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Optical properties of GaAs/A1As superlattices with randomly distributed layer thicknesses
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Electronic states and optical properties of GaAsl'A1As superlattices with randomly distributed layer
thicknesses are studied within the framework of the effective-mass approximation in the Wannier-Bloch
mixing representation. By use of the improved Dean method, the energy spectra and envelope functions
of the carriers in conduction and valence minibands are calculated for several samples with various de-

grees of randomness. From these results the optical-absorption coeKcients of the transitions associated
with several valence and conduction minibands are calculated as functions of the photon energy. It is
found that the introduction of the randomness in the layer thicknesses gives rise to the reduction of the
energy gaps. The calculated absorption edges shift to the infrared side and the intensities of several
peaks in the absorption spectrum decrease.

I. INTRODUCTION

Semiconductor superlattices and quantum wells have
been studied extensively for several years. The electronic
states and optical properties (including photolumines-
cence, photoabsorption, and light scattering) of these ma-
terials, especially of GaAs-Ga„A1, As multilayer struc-
tures, have been investigated experimentally and theoreti-
cally by many groups. ' ' The theoretical models used
for calculating the properties of the electronic states in
such superlattices, in general, fall into two categories:
those based on the tight-binding method, such as the
empirical tight-binding treatment of Schulman and
Chang, and those based on the k.p perturbation theory,
such as the efFective-mass approximation incorporating
k p theory. In recent literature it seems that the latter
can sufBciently explain some of the optical properties of
several semiconductor superlattices. In fact, the general
features of the absorption spectra of these superlattices
have been interpreted by using a simple effective-mass
model, the "particle-in-a-box" model, ' which assumes
parabolic band structures for both the electrons and
holes. The oscillator strengths for the band-to-band tran-
sitions are proportional to

F„„,= (,f„ I g„,) -F„5„„,,
where f„and g„are the envelope functions of the wave
functions of the carriers in the nth conduction rniniband
and in the nth valence miniband, respectively. This
means that the interband transition mainly occurs be-
tween a conduction state and a valence state having an
identical principal quantum number with respect to the
superlattice potential.

In the investigation of the optical properties, Sai-Halsz
et al. ' have reported a theoretical calculation for the ab-

sorption coeKcients of semiconductor superlattices based
on a simple envelope-function approximation (EFA).
Such a calculation may predict the general features of the
absorption spectrum, but it cannot explain several weak
structures corresponding to the so-called forbidden tran-
sitions. A more realistic tight-binding model has been
proposed by Chang and Schulman for semiconductor su-
perlattice, the miniband structures and optical proper-
ties have been calculated, and it is revealed that mixing of
the heavy- and light-hole states in the superlattice poten-
tial can lead to the b,n %0 (forbidden) transitions.

At the same time, there has also been some interest in
the study of the effect of disorder on superlattice proper-
ties. Dow, Ren, and Hess have presented theoretical cal-
culations on the electronic structures of random superlat-
tices. ' Recently, the atomic-layer-doping technique —5-
doping —became a subject of numerous experimental
studies. The. reason that is, for this interest lies in the
possibility that this doping may provide very high elec-
tronic sheet densities with enhanced low-field mobility in
the superlattices of compound semiconductors. Betrum
and Capasso and Ihm et al. have shown that the band
structures of these superlattices can be greatly modified
by inserting the 6-doping layers into the well regions, as
well as into the barrier regions of the superlattices. One
of the novel features they observed is that the miniband
widths are enhanced by introducing such 6-doping layers.
The physical origin of the experimental results can be
partially explained by the calculations detailed in Refs. 7
and 8. More recently, superlattices with randomly distri-
buted layer thicknesses have been fabricated, and the de-
gree of randomness in the materials can be artificially
controlled. " Experimental measurements on the pho-
toabsorption and photoluminescence of these materials
have revealed the opti. cal properties to be quite different
from those of bulk alloys and ordinary superlattices. It is
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found that the optical-absorption edges of these random
superlattices also shift to the long-wavelength side.

Until now there have been few theoretical studies on
the properties of semiconductor superlattices with ran-
domly distributed layer thicknesses. The randomness in
the thicknesses breaks the periodic symmetry and the
Bloch theorem is no longer valid. Wang et a/. ' have
used a recursion method to calculate the local densities of
states of an aperiodic semiconductor superlattice. As the
method is numerically unstable in this calculation, only
the smallest and largest eigenvalues are reliable, so one
can hardly calculate the optical properties by this
method.

