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Coulomb lifetime and electronic distribution function in a drifting two-dimensional electron gas
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The nonequilibrium distribution function of a two-dimensional electron gas (2DEG) drifting under a
high electric field is calculated within the Lei-Ting approach of high-field transport. The separation of
the center-of-mass motion from the relative motion of the electrons leads to anisotropic interactions with
impurities and phonons that disturb the relative electron gas from a thermodynamic equilibrium state.
The correcting amount to the equilibrium momentum distribution function turns out to be the product
of the impurity and phonon interactions scattering rate by the particle Coulomb lifetime. This last one is
expressed from the full spectral density functions so that its validity extends beyond the quasiparticle
theory frame. The importance of a self-consistent calculation is first illustrated by a study of the zero-
temperature many-body properties of the Coulomb gas: the plasmaron is shown to be an actual excita-
tion; the threshold for plasmon emission is softened, and undamped Fermi-level particles are found to
have a spectral weight nearly equal to unity. Then, within the drifting hot-electron gas, the Doppler
shift of the LO-phonon frequencies is shown to enhance the plasmon —LO-phonon coupling. Since the
electron —LO-phonon scattering rate is similar to the Coulomb damping rate that characterizes the
electron-electron interaction strength, the linear handling of the electron —LO-phonon interaction is
questionable for a 2DEG drifting under a high electric field.

I. INTRODUCTION

In artificially made semiconductor two-dimensional
heterostructures such as quantum wells, the modulation-
doping technique allows the vivid realization of quasi-
two-dimensional electron gases (2DEG). Since the semi-
conductor microstructures are made of polar III-V semi-
conductor materials, the two-dimensional electrons
strongly interact with the longitudinal-optical (LO) pho-
nons via the long-range Frohlich interaction. In recent
years, the hot 2DEG energy-loss rate has been investigat-
ed during steady-state high-field transport experi-
ments, ' and it has been shown to be an order of magni-
tude smaller than the theoretically predicted value; the
proposed explanation for this anomalously low electron
energy-loss rate is based on the assumption of a none-
quilibrium population of LO phonons, in excess of what
is to be expected at the lattice temperature, on screening
of the Frohlich interaction by the 2DEG and on reduced
dimensionality effects both for the electrons and the LO
phonons. '

However, the 2DEG experimental energy-loss rate is
deduced from an "electronic temperature" measured
from the photoluminescence emission of the drifting hot-
electron gas, and identified with a thermodynamic tem-
perature. Such an identification is not a trivial step, since
a thermodynamic temperature characterizes a 2DEG in a
thermodynamic equilibrium state. Because the electron
gas is interacting with impurities and phonons, it cannot
be in such a state. Moreover, under the conditions of
steady-state high-field transport, because the electron gas
is drifting with reference to the lattice, the effective LO-
phonon frequency is Doppler shifted from coLQ to
Q)LQ vd q, where Ud is the drift velocity and q the wave
vector of the phonon mode. The difference between

these two frequencies amounts to the electric-field energy
which is transferred to the LO-phonon bath without be-
ing degraded in heat within the electron gas. The
Doppler shift of the LO-phonon frequency enhances the
electron —LO-phonon coupling for LO modes having a
phase velocity along the 2DEG drift velocity, and strong-
ly reduces this coupling when the LO-phonon modes
have a phase velocity in the direction opposite to the drift
velocity. The Bose factor 8 [(RcoLo-Aud q)/k T, ]= l /I exp [(iricoLo-iiiud q) /k T, ]—l I entering the energy-
loss rate makes this electron-phonon coupling anisotropy
well m.arked. Here T, is the thermodynamic temperature
characterizing the internal energy of the electron gas.
This strong anisotropy is likely to result in an electronic
distribution function shifted from the equilibrium ther-
modynamic distribution function and exhibiting a cold
part in the direction of the drift velocity and a hot part in
the opposite direction. Because the experimentally deter-
mined temperature is more or less representative of the
hot part of the distribution function, photoluminescence
experiments might overestimate the thermodynamic tem-
perature, which is the important quantity as it determines
the energy exchange rate with the phonon bath. Hence
the effect on the luminescence line shape of the deviation
of the electronic distribution from its equilibrium shape
should be investigated in order to safely compare experi-
mental results and theory, even if, in the Lei-Ting ap-
proach, the transport properties themselves do not de-
pend on the nonequilibrium distribution function.

On the other hand, the Coulomb interaction between
the carriers tends to restore the equilibrium distribution
function at temperature T, within the electron gas. The
actual distribution function will result from the balance
between the electron —LO-phonon interaction charac-
teristic time and the lifetime of an electron within a
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2DEG limited by Coulomb electron-electron scattering.
The Coulomb lifetime of the electronic states close to the
Fermi circle and at temperatures which are low com-
pared to the Fermi energy is a classic problem in many-
body theory. Since the pioneering work of Landau, this
lifetime has been defined within the quasiparticle-theory
framework which deals with excitations, the behavior of
which is close to the free-particle one over a period long
enough compared to the local-density Auctuations
characteristic time. ' Since the hot-electron-gas distri-
bution function is concerned with all the electronic states
of a degenerate or nondegenerate electronic system, we

are led in a first step to define a Coulomb lifetime for all
the electronic states and beyond the quasiparticle picture.
The lifetime will be defined from the spectral density
functions, and reduces to its standard expression within
the quasiparticle theory framework.

