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Optical absorption in semiconductor quantum dots: A tight-binding approach
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We present a tight-binding calculation of the interband optical transitions in semiconductor quantum
dots (QD s). The calculated optical-absorption spectra are in good agreement with the existing experi-
mental spectra of CdS and CdSe QD's. We establish a correspondence between the tight-binding (TB)
energy levels and those calculated using the spherical multiband effective-mass approximation (EMA).
Consequently, the comparatively stringent selection rules of the latter are applicable to a large extent.
Thus we formulate a convenient and quantitatively accurate description of the optical absorption in
QD's in terms of the TB energy levels and multiband EMA quantum numbers.

I. INTRODUCTION

Semiconductor quantum dots (QD's) have been attract-
ing considerable attention in recent years. This interest
has mainly focused on understanding various quantum
size e6'ects' in these nanocrystallites, which are small
compared to the bulk exciton Bohr radius. From the ap-
plied physics point of view, the possibility of obtaining
novel and tailorable optical properties, together with
their smallness of size, makes QD's promising candidates
for quantum semiconductor devices. A large number of
experiments probing the electronic structure and the op-
tical spectra of quantum dots have been performed, par-
ticularly on CdS and CdSe quantum dots. ' Recent ex-
periments ' on well-characterized samples have resolved
a number of features showing size-quantized energy-level
structure in the absorption and photoluminescence exci-
tation (PLE) spectra.

For interpreting the optical-absorption spectra, the
single-band eff'ective-mass approximation' (EMA) is
widely used mainly due to its simplicity. As both inter-
valence-band mixing and deviation from quadratic
dispersion are neglected by single-band EMA, no
rigorous quantitative comparison between this theory and
experiment has been possible. Although band mixing can
be included within the EMA by multiband calcula-
tions, ' one has to go beyond the EMA to get quanti-
tatively accurate energy levels, especially in smaller QD's.
In fact, recent tight-binding (TB) calculations ' give
energy levels in good agreement with the measured size
dependence of the absorption edge and of the valence-
band edge.

In this paper, we present a tight-binding calculation of
the interband optical transitions of quantum dots.
Specifically, we consider spherical QD's of cubic CdS and
CdSe, with sizes ranging from 10 to 60 A in diameter.
The calculated optical-absorption spectra are in good
quantitative agreement with the best existing experimen-
tal spectra. Further, we find that some of the peaks ob-

served in the absorption, and even in the PLE spectra,
are actually made up of more than one transition, which

may get resolved in better samples. In view of this, we
give detailed numerical results on the transition frequen-
cies and oscillator strengths of CdS and CdSe QD's of
various sizes.

One drawback of a tight-binding description of the
optical-absorption spectrum is the lack of stringent selec-
tion rules, as exist, for example, in the EMA in the spher-
ical band approximation. Hence we seek to establish a
correspondence between the TB and multiband EMA en-
ergy levels, and find that the selection rules of the latter
are applicable to a large extent. Thus, we formulate a
description of the optical absorption in QD s, which has
the quantitative accuracy of TB theory and the qualita-
tive simplicity of the spherical approximation.

The paper is organized as follows. In Sec. II, we dis-
cuss the theoretical method of calculating the interband
absorption spectrum. In Sec. III, we present and discuss
the selection rules and oscillator strengths for interband
transitions, and compare the calculated optical-
absorption spectra for CdSe and CdS QD's with the exist-
ing experimental spectra. Finally, in Sec. IV we summa-
rize our conclusions.

II. THEORETICAL METHOD

To calculate the optical-absorption spectrum in a
quantum dot, one requires the energy levels and the oscil-
lator strengths for transitions between the various energy
levels. The oscillator strength for a transition from a lev-
eli to a level j is given by

f, =2((i~iI p~j) )'/(m, iriro, , ),
where g is the photon polarization, p is the electron
rnomenturn operator, and co;. is the transition frequency.
It may be noted that a spherical QD of cubic material is
optically isotropic, and the oscillator strength is polariza-
tion independent.
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TABLE I. The parametrization scheme used for obtaining the EBOM parameters. The parameter
values used for CdS and CdSe are given in the right column.