In this paper we attempt to calculate the optical prop-
erties of GaAs/A1As superlattices with randomly distri-
buted layer thicknesses. Our motivation is that some
unusual optical properties in these materials have been
observed experimentally, " and this provides the possi-
bility of producing some new materials with special opti-
cal properties by introducing this kind of randomness in
the superlattices. Our purpose is to investigate the possi-
ble links between the physical properties and the struc-
tures of these materials, and to obtain results that can be
compared with experiments. In dealing with the break-
ing of the periodic symmetry, we use a model based on
the effective-mass approximation, but expressed by the
Wannier-Bloch mixing representation with a Wannier
tight-binding form in the growth direction and a Bloch
form in the in-plane directions. In such a representation,
the problem with a given in-plane momentum reduces to
a disordered one-dimensional (1D) model in the tight-
binding form. For such a 1D model, the energy spectrum
and the envelope functions of the wave functions can be
calculated by using an improved Dean method. ' ' From
these results, together with the An =0 selection rule, one
can calculate the optical properties.

In Sec. II we describe the structural features of these
materials. In Sec. III the Hamiltonian of the electronic
system in the materials, expressed in the Wannier-Bloch
mixing representation, is presented. In Sec. IV the ener-
gy spectrum and the envelope functions are numerically
calculated by use of the improved Dean method. In Sec.
V we give the procedure for determining the optical-
absorption coeKcients of the interband transitions and
calculate, numerically, the optical-absorption spectrum
of the transitions between the edges of the conduction
and valence minibands. In Sec. VI we summarize the re-
sults and provide some concluding remarks.

tion. If the randomness in the layer thicknesses is intro-
duced, the thickness of a special layer becomes a random
variable. In the Wannier-Bloch mixing representation
with a tight-binding form in the growth direction, the
layer thickness only takes an integer value, which
represents the number of the atomic planes within the
layer. Thus, the distribution of the thicknesses can be ex-
pressed by the following stochastic functions:

i=1

N~

P (L~ )= g p~; 5(L~ —l~; ),

with

where l~, and l~, (i =1,2, . . . , N„~~~) are the possible
values of the thicknesses L ~ and L~, respectively; p~ ~~];
is the probability of finding the thickness of a special lay-
er of compound GaAs (AlAs) to equal l„~~~;. It is obvi-
ous that

To generate a special thickness Lz or Lz according to
this distribution, one can previously divide the range [0,1]
into N~ or X~ intervals, and the length of the ith interval
is proportional to pz; or p~, Then, one can take a value
x in the range [0,1] from a random-number generator. If
x falls in the ith interval, then Lz or L~ assumes the
value /~, or /~, . The entire superlattice is formed by al-
ternate piling of GaAs and A1As layers, with layer
thicknesses produced in sequence from the above pro-
cedure. Thus, the layer thicknesses are randomly distri-
buted, and the degree of the randomness is controlled by
the values p z; and pz;. If

N~ =1, N~ =1,
the randomness disappears and the periodicity of the su-
perlattices is restored.

III. THE HAMILTONIAN IN THE WANNIER-BLOCH
MIXING REPRESENTATION

II. SUPERLATTICES WITH RANDOMLY
DISTRIBUTED LAYER THICKNESSES

We consider a superlattice made from the alternating
deposition of the layers of two compounds, GaAs and
A1As. If the superlattice has complete periodic symme-
try, the layers are arranged as

GaAs A1As GaAs A1As GaAs A1As
~ ~ ~

L~ L~ Lq L~ L~ L~

where L~ (L~ ) is the thickness of layer GaAs (A1As), so
the system has a period of L„+Lz in the growth direc-

For the superlattices with randomly distributed layer
thicknesses, the electrons and holes are free to move in
the in-plane (x,y) directions of the layers, whereas their
motion along the growth direction is strongly affected by
the potential discontinuities at the interfaces between the
layers and by the randomness of the layer thicknesses.
Owing to this randomness, there is no translational sym-
metry in the growth direction. Therefore, the Wannier-
Bloch mixing representation exhibiting a Wannier form
in the growth direction and a Bloch form in the in-plane
directions is suitable. The basis functions of this repre-
sentation can be denoted

~k~~z
) where k~~ indicates the in-
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plane component of the momentum, and z is the coordi-
nate of the wave function in the growth direction. These
wave functions are related to the basis wave functions in
the pure Wannier representation by the following trans-
formation:

(2)

where Ir~t z & is the atomic orbital at position (r~~, z), r~~ is
the coordinate in the x-y plane, and X is the total number
of the orbitals per x-y plane.

