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Interference effects in the resonant-tunneling spectrum
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We have developed a two-band effective-mass model to study the resonant-tunneling spectra for a
structure in which the interaction of a heavy-mass state (nearly discrete) with a light-mass continuum
leads to interesting interference effects. We found two types of interference effects: Type I exhibits a
zero-transmission dip preceding a resonance-tunneling peak and type-II exhibits a zero-transmission dip
following a resonance-tunneling peak. Our theory demonstrates that by analyzing the interference struc-
ture in the resonant-tunneling spectra one can obtain a direct measurement of the strength of band mix-
ing in semiconductor heterostructures.

I. INTRODUCTION

The resonant-tunneling spectrum shows interesting in-
terference effects when two bands of electronic states as-
sociated with substantially different effective masses in-
teract with each other. This phenomenon is readily seen
in the InAs-GaSb-InAs tunnel structures in which a
light-hole (LH) band interacts with a heavy-hole (HH)
band. ' For example, Fig. 8 of Ref. 1 shows that the LH1
resonance spectrum (solid lines) is chopped into two parts
at k~~=(0. 0075, 0)2ir/a due to the mixing of HH2 and
LH1 states. Recently, we have also found some very in-
teresting interference behaviors in the transmission
coefficient spectrum in Si-Ge-Si(001) strained double-
barrier tunnel structures. We found a "dip" structure
followed by a double-peak structure as a result of an in-
tervalley mixing effect. The above features can all be in-
terpreted as an interference effect similar to the Fano res-
onance effect seen in absorption spectra when a discrete
state interacts with a continuum. In this paper we use a
two-band effective-mass model ' to analyze the
resonant-tunneling effect for a heavy-mass (HM) band
weakly coupled to a light-mass (LM) band.

II. TWO-BAND EFFECTIVE-MASS MODEL

We divide the resonant-tunneling structures into three
regions: a semi-infinite region on the left, a semi-infinite
region on the right, and a central region. We assume
there are only two states (LM and HM) denoted by

~ 1;q )
and ~2;q ) associated with each q (the component of wave
vector along the growth direction), where q =K(K') in
the left and right regions and q =k(k') in the central re-
gion.

In the central region, the effective masses of LM and
HM bands are labeled by mI and mz, respectively. If we
introduce an interaction between ~1;k ) and ~2;k ), these
two states will be mixed, and tunneling will happen via

these new mixed states. The new mixed state with energy
E and wave vector k is denoted ~E;k), which is the
linear combination of

~
1;k ) and

~
2; k ) ( ~ E;k )=c

~
1;k ) +d

~ 2; k ) ). We shall denote the minimum (or
maximum) of the LM band as Vo and that of the HM
band as Eo. If the interaction K' is given, the
Schrodinger equation can be written as

(k /2pt)+ Vo

K'
c c

(k /2ph)+Eo

where PI=m//fi and PI, =I/, /I .
In this paper, we have done the calculations for the

cases H'=P and H'=iak, where a and P are coupling
constants. The dispersion relations of E and k can be
easily derived from the equation above:

k4

4PIPI

0

2Pi

E'
2P

+E'(E' Eo)—P =0, —H'=P, (2)

k

4PIPa

Eo —E'

2PI

E'
2 k2

2P

+E'(E' EtI ) =0, H' —i ak, —(3)

where E'=E —Vo and Eo =Eo —Vo.

III. TRANSMISSION COEFFICIENT

In the central region, for a given energy E we can al-
ways find two mixed states associated with two wave vec-
tors k and k'. k and k' are complex numbers in general.
From now on we shall denote these two mixed states
by ~E;k ) =c ~1;k )+d ~2;k ) and ~E;k') =c'~ l, k')
+d'~2, k'); the coefficients c, d, c', and d' can be found
by substituting (2) or (3) into (1).