Parameters used
Parametrization scheme

L
E, =E, '

E „=(E,' —E }/16
Ep (2E +E +E )/4

L3E y
=( —E~+E, )/4

E„=(E, +E, ' —2E, )/16
E,„=[(E„+A' /2m, * ')E /16]'

E, =
E„=

E
E„=

CdS

4.157
—0.134

0.319
—2.245

0.286
—0.0013

CdSe

3.344
—0.121
—0.281
—2.5

0.325
—0.0125

To calculate the energy levels and the eigenfunctions of
the QD, we use an empirical tight-binding model, the
effective-bond-orbital model (EBOM), in which the
structure of the zinc-blende semiconductor is replaced by
an effective fcc lattice. Two s-like conduction-band (CB)
orbitals together with six p-like valence-band (VB) orbit-
als make up a basis of eight orbitals per fcc site (including
spin). The Hamiltonian matrix elements between these
"bond orbitals" are of the Slater-Koster form, with only
nearest-neighbor interactions included. These have been
descrjbed jn consjderable detajl earljer. ' ' The tight-
binding parameters may be fixed empirically. We use a
parametrization which grossly reproduces, in the bulk
limit, the main features of the relevant bands along the
syrnrnetry directions of the Brillouin zone with just the
seven parameters of the EBOM. The parametrization
scheme, as well as the values of the parameters for CdS
and CdSe, are given in Table I. The symmetry-point en-
ergy values E", E, etc. for cubic CdS and CdSe were
taken from Ref. 27. Spin-orbit interaction is also includ-
ed. ' As noted earlier, more accurate energy levels of
the quantum dot are obtained with this parametrization
scheme, which reproduces the band dispersion
throughout the Brillouin zone reasonably accurately,
than with a parametrization scheme based on the band-
edge dispersion only. The bulk band structures for CdS
and CdSe, obtained by using the parameters given in
Table I, compare well with the band structures calculated
in Ref. 27.

The Hamiltonian of the spherical QD is next con-
structed by making extensive use of point-group symme-
try. ' For spherical quantum dots with fcc structure,
the symmetry group is Oz, and the eigenfunctions must
belong to the irreducible representations of the Oh double
group, viz. , I 6, I 7, I 8 having degeneracy 2, 2, and 4,
respectively. The QD Hamiltonian is constructed in each
symmetry-selected subspace, and is diagonalized, and the
eigenvalues and eigenfunctions are obtained. These
eigenfunctions are now known linear combinations of the
bond orbitals on each fcc site of the crystallite.

The dipole transition matrix elements between the
eigenfunctions of the QD can be obtained in terms of the
matrix elements of the dipole operator between the bond
orbitals. The latter are given by

P~ .(R; —R. )= ifi+2/mo Jd —r y (r —R, )

XB/BPp .(r —R ), (2)

where y refers to the p, p, and p, orbitals, and

Q, = —6+2/mo Jd r y, (r)a/aPy&(r) . (3)

It can be seen that Q, is equal to the square root of the
Kane momentum matrix element Ez, which may be ob-
tained empirically from

( I/m, *—I)=2'/3E +E~/3(Eg+b, ),
where m,* is the conduction-band efT'ective mass in units
of the free-electron mass, E~ is the fundamental band
gap, and 6 is the spin-orbit splitting. The values of Ez
calculated for CdS and CdSe are given in Table II.

TABLE II. The values of various material parameters for
CdS and CdSe used in the calculation.

Spin-orbit splitting (b, ) (eV)
Kane momentum matrix

element (E~) (eV)
Lattice constant (a) (A)
Conduction-band mass (m,*)
Band gap (Eg)

(a) cubic form
(b) hexagonal form

Dielectric constant (e)

Cds

0.06
15.47

5.82
0.14

2.55 (0 K)
2.58 (0 K)
2.45 (300 K)
6

CdSe

0.424
16.37

6.01
0.11

1.9 (0 K)
1.84 (0 K)
1.74 (300 K)
7

where u and a' refer to the s, p, p, and p, bond orbitals,
P=x, y, and z is the polarization of the incident photon,
and y (r —R,. ) is the ath bond orbital centered at lattice
position R,