The aim of our work is to calculate the distribution
function of a drifting 2DEG which is interacting with im-
purities, acoustic and LO phonons. The distribution
function is defined as the mean value of the occupation
number of a plane-wave state. The investigations report-
ed here are based on the force and energy balance
description of high-field transport by Lei-Ting, which
separates the center-of-mass variables describing the d.rift
motion of the electronic system from the electron relative
variables bearing the thermal motion of the electron gas.

The paper is organized as follows. In Sec. II, we devel-

op the formalism of the distribution function of a drifting
2DEG which is interacting with impurities and phonons.
The calculated distribution function is shifted from the
equilibrium thermodynamic one by a correcting amount
which is the product of the scattering rate on the impuri-
ties and on the phonons, by the electron Coulomb life-
time within a 2DEG at temperature T, . In Sec. III, the
Coulomb lifetime is calculated for two electronic densi-
ties at zero temperature in order to compare with the ex-
isting quasiparticle lifetime calculations. The spectral
density functions are derived self-consistently in the sense
that the broadening of the electronic states is taken into
account in the calculation of the electron self-energy.
The renormalization energy of the plane-wave states and
the density of states as function of energy illustrate these
many-body calculations. In Sec. IV, the distribution
function of a drifting 2DEG is calculated for a low- and a
high-density 2DEG. The results are then discussed to-
gether with the validity of the first-order handling of the
electron —LO-phonon interaction against the electron-
electron Coulomb interaction.

II. DISTRIBUTION FUNCTION

We consider a GaAs/Ga& „Al As quantum well of
width L, barrier height V, and a two-dimensional electron
gas of density X. The growth axis is in the z direction.
The quantum-well width is small enough to make only
the first quantum level relevant. In the following, a uni-
form background static dielectric constant v is assumed
and the in-plane electronic properties are described
through an eftective mass m. The electron gas is drifting
with a velocity Ud under a constant uniform electric field

E applied in the plane of the quantum well. Electrons are
scattered by randomly located impurities (H, ; ) and are
coupled with phonons (E, „).

Following Lei and Ting, the electronic degrees of free-
dom are separated into a center-of-mass part (H, ) and

a relative 2DEG part (H, ) by introducing P=g; »p, ,
R =(1/N)g;

& zr;, r =r; —R, p =p; P/—N, with

[r,p'&]=ifi5 &(5,
—l/N) and [R,P&]=i%5

Here r; and p; are the position and the momentum of
the ith electron, whereas r and p are its relative coordi-
nate variables. P and R are the center-of-mass momen-
tum and position operators. The relative coordinate vari-
ables can be considered as canonical ones provided that
only the lowest-order terms in the scattering interactions
(impurities and phonons) are retained in the description
of the relative electron-gas state and that the fluctuations
of the center-of-mass position are ignored: because of its
enormous mass Nm, the center-of-mass motion is almost
a classical one. "

The total Hamiltonian of the system can thus be writ-
ten as

H =H& m +He +Hph +He l~p+He ph+Hph p

where

H, =P /(2Nm) NeER-
He =Hkin +Hcou

k, s

+ —,
' g F(q)e /(2Aeorc ) g ck+

q&0

XCk q sCk sCks

Hph =Hph ac +Hph op

H, h ..= g &~g, d bg, ~bg, ~+-,' »
Q, A,

H,h.,t= X &~Lo(b,', ~b, ,~+ —,'»
q, A,

H, ;
= g G(z;, q)e /(2AEycq)e'~' ' (q),

H, h= QM, , (q, A, )I(A, , q)(b z+bt z)
q, A.

Xe'q p(q)

+ g M„(Q,A, )I(q, )
q, qz, A,

X(bg, +b' g, )e'«&(q) .

Hph ph describes the decay of the LO modes in
acoustic phonons through anharmonic processes, and
other symbols have their usual meaning.
V~=F(q)e /(2Aeolcq) is the Coulomb potential, with A

the area of the sample and F(q) the two-dimensional
Coulomb form factor.

Acoustic phonons of wave vector Q =(q, q, ) are as-
sumed to be the GaAs acoustic modes because the GaAs
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and Ga& Al As bulk material velocities of sound are
quite similar. The electron —acoustic-phonon matrix ele-
ments are reported in Ref. 4.

For the electron —LO-phonon interaction, we use the
heterostructure phonon model of Ref. 12 and keep only
the two higher even modes, since they give more than
95% of the total electron —LO-phonon scattering rate for
the quantum well width which will be considered.

Ignoring the fluctuations of the center-of-mass coordi-
nates, we write R = U&t. The relative electron gas and the
phonon bath are fully described by H-H, , indepen-
dently of the center-of-mass Hamiltonian and of the elec-
tric field. To determine the steady state of the relative
electron gas and of the phonon bath through the Liou-
ville equation on the density matrix =,

i k d:-Idt = [H, +H q+H~+H„q q, =]

with HJ H p+H pp

we need to start with an initial state =0 as close as possi-
ble to the final steady state. If we imagine that the elec-
tric field and H~ are switched off, the center-of-mass and
the relative electron system are decoupled from each oth-
er. Then, the center-of-mass will move freely with the
drift velocity of the final steady state, whereas the relative
electron system will approach a thermal equilibrium at
the temperature T, because of the Coulomb interactions.
As the sample is in contact with a heat reservoir at tern-
perature T (helium bath), and assuming a strong coupling
between the phonon modes (H~b ~z ), acoustic and optical
phonons remain in a quasiequilibrium state at tempera-
ture T ("lattice temperature"). Therefore, the initial den-
sity matrix is chosen to be

:-0={exp[ P—, (H, p—N)]IZ, ]

X [II&„exp( P—H&„)/Zz„]
X [n,.p~, exp( —PH,.p~ q )/Z, .p~, ],

with P, =1/kT„P=1/kT, and N=gq, cq, cq, p.is the
Fermi level and k is the Boltzmann constant.