The eigenstates of both the electrons and holes in the
material can be expressed in terms of the linear combina-
tions of these basis wave functions. We can write the
state of the nth conduction miniband as

nk(( X n

Z

By substituting Eq. (2) into Eq. (3), one has

I@&:,s =& '"&exp«k(). r())f. (kq z)lr„,z & .
rll, z

(4)

In the effective-mass approximation, the expansion
coefficient f„(k~~,z ), also known as the envelope function,
satisfies the following equation:

$2 2
kii

— + V, (z) f„(kii,z)
2m z az2

=E„'(kii)f„(kii,z ), (5)

f (kii i+I)+f «ii i 1) 2f (kii i)
Bz

f„(kii,z) =

(6)

One can rewrite Eq. (5) as

where E„'(k~~) is the eigenvalue of state Ig&'„k, V, (z) is

the superlattice potential, "seen" by the electrons, and
m, (z ) is the effective mass of electrons in GaAs or A1As,
depending on where z is located. Because of the discon-
tinuities of V, (z ) and m, (z ), Eq. (5) should be solved with
accompanying connection conditions at the interfaces.
Owing to the randomness in the thicknesses, these con-
nection conditions cannot be expressed in the same
periodic form as that used in the study of the periodic su-
perlattices. This creates an almost infinite number of
connection conditions, which should be individually tak-
en into account in solving the envelope functions. To
deal with this difticulty, we introduce a tight-binding
form of Eq. (5), which is more convenient than the con-
tinuous form in this case. This can be achieved by replac-
ing the continuous media in Eq. (5) with a 1D lattice in
the z direction, with site spacing d. Then, the coordinate
z takes discrete values l (1 being an integer), and the
derivative in Eq. (5) becomes

kii + + V, (l ) —E„'(k~i) f„(kii, I )

Q2
[f„(kii, 1+I)+f„(k~i, l —1)]=0 .

2m, (l )d

It can be seen that Eq. (7) is actually a tridiagonal-matrix
equation for a given klI.

Similarly, the state of the mth valence miniband can be
written as

+ Vl, (z)g (k(~,z)=0, (9)

where Vh(z) is the superlattice potential "seen" by the
holes, the H" 's are the matrix elements of the
Luttinger-Kohn Hamiltonian describing the bulk
valence-subband structure, ' and E is the eigenvalue of
the state. Because we focus only on the effect of random-
ness, at the first stage of the approximation we ignore the
mixture of the heavy- and light-hole components, so the
oF-diagonal elements of the Luttinger-Kohn Hamiltonian
vanish, and the four subbands (v= —

—,', —,', —
—,', —

—,') are
decoupled. We can write the equation of the state in the
vth subband as

kl — + V„"(z) g (kl, z)
2m', (z) Bz

=E (kl)g (k((,z) . (10)

By using a procedure similar to that used for the conduc-
tion minibands, Eq. (10) can be transformed into the
discrete form:

2ml', (1) d
k~~+ z

+ Vi, (l) —E~~(k~~) gm(kl, l)

g2
[g (k„, l+I)+g" (k~~, l —1)]=0

2m', (l )d

(11)
For a given k~~, Eq. (11) is also a tridiagonal-matrix equa-
tion. In the next section we will solve these equations to
obtain the energy spectrum and the envelope functions by
use of the improved Dean method.

IV. ENERGY SPECTRUM
AND ENVELOPE FUNCTIONS

In order to use the improved Dean method to solve the
equations, we consider a finite sample with M sites in the

IP&" k g exp{ik~~ r~~)g (k~~, z)lr„,z &,PZ

vol Ilyz

where v 2 2 2 2
is the quantum number of the

valence subbands [v=——,
' corresponds to the heavy-hole

(hh) subband and v= —,
' corresponds to the light-hole (lh)

subband]. In the efFective-mass approximation, the g 's

satisfy the following equation:

g [H~ ~. (k~~, z)+E~~(k~1)5~ ~, ]g~(k~~, z)
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1D lattice of Eqs. (7) and (11), in which the random struc-
ture has been previously produced from the stochastic
distribution of the layer thicknesses described in Eq. (1),
and the values of the potential and mass at a given site
are determined from the nature of the material where the
site is located. For a given k~~, the model becomes a 1D
random chain. From the negative-eigenvalue theorem, '

the number of states with eigenvalues less than E„ is sim-

ply the total number of negative u(i)' s, which are calcu-
lated from the following iterative relations:

(.) E(.) E (k )
t(t, t+1)t(t+1, t)

u (i —1)

(1)=E(1)—E„(kii)

where

f2E(i)= . k + + V(i)
2m (i)

(12)

(13)

~(i
i4) ($)It i

—3.0 —0.5

E (ev)
l2.0 14. 5 -2. 5 0.0

K (ev)
2. 5

I5.0

+'Wl elicit

—3.0
I-0.5

I2.0
a (eV3

l4. 5 —2. 5 0. 0 2. 5
a (eVj

1
5 G

FICs. 1. Density of states (DOS) of conduction minibands with k~~
=0 in a finite system with 5000 sites in the z direction. The pa-

rameters in Eq. (1) are (a) X~ =Kg=1, p~t =p~;=1, and l~l=l~l=10; (b) N~ =Kg=3, pal=»1»3=»3 ~0' pA2 p~2
l»=l»=9, l»=l»=10, and l»=1»=11; (c) X„=X&=5, and p&; =p&; =

—, for i =3 and lp for i&3, where l~i =l~;=i+7, (d)

X~ =X&=11,and p~;=pz;= » for 11~i ~1, and l&;=l&;=i+4.
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and
$2

t(i, i+1)=
2m(i)d

for M' i+i'+ 1, (14)

Thus, one can obtain the densities of states for a given k~~

for both the electrons and holes by use of this theorem.
After the energy spectrum is obtained, the improved

Dean method described in Ref. 18 can be used to calcu-
late the envelope functions. We denote the amplitude at
site j of an eigenstate with eigenvalue E„by ai. If a; WO,
we can choose a;=1, and the other amplitudes of the
eigenstate can be obtained from the iterative relations:

a, +, , = —t (i +i ', i+ (i '+ I ) )b, ,
—+;.a+~;, ~+;

g+
[E(i ) E„—t—(i, i + 1 )t(i + 1, i )5,—+, ]

Q+ 1 1

E(M ) E„—' ' E (1) E„—

From the definition, the 1D wave functions obtained
from Eqs. (7) and (11) using this method are simply the
envelope functions of the corresponding states in the con-
duction and valence minibands.

In our calculations the values of the parameters of
GaAs and AlAs are chosen to be the same as those used
in Ref. 19:

(b)

0
Q-

(a)

-4. 3 —2.7
E (eV)

-4 ~ 3 —3. 5
I

E (BV)

(c)

0
O

I Um

-4. 5
1—2. 9
E (eV)

-4. 2 5

E (GV)

l
—1.0

FIG. 2. Density of states of heavy-hole minibands with k~~
=0 in a system with 5000 sites in the z direction. The parameters are the

same as those of Fig. 1.
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For GaAs: E~ =1.43 eV, mh„=0. 34mp, m&h =0.09mp m =0.067mp,

For AlAs: Eg =2.95 eV, mhh =0.76mp mu 0. 137mp m, =0.15mp .
(17)

The valence-subband offset of the superlattice potential is
taken to be 40% of the difference in the band gap be-
tween bulk GaAs and AlAs; the conduction-subband
offset is taken to be 60% of this difference. The total
number of sites in the 1D chain of Eqs. (7) and (11) is
5000. The energy spectrum is calculated for k~~=0. The
densities of states of the electron minibands, heavy-hole
minibands, and light-hole minibands are shown in Figs. 1,
2, and 3, respectively. The degree of the randomness in

the layer thicknesses is specified in the figure captions. It
can be seen that when the degree of the randomness in-
creases, the total widths of these minibands also increase,
and the energy gap decreases. We also calculate the en-
velope functions of these minibands. From these results
we can calculate the momentum matrix elements, the
joint state densities of the conduction and valence mini-
bands, and the optical-absorption coefficients.

0
Ch

(b)

-4. 4I

E (eV)

I
0. 6 -9.5 —7 0

E (eV)
—2.0

I

0. 5

(c)

-9.9

a (eV)

I0.1 —9.6
I-4. 6

E (ev)

I0.4

FIG. 3. Density of states of light-hole minibands in the same system as that depicted in Figs. 1 and 2.
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V. OPTICAL PROPERTIES

The optical property of concern here is photoabsorp-
tion from the interband transitions in the superlattices.
The optical matrix elements obtained in the study of the
absorption may also be useful for the analysis of the other
optical properties, such as photoluminescence and photo-
conductivity.