In the size range considered by us, for CdS and CdSe,
there is negligible mixing of s and p orbitals in the eigen-
functions of the lowest few levels of the QD. Hence the
interband transition matrix elements involve dipole ma-
trix elements between s and p orbitals only. Further, we
assume that only the on-site momentum matrix elements
are nonzero, which is equivalent to assuming a Aat k
dependence for the bulk momentum matrix elements.
The on-site momentum matrix elements between the s
and p orbitals, PP~(0), can be written, using cubic symme-
try, as

PPy (0)=i 5rpg, p,
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III. RESULTS AND DISCUSSION

A. Selection rules and oscillator strengths

In the EBOM calculation, the group-theoretic selection
rules for dipole transitions indicate only that all inter-
band transitions between a VB level and a CB level with
opposite parity are allowed, except the I 6 -to-I 6+ and the
I 7 -to- I 7 transitions. On the other hand, the selection
rules in the EMA, in the spherical-band approximation,
are more stringent viz. , AL =0, where L is the envelope-
function angular momentum. Hence a more convenient
description of the interband transitions may be obtained
by establishing a correspondence between the EBOM and
EMA energy levels. This is, in fact, possible, because
both the energy level structure and the wave functions in
the EBOM and the multiband EMA are qualitatively
similar, even though, as mentioned earlier, the
electron-hole confinement energies are incorrectly es-
timated in the EMA. Thus, the EMA selection rules ap-
ply to a large extent to the EBOM also, for transitions be-
tween corresponding energy levels. This procedure, of
describing the interband transitions predicted by the
EBOM in terms of the EMA envelope function labels,
will be illustrated as we specifically consider the cases of
CdS and CdSe QD's. It may be noted that the EMA
wave functions are generally only weakly affected by the
cubic perturbation caused by the underlying lattice in the
EBOM and are absent in the spherical-band EMA. How-
ever, if two EMA levels are close by, they may get mixed
by the cubic perturbation, leading to considerable
modification of the EMA-derived selection rules.

The CB levels are qualitatively well described by the
single-band EMA, while the multiband EMA is required
to describe the VB. For a semiconductor like CdS with
spin-orbit splitting small compared to the confinement
energies, a three-band model (without spin) is appropriate
for the VB, while for materials with large spin-orbit split-
ting, a four-band Luttinger model for the I s (J=

—,') band
and a single-band model for the I 7 (J=

—,') band may be
used. In CdSe QD's of the sizes considered by us, the sit-
uation is somewhat intermediate to these two extremes.

At this point, we digress to describe the TB and EMA
notations which we use for the energy levels. In the TB
scheme, the nth level of I symmetry and + parity is
denoted by nI —. In the multiband EMA, levels are
characterized by the quantum numbers n, F, and +,
where n is the radial quantum number and F ( =J + L ) is
the total angular momentum. Here, J is the angular
momentum of the Bloch function and L is that of the en-
velope function. A1ternatively, the multiband EMA lev-
els may also be denoted by the L values which make up a
given F value. We use the latter notation, as it is more
transparent in determining the dipole selection rules.
Following Ref. 18, the angular momenta of the envelope
functions are denoted by capital letters S, P, D, F, etc, in
the multiband EMA and by small letters s, p, d, f, etc. , in
the single-band EMA (i.e., for the CB, and the splitoff
band in the four-band model). However, this notation is
ambiguous for the four-band model, as the same com-
bination of L values corresponds to two different F

EMA EBOM
8-

EMA

I=1 d „"P
EBOM

I =0
11

1s +
li ilhll

I=O 1s

F=1

F=2

F=1

1(s+o)

10

2(s+o)

Odd VB levels

1 f8
1 I 7

s
1r8
3IS
&r,

—

2I7

F=1+

F=2

1P

1(P+F} /

1F

Even VB levels

1I +
I

+
8

2I +
3I- +
1r7+
2P +

7
4 Ce+
3f +
pc+

+

FIG. 1. Correspondence between the qualitative level struc-
ture of the near-band-edge energy levels obtained using the
EBOM and the EMA, for CdS QD's. In the EMA, a three-band
model for the valence band (VB) and a single-band model for
the conduction band (CB) have been used. The interband tran-
sitions, allowed according to the EMA selection rules, are also
indicated.

values, as, e.g. , S and D envelope functions mix to give
both F =—', and —,

' energy levels. Hence in the four-band
model, we also indicate the F value as a subscript.