It should be noted that, as one of the aims of this paper
is to study the possible contribution of the nonequilibri-
um distribution function to the experimentally deter-
mined temperatures, we do not allow any "hot-LO-
phonon" effect.

The electric field and the interactions HJ are then ap-
plied adiabatically between t =0 and t = + ~ while keep-
ing the center of mass at the drift velocity. The density
matrix is then derived from the Liouville equation and al-
lows the derivation of any operator mean value. Within
the standard linear theory, the transport momentum and
energy balance equations are established from which T,
and v& are derived self-consistently for any given electric
field.

The momentum distribution function for the relative
electron gas is defined as

fq = (c&c& ) =Tr(:c&c&-) =Tr(:-Dc&c& )+5nz
= fl g +6)i g

n& is the momentum distribution function of a
Coulomb gas in thermodynamic equilibrium at T, . Con-
trary to the Fermi-Dirac function, n& takes into account
the Coulomb interaction between carriers.

The first-order correction in the scattering potential HJ
is obviously zero, so that we calculate the second-order
correction in HJ. We obtain an expression of the same
order in HJ as the high-field transport balance equations:

5n& = g g n(z, )[G(q, z;)e (/2 yscq)] P(k, q, v&q)
l

+ g ~ M(q, A)I(A, , )q~ {A [A, , k, q, v„q+(a —1)coro]+A [A, , k, q, v~q —(a —l)ceto]]

+ g ~M„(q, q„j )I(q, ) {A [j,k, q„q, v&q+(a —1)co &]+A [J,k, q„q, v&q
—(a —1)co &]]

J, gZ

The full expressions of P, A, A are given in the Appendix. Expressing P( kq, co) in the basis of the eigenstates of H„
we obtain

P(k, q, co)=g (1/Z, ){exp[—P, (X& pN&)] —exp[ —P—,(X„pN„)])—
I, n

X {P[1/( ( X—X„+A'cv)] im5(X( ——X„+fico)]

g (llnqlm )(m ~p~~n )(n ~p ~1 ) {P[1/(X&—X )] irr5(X& —X )]—

—(m(nq (n ) &n )p ~ )l )(l(p~ (m ) {P[1/(X —X„)] &~5(X —X„)]—

where P stands for principal part and X„ is the eigenenergy of the many-body state
~
n ).
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In the preceding expression of P(k, q, co), the imaginary part vanishes because ni, is real. Writing (l~nz~m ) as

( lci, ~ci, m ), we get the scalar product of a state with Ni —1 carriers against a state with N —1 carriers. This product
vanishes unless N is equal to Ni Strictly speaking, ~ci, m ) and ~ci, l ) are not eigenstates of the Ni —1 electrons
Coulomb gas, because the hole excitation created in the plane state k evolves under the Coulomb interaction. However,
this hole-state energy broadening is weak compared to the many-body-state energy mean value, so that ( lci, ~ci, m ) will

vanish unless ~ci, m ) and
~ ci, I ) are nearly identical and, consequently, so must be the Ni electrons states

~
m ) and

~
I ).

Since (1
~ ni, ~

m ) is a strongly peaked function around
~
m ) =

~
1 ), and because ( m ~pq ~

n ) is nearly constant within this
field, the principal-part contribution is disregarded against the 5-function contribution.

From the above argument, and because of the operator n&, the energy spreading between X, and X can be restricted
to its contribution due to the plane-wave state k within the many-body states

~
m ) and

~
1 ) . We assume that in the

many-body state ~l ) the single-particle state k energy is broadened according to a spectral function A'(k, E'). The
spectral function A (k, E ) measures the probability for a particle with momentum k to be at the energy E . Therefore,

g (limni, ~m )(m~p~jn )(n~p ~~1)5(Xi—X )=(limni, ~l)((l~p~~n ) ( fdE A (kE )f dE'A'(kE')5(E —E') .

Because in (1) each eigenstate ~1) is weighted by the equilibrium density-matrix element (1/Z, )exp[ —P, (Xi pNi )]-,
the spectral function A is assumed to be the thermodynamic equilibrium-state spectral function at temperature T, .
Since ~m ) = ~l ), a further approximation is made to proceed: A = A'. Then the final result is

y&lln„lm&(mlpqln)&nip qual&~5(xi X ) &llni, ll&((llpqln&I nfdE A (k, E)
m

Now the function P(k, q, co) is written
T

P(k, q, co)= nfdE A. (k, E) g [(I/Z, )exp[ —P, (Xi —pNi)]]
l, n

X [1—exp[ —P, (X„—Xi)]][ —m5(X„—Xi —A'co)]] (1~p~ ~n ) (

X(& 1 ~n„~l ) —(n ~n„~n &)

Because of the product ( 1 ~p ~n ), N„must be equal to Ni. To calculate the preceding expression, we introduce the
Matasubara three-particle Green function:

T(k, q, co) =lim(ico =co+i0) ( I/A') o
—dr exp(ico, r)(p~(r)ni, (P)p ~ )o,

Pe

with 0 & g'& r and co„=2rrvl(fi13, ). Provided that once again (n ~ni, ~m ) =5„(n~ni, ~n ), it is straightforward to show
that

P(k, q, co)= — vr fdE A (k, E) [ImT(k, q, co)+ImT(k, —q, —co)] .