For simplicity, we assume that there is no coupling be-
tween LM and HM bands in the left and right regions
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and we only consider an incident electron (or hole) via a
I.M state. We denote the effective masses of LM and
HM bands in the left and right regions as M and M' and
their band minima (maximum) as U and U, respectively.
For a given energy E (for an incident electron or hole) the
two possible wave vectors are K =&2p(E —U) and
K'= ]/2p'(E —U'), where p =M lfi and p'=M'Ifi .
The wave functions %(E) and J%(E) must be continuous
across the interfaces, where the current density operator

I

(a) H' —P:

J can be written as

k /pg lA

i—a k Iph
for H'=iak+P . (4)

If a particle incidents from the left, the transmission
coefficient (T) equations can be derived for both (a)
H'=P and (b) H'=i ak

where

I
(cd' —dc')(cd'S22 —dc'S21 ) I

l(cd'S» —c'dS]2)(cd'S» —c'dS2, ) —cc'dd'(S'» —S', 2 )(S22 Sp] )
I

S]]=cos(kL) i(K—Ik+ k /K )sin(kL )/2,

S]2 =cos(k'L ) i(K—Ik'+k'IK)sin(k'L )/2,

S2, =cos(kL) i (K/k—+k/K')sin(kL )/2,

S22 =cos(k'L ) i(K—'/k'+k'/K')sin(k'L )/2,

S]]=(1+K'/K)cos(kL)/2 i(K'/k—+k/K)sin(kL )/2,
S',2 =(1+K'/K)cos(k'L )/2 i(K—'/k'+ k'IK)sin(k'L )l2,
S2, =(1+K/K')cos(kL)I2 i(Klk—+k/K')sin(kL )/2,

S22 =(1+K/K')cos(k'L )l2 i (K/k'—+k'/K')sin(k'L )/2 .

In the above equations we have defined K =Kp&/p and K'=E''p& /p'.
(b) H'=iak:

l(cd'S» —dc'S» )
'

T—
I
(cd'S» —c'dS, 2 )(cd'Sz2 —c'dS2, ) cc'dd—'(S'» —S',2 )(Sz2 S2] )

I

where

S» =(q2/Y+q, /X)cos(kL)/2

i(K/X—+q, q2/KY)sin(kL)/2,

S,2=(qz/Y+q] /X)cos(k'L )/2

i(K/X+q—']q2/KY)sin(k'L )/2,

Sz] = (q2/Y+ q', /X)cos(kL)/2

i (K'/ Y+—
q ',

q2 /K'X )sin( kL ) /2,
S2z =(q]/X+q'2/Y)cos(k'L )/2

i (K'/Y+q, q2/—K'X)sin(k'L )/2,
S']] =(K'/Y+q]q'] /KX)cos(kL)/2

—i(q] /X+K'q] /KY)sin(kL)/2,

S',2 =(K'/Y+q]q'] /KX)cos(k'L )/2
—i(q] /X+K'q] /KY)sin(k'L )/2,

Sz] =(KIX+qzqz/K'Y)cos(kL)/2

i (q 2
/Y+—Kqz/K'X)sin(kL)/2,

S22 =(KIX+q2q2/K'Y)cos(k'L )l2

—i(qz/Y+Kqz/K'X)sin(k'L )/2 .

In the above equations we have defined E =Kp& /p,
K'=K'pz Ip', q, =k+]ap&d Ic, q', =k'+iaij]d'lc',
q2 =k —i ap&c/d, q2 =k' —i ap&c'/d', Y=cd'qz
—dc'q2, and &=cd'q& —c'dq', .

We now apply our theory to the following two
systems: (i) the Gap 52Inp 4]]As-Gap 37Inp 63Asp ]]7Pp ]3-
Gap gplnp 4]]As strained-layer tunnel structure (grown on
InP) and (ii) the broken-gap InAs-GaSb-InAs tunnel
structures. Schematic diagrams of the effective potentials
for the electron or hole for the above structures are
shown in Fig. 1. We define k, as the projection of the
wave vector k in the growth direction, k„and k as two
in-plane components of the wave vector, and