Tables III and IV give the electron-hole confinement
energies and oscillator strengths for the first few transi-
tions in CdS and CdSe QD's, respectively. All of the
transitions listed in the tables involve the lowest three CB
levels, viz. , the 1I 6+ and the 1I 7 and 1I 8, which corre-
spond to the 1=0, n =1 (ls) and l =1, n =1 (lp) EMA
levels, respectively. The interband transition between
the nth VB energy level of I * symmetry and the mth CB
level of I „symmetry is denoted by n I +——mI „.The
confinement energies quoted are the confinement kinetic
energies, and do not include Coulomb interaction. The
interband transition energy would be E„,„,

In Fig. 1, the qualitative structure of the VB and CB
levels near the band edge for CdS, given by the EBOM
and the three-band EMA, are compared. Also shown are
the allowed interband transitions. The splittings of the
EMA levels into EBOM levels are due to the spin-orbit
interaction as well as the cubic perturbation. The transi-
tions listed in Table III mainly correspond to the four
EMA transitions shown in Fig. 1, viz. , between the 1P
1(P +F)+, 1(S+D), and 2(S +D) VB levels and the
1s+ and 1p CB levels. An interesting exception is the
1I 7 to 1I z transition, which appears for R =11.8 and
14.3 A. This can be understood as follows. The 1I 7+ VB
level corresponds to the 1F+ level in the EMA but ac-
quires a small P component due to mixing, with the
close-by 1(P+F)+ level, induced by the cubic crystal
field. This mixing is strong enough to show up in the os-
cillator strength only for a small size range for which the
levels mentioned are close enough. The splitting of the
topmost VB level, 1(S+D) in the EMA, into lI s and
11 7 in EBOM, is mainly due to the spin-orbit interac-
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tion, which leads to a 60 meV splitting in the bulk. It is
interesting to note that for the whole size range con-
sidered, this splitting in the QD is 48 —50 meV, which is
close to the first-order perturbation-theoretic estimate
of 48 meV within the multiband EMA. The 1P+ VB lev-
el splits into 1I 8+ and 1I 6+, with a separation of 29—31
me V, again in close agreement with the first-order
perturbation-theoretic estimate of 30 meV.

The order and the oscillator strengths of the first few
transitions in CdSe, shown in Table IV, differ from those
of CdS mainly because the spin-orbit splitting in CdSe is
much larger. Much of Table IV can be understood
within the framework of the four-band Luttinger model
for the J=—', bands, and the single-band model for the
splitoff (J =

—,') band. ' The qualitative level structure and
transitions obtained in the four-band model are compared
with those obtained in the EBOM in Fig. 2.

We consider first the transitions involving the odd-
parity VB levels. In addition to the two transitions from
the J =

—,
' bands shown in Fig. 2, Table IV also lists tran-

sitions from the splitoff band. The first level correspond-
ing to the splitoff band is of I 7 symmetry (Is in the
EMA) and for small sizes it lies above the first I 7 level
arising from the J =

—,
' bands. As the crystallite size in-

creases, the confinement energies decrease and the I 7
levels corresponding to the J =

—,
' bands cross the splitoff

I 7 levels. For the smallest size considered by us, the
1I 7 and the 21 7 levels involve the splitoff band. For
the largest size they arise from the J=

—,
' band and corre-

spond to the F=7/2 EMA level (see Fig. 2), which
does not have an S component. Thus the 1I 7 -to-1s+
and 2I 7 -to-1s+ transitions which are strongly allowed
for small sizes lose their oscillator strengths as the size in-
creases due to the crossing of the levels discussed above.
The EMA labels for the transitions shown in Table IV

refer to the smallest size. We note that in CdSe QD's,
the spin-orbit splitting for the first VB level is about 340
meV for a radius of 8.9 A. This gradually increases, with
the size of the QD, towards the bulk value of 440 meV.
Further, as in CdS, some transitions such as 4I 8 to 1I 6+

(1D to Is+ in the EMA), which would be expected to
be forbidden from EMA, acquire oscillator strength at
certain sizes due to mixing with nearby levels of the same
symmetry, induced by the cubic perturbation.