Performing the same kind of calculation under the same hypothesis, we obtain

A (i(, k, q, co)= —
, mfdE A (k, E) .

[B(Picots, IkT) B[(akcoi ~
f—ico)jkT, ]]—

X [ImT(k, q, co —
acorn )+ImT(k, —q, —co+acorn„)],

A (k, k, q, co)= — m f dE A (k,E) [8(Acoi /kT) 8[( Aa' gco+I—ico)jkT, )]

X [ImT(k, q, co+acorn )+ImT(k, —q, —co —
acorn ~ )],

and the expression of the lowest-order correction to the equilibrium distribution function can be written

5ni, = ref dE A (k, E) 2g g ~G(q, z, )e l(2soic~)~ [ —ImT(k, q, uzq)]

—g ~M, , (q, i, )I(A, ,q) ~ [8 (fiscoLojkT, ) 8(AcoLojkT))—

X [ —ImT(k, q, —sco„o)—IrnT(k, —q, sco„o)]
—g ~M„(j,g)I(q, )~ [8(fisco, &IkT, ) —8(%co, &IkT)]

Z, J

X[—ImT(k, q,
—sco &)—ImT(k, q, scoi &)]— (2)
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where see stands for the shifted frequencies:

SCOz Q=COLQ Vdp p SCOj g COj g Udp

Therefore, the first correction to the distribution func-
tion is given by the scattering rate with the impurities
and phonon interactions taking place during the
Coulomb electron lifetime within an electron gas in a
thermodynamic equilibrium state, ~&c,„,defined as

r„,.„=X~fdE A'(k, E) .

In the quasiparticle picture, the spectral function is ap-
proximated by a Lorentzian function:

A (k, E)=(l/n)I q/. [(E—gq) +I j, ]

I q
= —ImX(k, gq) .

X(k,E) is the self-energy function of a 2DECx in a ther-
modynamic equilibrium state at temperature T, . Within
this approximation, the first factor entering in 5m& is

r„,„=kmfdE .A (k, E)=A'/(2I „) .

Thus we get back to the standard electron-electron-
scattering limited lifetime of the quasiparticle k, which is
usually calculated from the self-energy evaluated to the
lowest order in the screened Coulomb interaction. ' ' '

Using the full expression of the spectral density func-
tions to calculate ~zc,„allows us to go beyond the quasi-
particle theory framework, which is restricted to excita-
tions close to the Fermi energy and to temperatures low
as compared to the Fermi energy. Electron-electron
Coulomb interaction has been traditionally studied in the
context of metals where the restrictive conditions of the
quasiparticle picture are well fulfilled. However, as far as
the semiconductor electron gases are concerned, the exci-
tation energies relevant, for example, to the
electron —LO-phonon interaction are quite similar to or
greater than the Fermi energy, and high temperatures are
involved in most of the situations where this interaction
is of some importance.

The three-particle Green function is calculated within
the random-phase approximation (RPA):

k k

T =T +IIV T +T V II+IIV T V II=T /(e )

with II = II,/( I —V, II,).
Here, II is the RPA polarizability, IIO and To are, re-

spectively, the polarizability and the three-particle Green
function for the noninteracting electron gas. The mean-
ing of the Green function T is as follows: because of the
operator nz, T(k, q, co) picks up from the RPA polariza-
bility function II(q, co) the terms involving the state k;
then ImT( k, q, co) amounts to the absorption processes
performed by the electron gas where the state k is in-
volved either as a particle or as a hole.

III. PARTICLE LIFETIME
AT ZERO TEMPERATURE

In order to compare the Coulomb lifetime derived in
the preceding paragraph with the quasiparticle lifetime,
some spectral properties of the Coulomb 2DEG have
been calculated at zero temperature where the quasiparti-
cle theory is well- studied. The spectral functions
A (k, E), and the spectral properties which can be derived
from them, are calculated from the self-energy functions
X(k, E) through

A (k, E)= —( I /m )ImX(k, E)/t [E —ez —ReX(k, E)]

+ImX(k, E) [ .

Here, A (k, E) is normalized to one and e& is the free-
particle energy fi k /2m. The self-energy function
X(k,z) reads as a Matsubara function calculated in the
complex energy plane. Its evaluation on the real axis
from the upper-half complex plane (z =E+i5,5~0t)
leads to the retarded self-energy function X(k,E), from
which the spectral function is derived as it stands in the
above expression.

If the vertex corrections are ignored, the RPA self-
energy is given by'

X(k, A'co )= kT, g g V—„,(q, co„)G(k+q, co +co„),

with A'co„=(2v+1)m/P, +p, Ace„=2gm/P„v and g are
integers.

„(q co&) V& /Kttp~(q, co„) is the RPA-screened
Coulomb interaction. G(k +q, co,+co„) is the one-carrier
Green function.

To the lowest order in the screened Coulomb interac-
tion, 6' is replaced by the unperturbed free-particle Green
function. However, as shown by 81omberg and co-
workers, ' this is not a reliable method, because the ab-
sence of self-consistency in the evaluation of the self-
energy may introduce some spurious poles in the spectral
function. To bypass this difticulty, the one-particle
Green function 6' is carried out in its spectral representa-
tion. Then the self-energy is derived from Eq. (4) above
(z/fi is a complex frequency):

G(k, z/fi)=(l/m. )fdE A (k, E)/(z E), —
T

X(k )= —g V fdE A (k +q, E)f (E)—(I/m) f dE g V f dE'A (k +q, E')Im[l/ettp~(q, E'/fi E/&)]—
q

X [f(E'/kT, )+B[(E' E)/kT, ]] [z E], — —
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where f is the Fermi-Dirac distribution function and the inverse dielectric function has been expressed with the
Kramers-Kronig relation.

