron wave function Eq. (3.4). The result can be expressed as

IE+[ lIp Ip ] Ip [ lIp+ +Ip+ ]M„„(0)=- ~IEP +IEP
exp[(qll iq, )d ]—1 expl (qll+ iq, )d ]—1

where x is chosen in the direction of qll.
The above expression contains various integrals. First, the integral IE contains only the information of the electron

wave function and is given by

I = f dz g„*,(z )P„(z )e

—+ 47)ri'7l (q d, )[(—1)"+"e ' —1]

[(q,~d, )'+ (q+ q')'~'] [(q„d, )'+ (q —q')'~']

The integral IP contains only polarization distribution and is defined as

(A3)

Ip+ = dz'P (z')e =Ip~+ +Ipse+
0

with a=x,y. For phonon modes with amplitude mainly in layer 1, we have

( 1 y
+—e~~~,

IP, + =nZ, e g C~ d,p~
nM 1 1

~ d1 (q~~d, ) +(pm)

and

(A4)

(A5)

1
Ip2~ =nZ2 e

nM

' 1/2
+qll(d~+dp/ ae

1/2
sinh(q((dz )+q)(d2 +c~

2qll

1/2
sinh(q~~dz ) —q~~dz

(A6)

(A7)

where C, Cs, and Cz are the expansion coefficients defined in Eqs. (2.9) and (2.10). For phonon modes with amplitude
mainly in layer 2, on the other hand, we have

1/2 1/2 1/2
1 +q d, /2 sinh(q((di )+q))di sinh qlldi ) qlld&Ip+=nZ e e '

C~ +C~
nM„1 2q

1
IP2+ =nZ2e

nM„2

r +q d2

G2P&
(q(~d~) +(p~)

(A8)

1
IEp =IE+Ipz —+nZ1e

nM„1

The integral IEP which corresponds to the interaction with phonon amplitudes in layer 1, contains both the polariza-
tion distribution and electron wave function. For phonon modes with amplitudes mainly in layer 1, we have

1/2 N i
'1/2 +2d q dC" d&pvr IE —

(
—1)Pe 'Iz++ Is (A9)

1 qll
d l

(q~(d) )'+(p~)' p~

1
IEp = —IE+Ip2 +nZ, e

nM„1

with

(A10)
1/2 N

1
1/2 +2d,C' d, pn. Ip +( —1)Pe ~~ 'IE+ Icp-

(q)~d, ) +(pm)
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—1 if g+g' —p =0
Ic = 1 if g —g'+p =0 or g —g' —p =0

0 otherwise
(A11)

and

16 P, , ~+~ +p: odd
I~p = n-[( tl+'tl')' —p'][( tl

—'tl')' —p']
0 otherwise . (A12)

gg ~ qlld1

[(qiidi) +(tl+ tl' ~ ][ qiidi) +( l
—l') ~ ]

lid& /2

x —,'(cgp+ c„'r ) [(—1)" " cosh(quid, )
—1]—(

—1)" "d, CgPcosh +C„r sinh+ I + t

For phonon modes with amplitudes mainly in layer 2, on the other hand, we have

(q„d, )' —(q+ q')

[(q„d, )'+ (q+ q')'~']
(qi, d, )' —(g —g )

[(q„d, )'+ (q —q')'~'] C Pd sinh
qlld1 + t

S 1 [ —( —1)" "—1]

+Czrd, cosh [ —( —1)" "+1]qlld1 + t

and

—qd /2
II

+ IE+ (Csp+ C„Y)d (c,"p —c~ r )d—
2 2q

II

qll d1/2
e+II,2 +IE (Csp —C~3 ) .

(A13)

[( —1)"+"cosh(quid, )
—1]

4gg ~ qlld

[(quid, ) +(g+v]') vr ][(quid, ) +(g —g') m. ]

qll
d

x .
—,'(Csp+c;r

qll d qlld1+ ( —1)"+"d, CgP sinh +C~ r cosh

(qi, d, )' —(g+q')
[(q„d, )'+ (g+ q')'~']

(q, d, )' —(q —g')' '
[(q„d, )'+ (q —q')'~'] CgPd, cosh [( —1)" t —1]qll d1 +

+C'„rd, sinh [( —1)" "+ 1]+ I

with

and

qlld& /2

IE+ (Csp+C
2

1/2
qll

sinh(quid, )+quid,

' 1/2
2qll

(CsP —C~ Y)d
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e
+IP2 +IE
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