Apart from a constant factor, the absorption coeKcient
of a superlattice can be written as

(a )=(e )-' y ~e P„„,(k„)~'
k((, 1l, n

where c. is the unit vector in the direction of the light po-
larization, and where P„„denotes the momentum matrix
element between the eigenstate of the nth conduction
miniband with energy E„and the eigenstate of the (n')th
valence miniband with energy E„. In our model, the
momentum matrix element P„„canbe expressed in terms
of the coeKcients f„and g„, and in terms of the momen-
tum matrix elements between the basis wave functions of
the mixing representation:

P„„(k~~)= y f*(&((, , )g„(&~(, ', ')
I Iz, z, a, a

x 6(E'(kii) E (kii) A~) (1s) x (k~~, i,~~p (&9)

(a)

14.0

~~(eV)
21.0 13.0

aw (eV)

l

21.0

(c)

13.0 ~~ (eV) 21.0 13.0 l I

~~ (eV)
I I 21.0

FIG. 4. Optical-absorption spectra for di6'erent degrees of randomness. The parameters of randomness are the same as those in

Figs. 1(a)-1(d).
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Because the atomic orbitals are sufficiently localized, and
because the momentum matrix elements between the
atoms separated by more than the first-nearest-neighbor
distance can be neglected, the matrix element
&k~~, ~, ~lpl&„,z' ~') is not much affected by the inter-
faces of the superlattice, and is almost the same as that of
the bulk semiconductors, as has been illustrated in Ref.
21.

In this paper we only consider the absorption from the
transitions between the miniband edges to estimate the
effect of the randomness in the layer thicknesses. This
means that only the contributions from the states with
kll=0 are taken into account. The absorption coefficient
then reads

a(fin)=(A'co) ' g le.P„„(0)l p„„.(fi~),
n, n'

where p„„(fico) is the joint density of states associated
with the nth conduction ininiband and the (n')th valence
miniband. This approximate expression for the absorp-
tion has often been used in the literature, and it may give
a reasonable schematic description of the absorption
spectrum.

The selection rules for the transitions caused by in-
cident light with a given polarization can also be estab-
lished. For light polarized in the z direction, only the
transitions associated with the light-hole and conduction
states are possible, whereas for light polarized in the x or
y direction the transitions associated with the conduction
states and either of the light- or heavy-hole states are pos-
sible. In the present calculation we assume that the po-
larization vector is parallel to the x direction. In this
case the oscillator strength related to the momentum ma-
trix element between the heavy-hole and conduction
states is three times that of the element between the con-
duction and light-hole states; this has been investigated
from the standpoint of the symmetry of these spin-orbit-
coupled states of the valence band.

The optical-absorption spectra obtained for different
degrees of randomness are shown in Fig. 4. In our calcu-
lation it is also found that the main contribution to the
absorption comes from those interband transitions that
obey the n =0 selection rule. In fact, the superlattice po-

tentials "seen" by the electrons and holes have the same
random structure; thus, the wave functions of an electron
and a hole with the same principal quantum number have
almost the same spatial structure, and are mostly over-
lapping. Therefore, the contribution from the transition
between these states is enhanced. This is just a unique
structural feature of this type of randomness. Another
result that can be seen from Fig. 4 is that, when the de-
gree of randomness increases, the peaks in the absorption
spectrum become lower, and the absorption edge shifts to
the long-wavelength side.

VI. SUMMARY

We have investigated the electronic states and optical
properties of semiconductor superlattices with specially
constructed randomness —randomness in the layer
thicknesses. The Hamiltonian in an effective-mass model
has been expressed in the mixed representation with a
tight-binding form in the z direction and with a Bloch
form in the x and y directions. Thus the model reduces
to a 1D lattice for a given kl~, and the energy spectrum
and the envelope functions of the states can be obtained
using the improved Dean method. The absorption spec-
trum has been calculated via use of a simplified scheme.
The calculations have been done for several samples with
different degrees of randomness. Upon comparing the re-
sults for different samples, it can be seen that, when the
degree of randomness increases, the energy ranges of the
minibands are widened, the energy gap decreases, the
optical-absorption peaks become lower, and the absorp-
tion edges shift to the long-wavelength side. These re-
sults are in qualitative agreement with experiments.
The unique structural feature of this type of randomness
may make it possible to invent some new optical or elec-
trical devices.
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