From Eq. (5), we can conclude that the RPA self-energy function has a spectral representation except for the first
term on the right-hand side, which is the unscreened exchange contribution. Therefore, we need only to calculate the
imaginary part of the self-energy and the unscreened exchange contribution:

X(k,z)= —g V~ fdE A (k+q, E)f (E) (I/—ir) fdE ImX(k, E)/[z E]—. (6)
q

Although the self-consistent numerical solution of (3) and (5) seems untractable, it is possible to enforce a self-
consistency on the electron-electron-scattering limited lifetimes by replacing the spectral functions by Lorentzian func-
tions in Eq. (5) only:

A (k +q, E)=L (k +q, E)=( I /ir)I k+~ /[(E gk+—~ ) +I ~+~] .

The complex quasiparticle energy gk+i I i, is determined by solving the Dyson's equation

gk+iI k Ek+~(k gk iFk } ~ (7)

Equation (7) is solved only on its imaginary part and gives the self-consistent equation for the quasiparticle broaden-
ings I k.

I k
= —

( I/m. }fdE g V fdE'L (k +q, E')Im[1/sRp~(q, E'/fi E/fi)]-
q

X {f(E'/kT, )+B [(E' E)!kT,—] J I „[(g„E)+ I „—] .

The determination of the real part of the self-energy shift b, k =g& —ek entering in the Lorentzian functions and, less
obviously, in the Fermi function and in the dielectric function can be avoided within the rigid shift approximation:

6k =6k+q =6 and p=po+5 .

po is the free-electron-gas Fermi level. The consistency of the rigid shift approximation will be tested against the nu-
merical results. Once the broadenings have been determined for each wave vector through the functional equation (8),
the imaginary part of the self-energy is calculated on the frequency real axis from (5):

ImX(k, E+6,)= g V fdE'L (k +q, E'+b, )Im(1/ERp&)(q, E'/fi E/fi)I f [(E'+—b, )/kT, ]+B[(E' E)/kT, ]]—, (9)

b,,„,„=—g V f dE'L (k+q, E'+b )f (E'+b, ) .

(10)

Before discussing the results, we would like to mention
that the numerical singularity of the inverse dielectric
function 1/s(q, m) associated with the plasmon resonance
is handled in all the results reported in this paper through
the undamped single-pole-plasm on approximation for
wave vectors lower than a threshold wave vector Qpl
defined by

Ek + gp( Ep Ado' I with Ek —pp+ 5kTe

co&~& is the plasmon frequency and k is parallel to Qpl.
Above this threshold, the full RPA dielectric function is
used. The calculated spectral functions verify within 1%
the sum rule

and the real part is derived from (6):

ReX( ,kE+b, )

=b.,„,h (1/ir) fdE'ImX(k,—E'+b, )P(1/[E E']), —

fdE A (k, E}=1.

We now discuss the different shapes of A (k, E) at the
bottom of the band, at the Fermi level, and above the
Fermi level for two carrier densities. The self-energy and
the spectral density functions are reported in Figs. 1 and

At the band bottom and for a low carrier density
(n =10"/cm, po=3. 41 meV, k~=0. 8X10 cm '), the
spectral function exhibits a second peak below the main
quasiparticle resonance, with an oscillator strength which
is significant as compared to the quasiparticle excitation
one. This second excitation, called a plasmaron, is inter-
preted as a hole surrounded by a cloud of real
plasmons. '

The self-energy imaginary part always vanishes at the
Fermi energy [ImX(k, p)=0] because of the absence of
any finite-energy scattering opportunity for a Fermi ener-
gy excitation. Consequently, the Fermi-level quasiparti-
cles are undamped. Contrary to the lowest-order self-
energy spectral function, ' ' ' we find that the weight of
the undamped component of the spectral function
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self-consistency of the method used to calculate the spec-
tral functions. Within a three-dimensional electron gas,
the plasmaron has been shown to be a spurious structure
occurring when the spectral functions are derived from
the self-energy evaluated to the first order of the screened
Coulomb interaction and which disappears when the car-
rier finite lifetime is taken into account. ' On the con-
trary, the plasmaron is a real excitation of the 2DEG
where the vanishing long-wavelength plasmon frequency
allows the polarization of the electron gas by a hole
through a charge-density wave. The relevant plasmon
wavelength is about 1,=70 nm for n = 10"/cm and
A, =55 nm for n =6 X 10"/cm (@0=20.4 meV,
kF = l. 95 X 10 cm '). Since Blomberg and Bergersen
have shown that, in a three-dimensional electron gas, the
"plasmaronlike" excitations disappear when a consistent
extraction of the real energy shifts is performed, the rigid
shift approximation must be tested. In Fig. 3, the energy
shift function 5k is reported:

b,k=ReX(k, Ek+b, ) .

affect the plasmaron excitation which is the lowest-
energy one. The Fermi level, which has been shifted rig-
idly here, should be determined consistently with the
spectral properties of the electron gas. For that purpose,
the density of states as a function of energy has been cal-
culated:

g(E)= g A (k, E) .