(k 2+ k 2)I/2
x y

(i) GaQ 52In Q 48 As-Ga
Q 37In Q 63 AsQ 87PQ $3-

GaQ 52In Q 48 As grown on InP. Consider a
Ga„In, „As P, strained layer [for which the lattice
constant is a(x,y)] grown on InP (with lattice constant
ap) along the [001]direction; we define
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FIG. 1. Schematic energy diagram for (a}
Gao. szIno. 48As-Gao. 37Ino. 63Aso. 87po. &3-Gao. 5zIno. 4sAs, and (b}
InAs-CxaSb-InAs tunnel structures. The energy separations as
indicated are in meV.

where V=0.646 E —[(5Ei,„/3)+(M,h/2)]„=0 gi y=(
and AE~ is the band-gap discontinuity between
Gap 52Inp 48As and Gap 37InQ 63ASQ 87PQ 13 Similarly in
the left and right regions (Gao 52Ino 48As) we can obtain
the following relations:

5Eh„= —2a
1 —C,2 ao —a(x,y)

ao
(7)

'y y'"'"'
2Pl p x =0.52,y =1

(16)

1+2C12
5E,„=—2S

ao —a(x,y )

ap

U'= —5E—sh

mp

(y, +y~)fi k
~~

x =0.52,y=1
(17)

5E„„
P —Q—

3

5Esh

2

where C» and C,2 are elastic sti6'ness components, and a
and b are hydrostatic and shear deformation potentials,
respectively. The coupled Schrodinger equation for HH
and LH states for Ga„ln& As P& (in the central re-
gion) can be written as

r

yl y2 x=0 52,y=1+2

mp

x =O. 52,y=1
(19)

Note that in this tunnel structure, all the quarternary ma-
terial parameters (Q) are derived from the four binary
parameters (B) by using the interpolation scheme

5Eh 5E,hP+Q — +
3 2

Q(x,y) =xyB„C+x(1 y)BAD+(I —x—)yB~c

+(1—x )(1 y)BiiD— (20)

= (E —V) d, (9)

where P=y, A' k /2mo, Q=y2R (k„+k —2k, )/2mo,
R =&3iri (yk l

—2iy3k))k, )/2mo. mo ls the free-electron
mass, y1, y2, and y3 are the Luttinger parameters, and

y =(y&+y2)/2. An axial approximation has been made
in the above equation.

For the Gap 52In048As-Ga037InQ63Asp 87PQ»-
Gao 52Inp 48As strained-layer tunnel structure, if we
choose the Gap 52In048As LH band maximum as the en-

ergy zero, we can obtain the following relations by com-
paring (1) with (9):

for a quarternary material A B, C D, . Table I
shows binary parameters used here which are mainly tak-
en from Ref. 9.

We would also like to point out that the quarternary
parameters have been chosen to make EQ=U=O for
k

~~

=0. Since the HH band is below the LH band
(U' & U) in the left and right regions due to the tensile
strain and the LH band is below the HH band ( Vo &Eo)
in the central region due to the compression strain, this
tunnel structure is actually a quantum well for the HH
band but a single barrier for the LH band. For small k~~,

this is a good structure to study the tunneling interfer-
ence effect for which a HM state (nearly discrete) is weak-
ly coupled to a LM continuum.
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Parameters InAs GaAs InP GaP

a, (A)
a (eV)
b (eV)

E, (eV)

1

r2
y3
C& &

( 10" dyn/cm )

C» (10" dyn/cm )

6.0584
—6.0
—1.8

0.36
20.4

8.3
9.1

8.329
4.526

5.6533
—9.77
—1.7

1.42
6.85
2.1

2.9
11.88
5.38

5.8688
—9.3
—2.0

1.35
4.95
1.65
2.35

10.22
5.76

5.4512
—6.35
—1.5

2.74
4.05
0.4
1.25

14.12
6.253

TABLE I. Parameters of InAs, GaAs, InP, and GaP. ponent of the total wave function across the interfaces,
the sufficient condition is that 2(E E—„)V,IA'q and
0', (E) are continuous across the interfaces. Note that
the continuity of +, is automatically satisfied since a sin-

gle value of t has been used for both InAs and GaSb.
Since the incident electron energy E is very close to
the GaSb LH band maximum, E, in the central
region, (E E,—)=R k /2m', and 2(E E„—)(%, /A'k)

=fik'Il„/m&. But the incident electron energy E is far
from the InAs LH band maximum, E„ in the left or right
region; the boundary condition used in the derivations of
(5) and (6) must be modified, and we need to replace
K =Kg& Ip by K =2@(E—U')/K.