In Fig. 4, the density of states has been normalized to
the noninteracting 2DECi one (go= Am/~A ). A long
tail develops in the negative-energy range where the plas-
maron peak is blurred. For n =10"/cm, the renormal-
ized Fermi level is located 2.8 meV above the band bot-
tom E =0 instead of 3.41 meV in the rigid shift approxi-
mation, whereas for the high-density case
(n =6X l0"/cm ) the renormalized Fermi level is about
18'instead of 20.44 meV. The divergence between the re-
normalized Fermi levels and the rigidly shifted Fermi en-
ergies is weak compared to the Fermi energy itself. It is
of the same order of magnitude as the drift of the self-

For n, = 10"/cm, the quasiparticle energy shift
remains constant within 0.5 meV around 6.25 meV, at
least for the states lying at the band bottom, with which
the k =0 quasiparticle scatters predominantly because of
the 1/q Coulomb interaction behavior. The intersections
of the ReX(k, E) function with the straight line E Ek indi--
cate the solutions of the Dyson's equation, namely the
possible excitations with a wave vector k within the elec-
tron gas. From Fig. 1, it seems likely that a vertical shift
of about 0.5 meV on the curve ReX will not strongly
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FIG. 3. The self energy shift as a function of ck. (a)
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FIG. 4. (a) Density of states normalized to Am/m6 as a
function of energy. The step function of the free-particle densi-
ty of states is indicated by a thin solid line and has been shifted
down rigidly by ReX(0,0+6). The free-electron-gas Fermi en-
ergy p0 is given by the vertical dotted line, whereas the renor-
malized Fermi level p is indicated by a vertical dashed line. The
electron density is 10"/crn . (b) The same as (a), but the elec-
tron density is 6 X 10"/cm .
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energy shift with the wave vector, but in the opposite
direction so that a self-consistent handling of the Fermi
level would not change the situation very much. To sum
up, we conclude that, despite the rigid shift approxima-
tion, the self-consistency of the present 2DEG spectral
properties approach is well fulfilled.

Now we turn to the particle lifetime (Figs. 5 and 6):
for times longer than this characteristic time, the initial
excitation at the plane-wave state k is diluted within the
numerous electron-gas excitations. Two kinds of process-
es may cause the decay of the particle excitation: the
direct excitations of electron-hole pairs (Auger processes)
and the inelastic processes involving the excitation of
plasma modes. In the lowest order self-energy ap-
proach, ' ' ' the former is the dominant mechanism for
small wave-vector quasiparticles, while the latter appears
above a threshold wave vector giving rise to a sharp in-
crease of the quasiparticle damping rate. Such a sharp
threshold does not emerge when the carrier finite lifetime
is properly taken into account in the Coulomb interac-
tion: the carrier lifetime is limited by the excitations of
plasma modes but the strength of such plasmon emission
is in turn limited by this finite carrier lifetime, leading to
some kind of "soft threshold" for plasmon emission.

Near the Fermi energy, the damping rate behaves as
(k —kF) log, o~k —k~~, a result which was first estab-
lished by Chaplik. '

In the quasiparticle picture, the damping rate is ex-
pressed only from ImX(k, gk). Even if the carrier finite
lifetime is self-consistently included in the calculation of
the self-energy X(k, gk ), some of the information enclosed
in the spectral density function is lost within such an ap-
proach. Consequently, the particle lifetime is underes-
timated as compared to the result derived from the full
density spectral function (see the full line and the dashed
line in Figs. 5 and 6, respectively). This last one
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preserves the backscattering from any quasiparticle state
whose energy is different from gk, toward the initial one
at gk, before all the initial information is lost. This be-
havior is well illustrated by the plasmaron contribution to
the lifetime.

IV. RESULTS AND DISCUSSION

We consider now a 2DEG drifting under a high in-
plane electric field. The corrections to the momentum
distribution function due to the impurity and LO-mode
interactions are first discussed. Then the theoretical pho-
toluminescence charts are calculated. Finally, the
strength of the electron —LO-phonon couplings is com-
pared to the Coulomb interaction efficiency.

A. High-Aeld transport distribution function

The equilibrium momentum distribution function is
given by

nk= J dE 3 (k, E)/[i+exp(E p)lkT, ] . —

I r I I ~ I, I

0 10 20 30 40 50 60 70 80 90 100
k (mev )

FIG. 6. The same as Fig. 5, but the electron density is
6X 10"/cm .
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FIG. 5. The inverse particle lifetimes 1/~„as a function of
ck calculated from the full spectral density functions {full line),
derived from the self-consistent quasiparticle damping rate
I/r„=2I I, =2 ImX(k, gk ) (dashed line) or from the zero-order
quasiparticle damping rate 1/~„=2I I, (dotted line). Chaplik's
theoretical behavior (k —kF ) log, o!k —kF! near the Fermi ener-
gy is also plotted (dashed-dotted line) in the inset, where the
curves are reported on a logarithmic scale. The electron density
is 10"/cm .

The nonequilibrium momentum distribution function
is shifted from n„by the amount 5nk Some pr. operties on
5nk have to be verified. First, we point out that the sum
rule

g 5n„=0,
k

which must be fulfilled for each scattering mechanism, is
preserved by the approximations that we use in the
derivation of the final expression of 5nk [Eq. (l)]. This is
shown in Fig. 7(a). The LO-phonon correction removes
some distribution-function weight from the drift velocity
direction to the opposite direction because of the aniso-
tropic emission Bose factor B [(iriniLo —iiiudq)lkT, ]. The
impurity correction picks up some weight from the band
bottom upwards, since the interaction with the randomly
distributed impurities heats the drifting electron gas.

The second sum rule is a consequence of the self-
consistent determination of the drift velocity and of the
hot-electron-gas temperature through the transport bal-
ance equations. It requires that the relative electronic
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gas does not bear any current when it is disturbed from
its thermodynamic equilibrium state by the impurity and
phonon anisotropic interactions, provided that these are
handled linearly and that the center of mass behaves as a
classical particle:

gfik5nk =0 .

with

To(k, q, ~)= [fk+q(1 fk —)]/[Ek+ —ek+Aco+i5]

[fk(1—fk —q) l/[ek ek —q+~~+&5]

ImT(k, q, co) =Im[TO(k q co)/ERpA(q, co)]=Td;+ T h,
Td;(k, q, ~)=ImTo(k, q, ~)Re[1/ERp„(q, ~)],

T,h(k, q, co) =Im[ 1/ERp&(q, co) ]ReTo( k, q, co ),

0.02 I ' l I ' I ' I

0.01 - ('&)
(I

&L&' ~

0.00

-0.01

-0.02
(k, vg) =&

-0.03
-100 -80 -60 -40 -20 0 20 40 60 80 100

c~ (mcV)

This sum rule is numerically verified within a few percent
of the drift velocity.

The correcting amount 5nI, splits into two contribu-
tions, which are identified by the following development
of the T-function imaginary part:

+fkIIo(q ~)

The contribution of the last term on the right-hand
side in the expression giving To vanishes because
Im[IIo/eRp/ ](q co) is odd with respect to u and even
with respect to q. Td; amounts to the direct transitions
from or toward the state k, which are induced by the im-
purity and phonon interactions. On the contrary, T,h

takes into account the shake-up processes where the state
k occupation number is changed through the Coulomb
interaction, with carriers scattering on the impurity or
phonon potentials. The shake-up processes go against
the overall change in the distribution function induced by
the direct transitions, making 5nj, positive for large-k
value in the direction of the drift velocity (Fig. 8). The
Coulomb interaction hence reveals itself in three aspects
which all tend to reduce the impurity and phonon in-
teraction effects.

(i) Screening of the potentials in its standard meaning.
It reduces their strength by the dielectric function
module.

(ii) Shake-up processes by which the oscillator strength
of a transition between two one-particle states is spread
over all the states of the electron gas, shaking all the
Coulomb electron-gas carriers.
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FIG. 7. (a) The correcting amount of the momentum distri-
bution function against c& for the electron —LO-phonon interac-
tion (full line) and for the electron-impurity interaction (dashed
line). The wave vectors k are either in the drift velocity direc-
tion or in the opposite direction. The electron density is
10"/cm . The thermodynamic temperature and the drift veloci-
ty derived from the high-field-transport balance equations are
T, =116.5 K and vd =2.04X10 crn/s for an in-plane electric
field of E =8SO V/cm. The lattice temperature is 2 K and the
zero-field mobility is 120000 cm /V s. (b) The relative correct-
ing amount 5n& /nI, of the momentum distribution function
against cl, .
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FIG. 8. The momentum distribution function as a function of
c, I, for wave vectors in the drift velocity direction and the oppo-
site direction. The parameters are identical to the Fig. 7 ones.
Full line: Interacting electron gas with the electron-phonon and
electron-impurity interactions. Dashed line: Coulomb electron
gas. Dashed-dotted line: noninteracting electron gas (Fermi-
Dirac function).
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(iii) Reduction of the time range of the impurity and
phonon interactions to the carrier Coulomb lifetime.

In Fig. 8, the weak difference between the equilibrium
momentum distribution function and the nonequilibrium
one when they are plotted on a logarithmic scale should
not hide that the relative correction is quite significant
[Fig. 7(b)].

B. Photoluminescence line shape

From Fig. 8, we can conclude that the contribution of
the impurity and phonon interactions to the distribution
function is hardly significant as long as effective tempera-
tures are concerned, so that the line shape can be calcu-
lated from'

I(Jfco)= g QlMcvl fdE, [A'(k„E, )f (E, /kT, )]f dEk[A "(kk,Ek)f (Ek/kT, )]

X5(k, —kk )5( /co EG —E, —Ek ) . —

Under the experimental conditions, very few holes are ex-
cited ((10/cm ). Therefore, holes are considered as
free particles which are in contact with the 2DEG heat
reservoir because of the electron-hole Coulomb interac-
tion:

I (hco) cc @(irico)

X ~ &~~ EG Ek )fFD(~~ EG ek )
k

Xexp( —Ek/kT, ) .

The broadening due to the spectral functions has little
efFect on the photoluminescence line shape (Fig. 9) except
near the band gap, ' so that the identification of the ex-
perimental line shape with the Fermi-Dirac (FD) func-
tion is a reliable way to extract the 2DEG thermodynam-
ic temperatures.

1 00

C. Validity of a linear treatment
of the electron-LO-phonon coupling

The Coulomb lifetime measures the Coulomb interac-
tion strength. It ranges between 50 and 150 fs for the
considered carrier densities (Fig. 10) at a temperature of
about 100 K. This temperature and these densities are
representative of the sample parameters involved in the
reported experiments on the 2DEG energy-loss rate. '

The reliability of the electron —LO-phonon interaction
handling based on the linear-response theory requires
that the Coulomb lifetime ~kc „ is small with respect to
the time ~ & characterizing the electron —LO-phonon in-ph
teraction strength. This last one is derived from the ener-
gy exchange rate between the electron gas and the pho-
non bath. It is given by

1/&ph = X 1/&ph, q
q

X ( 1 /A )I~ HQ( q coLQ vdq ) /
l Epp~ I

'