I' —g
R

R c c=(E —V) (21)

For small k~~, we obtain the following relations by com-
paring (1) with (20).

mI = mo/(yi+2y2)

mh = —mo/(y, —2y2),

Vo= V—(yi —y2)R'k',
~

/mo

E,= V—(y, +y, )irt'k~~ Im, ,

cx 3y3A ki[ /mo

(23)

(24)

(25)

(26)

In the InAs region, we use M =0.023mp, M'= —0.36mp,
U' = —360 rneV =negative energy gap of InAs, and
U —i)i2k 2 /2M.

II

In the InAs-GaSb-InAs tunnel structure an electron in
the InAs conduction band, incident form the left, tunnels
through GaSb via the GaSb LH band and then returns to
the InAs conduction band to the right. The tunneling
process is possible because of the coupling between the
conduction and LH bands at finite wave vectors (see Ref.
14). If we ignore the weak coupling between the conduc-
tion and HH bands for small k~~, the wave function of an
InAs bulk state consists of both conduction and LH com-
ponents, and the Schrodinger equation in a k.p theory
can be written as '

E, —E ithq
—itAq E„—E =0, (27)

where +, and 4, are the conduction-band and light-
hole-band components of the total wave function, and E,
and E, are the conduction-band minimum and light-
hole-band maximum, respectively. The parameter t
reflects the strength of the coupling between the conduc-
tion and LH bands. In Bastard's model, the same value
of t is used for all constituent materials. To ensure the
continuity of current density and light-hole-band com-

(ii) InAs GaSb I-nAs. -For convenience we choose the
InAs conduction-band minimum as the energy zero, and
the GaSb valence-band maximum is V=0. 154 eV. If we
assume there is weak coupling between HH and LH
states for GaSb (the central region), then (1) can also be
written as ' '

IV. RESULTS AND DISCUSSIONS

(a) H'=p. Figure 2 shows the transmission coeffi-
cient as a function of hole energy for hole tunneling
through valence bands of a Gap ~2Inp 48As-

Gao. 37In0. 63Aso. 87 0. 13 Gap. 52Inp 4,As tunnel structure
(grown on InP), in which a weak coupling (with P=3
meV) between the HM and LM states exists in the central
region. Here we have ignored the io.k term in H&, which
is valid when k~~ »k, . A weak-coupling limit is defined
when p ((b,E, where hE is the energy separation be-
tween the two consecutive quantum con6ned levels in the
central region. The following material parameters
have been used: mI = —0.041m 0, mI, = —0.31mp,
M= —0.043mp, M'= —0.31mp, L =176 A, VO = —16.5
meV, EO = —0.9 meV, U =0, U'= —25. 5 meV. We
found a "dip to zero" structure at the high-energy side of
the HM1 resonance peak and another on the low-energy
side of the HM2 resonance peak. Here HMn denotes the
nth quantum confined levels associated with the HM
band. Examining (5), we see that the transmission
coefticient vanishes when cd'S22 dc S2, =0. We denote
the energies at which the total reflection occurs (i.e.,
T=O) as Ez. Also note that energies of HM quantum
confined levels are given by the roots of Szz =0 (denoted

OQ

C)

CD
CD HM1

HM2 i

p=3meV

C)
Cf) C)
E
C/)

CU
C)I—
CO
C3

5 10
Energy (meVj

FIG. 2. Transmission coef5cient as a function of hole
energy for hole tunneling through valence bands of a
Ciao ~2Inp 4sAs AaQ 37InQ 63ASQ 87PO, 3-Ciao, 2Ino 48As tunnel struc-
ture (grown on InP) with H'=P=3 tneV.
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OO
C)