For a 100-A-wide quantum well, mph is about 300 fs.
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FIG. 9. Theoretical photoluminescence charts against energy
for the Coulomb gas in a thermodynamic equilibrium state at
T, =161.2 K (full line) and at T, =76.5 K (dashed line). The
electron density is 6X10"/cm . The corresponding Fermi-
Dirac distribution functions are also plotted (dashed-dotted
lines) ~
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FIG. 11. (a) The electron —LO-phonon scattering rate density
in reciprocal space against the LO-mode wave vector. The elec-
tron density is n =6 X 10"/cm; the thermodynamic tempera-
ture is T, =76.5 K, while the consistent drift velocity is
ud =1.36X 10 cm/s for an electric field of E =200 V/cm. The
well width is L =10 nm and the zero-field mobility is 250000
cm /Vs. The arrow points to the resonant coupling wave vec-
tor q, =0.88X10 cm '. (b) The energy-loss function against
energy for the resonant wave vector q, of the electron —LO-
phonon coupling. The peak energy-loss rate points to 28.5 meV,
which is equal to h (co7 Q Ud q, ).

The dielectric function c,RpA does not increase this time
by more than 15%. This calculated scattering time is
more than three times larger than the often quoted
scattering time (80 fs) (Ref. 20) for the electron —LO-
phono n interaction in a GaAs quantum well. This
difference arises from the two-dimensional character of
the LO-phonon modes in a quantum well, which is taken
into account here. ' Since mph is of the same order of
magnitude as the Coulomb lifetime, it casts some doubt
on the reliability of a linear handling of the
electron —LO-phonon coupling. As ~ h is an averaged
value, it is worth looking at its dependence on the pho-
non wave vector q [Fig. 11(a)]. A well-marked resonance
emerges at a wave vector q, . To characterize it,
the energy-loss function EL(q„%co ) = ImIIo( q„co ) /
~ERp~(q„co)~ is also reported [Fig. 11(b)]. Figure 11
brings out that the drifting electron gas is strongly cou-
pled to the phonon bath through the plasmon excitations,
since the plasmon resonance of the energy-loss function is
strongly peaked at the frequency ~„o—vdq, . The
relevant wave vector and frequency range is given by the
intersection between the plasmon dispersion curve and

the Doppler-shifted LO-phonon dispersion curve.
Within the electron gas, the Coulomb interaction tends

to share the energy between all the carriers. In the same
way, when the Coulomb interaction and the
electron —LO-phonon coupling are of the same order of
magnitude, the steady-state energy stored in the semicon-
ductor submitted to the electric field is shared between
the electron gas and some LO-phonon modes, making the
perturbative approach to the electron —LO-phonon in-
teraction dubious.

V. CONCLUSION

The Coulomb lifetime of a particle within an interact-
ing electron gas has been self-consistently expressed from
the full spectral density functions and beyond the quasi-
particle theory framework. This formulation takes into
account all the actual particle excitations.

At zero temperature, the vanishing long-wavelength
plasmon frequency allows the emergence of the plasma-
ron excitations below the band bottom in spite of the
finite lifetime of the particle states; this result is at vari-
ance with the three-dimensional case. The finite
Coulomb lifetime strongly blurs the plasmon-emission
threshold in the particle damping rate. Finally, the
Fermi-level particle cannot polarize the electron gas at a
finite frequency because its energy excess is zero. Conse-
quently, the Fermi-level particle is an undamped one
without any significant satellite wings and the 2DEG oc-
cupied phase space remains unchanged when the
Coulomb interaction is turned on.

Contrary to the displaced Fermi-Dirac (or Maxwellian)
distribution function, which is a Galilean-transformed
equilibrium distribution function, in the Lei-Ting ap-
proach of high-field transport the relative electron-gas
state is displaced from any thermodynamic equilibrium
state. Formally the correction to the momentum distri-
bution function is shown to be the product of the various
scattering rates by the Coulomb lifetime. The momen-
tum distribution function of a 2DEG submitted to the
impurity and phonon potentials is shifted anisotropically
from the equilibrium one. The correcting amount is
weak as far as the 2DEG temperature determination
from photoluminescence experiments is concerned.

Within a few 10"/cm carrier density 2DEG, and at a
temperature between 100 and 200 K, the Coulomb life-
time is of the order of 100 fs. Consequently, the Coulomb
scattering rate is comparable to the electron —LO-phonon
coupling strength. Moreover for a drifting electronic gas,
the Doppler shift of the LO-phonon frequency
strengthens the electron-plasmon coupling. It comes out
that a linear handling of the electron —LO-phonon in-
teraction as compared to the Coulomb interaction is
questionable.

APPENDIX

We give below the full expression of the three-particle
functions involved in the calculation of the momentum
distribution function:
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P(k, q, co)= lim(l/iP) f dt e " f dre' ' "([[nk(t+r),pq(7')], p &])o
Ot 0 0

(A, , k, q, co)= lim (1/ip)z f dt e " f dr e' ' "([[nk(t+~),
p~(r)bet�

(r)],bq qp e])0
ot 0 0

At(A, , k, q, co)= lim (1/ik) f dt e " f dwe' ' "([[nk(t+r), pz(r)bz ~(r)],bz ~ e])o
of 0 0

a d the similar expressions for A (j,k, q„q, co) and A (j,k, q„q, co). Here X(t)=e ' ' "Xe' ' " with
&o=H, +a(H~„„+H~„,~, ). a= T, /T and ( )o means averaging over =o.

In deriving these expressions, one should pay attention to the fact that nk =ckck does not commute ~ith H, because
of the Coulomb interaction.
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