C3

CD
CD
O

C
C)

e ~
CD C)
E
CD

C)I—
CO
CD

InAs-GaSb-InAs

H'=4k

ky 0 The main features in Fig . 7 are the appearance of
zero transmission on the high-energy side of the HM1
resonance peak and that on the low-energy side of the
HM2 and HM3 resonance peaks. Similar results have
been obtained by using an eight-band band-orbital model
(see solid curves in Fig. 4 of Ref. 2). Here we have used
K =2pl(E —U') /K instead of K K—p&/, p to take into ac-
count the new boundary condition. Our overall transmis-
sion coefficient spectrum is also in good agreement with
that obtained by the more complicated eight-band model.

V. SUMMARY

50 100
Energy (rneVj

150

FIG. 7. Transmission coefticient for electron tunneling
through valence bands of an InAs-GaSb-InAs broken-gap tun-
nel structure at k„=0.01m/a and k~ =0.

the high-energy side of the HM2 resonance peak.
Figure 7 shows the transmission coefficient for electron

tunneling through valence bands of an InAs-GaSb-InAs
tunnel structure, in which weak coupling (with a=0.36
eV A) between the HM and LM states exists in the cen-
tral region. The material parameters are as follows:

0.055mo ma = —0.25mo ~0
EO=152 meV, L =92 A, U'= —360 meV, U=4. 3 meV,
M=0.023mo, and M'= —0.36mo. The parameters mI,
mi„Vo, Eo, and a used were obtained by using (21)—(25)
with y, = 1 1.1, y2=3. 6, y3=5. 26, k =0.01m./a, and

Our main conclusion is that the interference effects due
to the coupling of a HM state with a LM state in the cen-
tral region of a tunnel structure can lead to a "dip to
zero" structure on either side of the HM resonance peak
in the transmission coefficient spectrum. Analytic ex-
pressions for the transmission coefficients were obtained
for two kinds of couplings, and the physical origin of the
interference effects is illustrated. We also show that a
simple two-band effective-mass model can be used to ob-
tain transmission spectra for various tunnel structures
with results comparable to those obtained by more com-
plicated models.

ACKNOWLEDGMENTS

We would like to thank S. L. Chuang for fruitful dis-
cussions. This work was supported in part by the U.S.
Office of Naval Research (ONR) under Contract No.
N00014-89-J-1157.

D. Z.-Y. Ting, E. T. Yu, and T. C. McGill, Phys. Rev. B 45,
3583 (1992).

J.-C. Chiang and Y. C. Chang, Appl. Phys. Lett. 61, 1045
(1992).

U. Fano, Phys. Rev. 124, 1866 (1961).
4G. Bastard, Phys. Rev. 8 24, 5693 (1981);25, 7584 (1982).
5P. Lawaetz, Phys. Rev. B 4, 3460 (1971).
S. L. Chuang, Phys. Rev. B 43, 9649 (1991).

7D. A. Broido and L. J. Sham, Phys. Rev. B 31, 888 (1985).
Sadao Adachi, J. Appl. Phys. 53, 8775 (1982).
numerical Data and Functional Relationships in Science and

Technology, edited by K.-H. Hellwege, Landolt-Bornstein,

New series, Group III, Vol. 17a (Springer, Berlin, 1982);
Group III-IV, Vol. 22a (Springer, Berlin, 1986).
D. Ahn and S. L. Chuang, J. Appl. Phys. 64, 6143 (1988).
J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
D. Ahn, S. L. Chuang, and Y. C. Chang, J. Appl. Phys. 64,
4056 (1988).
A. Twardowski and C. Hermann, Phys. Rev. B 35, 8144
(1987).
J. R. So der strom, E. T. Yu, M. K. Jackson, Y. Ra-
jakarunanayake, and T. C. McGill, J. Appl. Phys. 68, 1372
(1990).