The first even-parity splitoff level is of I 6+ symmetry
(lp+ in the EMA) and is connected to the lp CB level.
For small sizes, this VB level lies above the first I 6+ level
arising from the J =—', band and corresponding to the
F =7/2+ EMA level. However, as the size increases, the
I 6+ level from the J=

—,
' band has lower energy than the

splitoff I 6+ level due to reduced quantum confinement.
This explains the loss in oscillator strength by the 1I 6+-

to-lp (i.e., 1I 6+-to-1I 7 and lI 6+-to-lI s ) transitions,
shown in the table, as the QD size increases. On the oth-
er hand, the transitions from the p-like VB to the p-like
CB, viz. , 1I 8 to 1I 7 and 1I 8 and 2I 8+ to 1I 7 and
1I 8, remain strongly allowed for all sizes.

B. Optical-absorption spectra

We now compare the results of our calculations for
CdSe and CdS QD's with experimental results available
in the literature. In Fig. 3 we compare the size depen-
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FIG. 2. Correspondence between the qualitative level struc-
ture of the near-band-edge energy levels obtained using the
EBOM and the EMA, for CdSe. In the EMA, a four-band mod-
el for the J = —' VB and a single-band model for the conduction
band (CB) have been used. The interband transitions, allowed
according to the EMA selection rules, are also indicated. The
splitoff band (J =

2 ) levels are not shown.

FICs. 3. The size dependence of the first interband transition
in CdSe QD's calculated using the EBOM (solid line) and the
single-band EMA (dashed line). The experimental data are also
shown for comparison. These are taken from Refs. 3 (plus sign),
4 (open circle), 7 (cross), 11 (square), 13 (closed circle), and 14
(triangle).
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dence of the experimental and theoretical values for the
lowest transition frequency in CdSe QD's. The transition
frequencies can be obtained from Table IV by including
the Coulomb interaction between the electron and hole
estimated in first-order perturbation theory using single-
band EMA wave functions. This is given by'
E p J 1 786e /6R where e is the dielectric constant
of the material. The result of a single-band EMA calcula-
tion, with Coulomb interaction included, is also shown in
the figure. All transition frequencies quoted are with
respect to the bulk band gap, which for each experimen-
tal datum is taken at the appropriate temperature.

There is good agreement between the tight-binding
theory and most of the experimental data. However,
some of the experimental data are seen to be quite
dispersed, with the absorption peak sometimes occurring
at almost the same frequency even in nanocrystallites
which differ in radius by as much as —10 A. This ap-
pears to indicate considerable uncertainty in the size of
the crystallites in some samples. In all of these experi-
mental data, the sizes have been quoted as measured, by
transmission electron micrography or by small-angle x-
ray scattering. However, it may be mentioned that quite
frequently in the literature, the size of the QD's is quoted
as having been estimated by applying the single-band
EMA to the first absorption peak. As is apparent from
Fig. 3, this could lead to a gross overestimation of the
size, by 10 A or more.

The absorption spectrum of a collection of QD's may
be calculated as follows. The optical-absorption
coefficient of a single quantum dot is given by

nances and an exchange of oscillator strengths between
them, leading to the modification of the absorption spec-
trum. However, this modification would be qualitative-
ly important only when the resonant contribution to the
real part of e dominates, i.e., near strong and sharp reso-
nances. Using the observed homogeneous half-widths of
35—50 meV, ' ' we estimate that for crystallites larger
than about 10-A radius, the local-field correction only
leads to a more-or-less uniform reduction of all the near-
band-edge transition strengths. However, in smaller
QD's with reduced volume, the oscillator strength per
unit volume will be large, and the local-field correction
will have to be taken into account to correctly describe
the features in the absorption spectrum.

In Fig. 4(a), CdSe QD's of radius 16 A are considered,
with the theoretical absorption spectrum compared with
the experimental absorption spectrum of Bawendi et al.
In the calculated spectrum, a broadening proportional to
the transition frequencies measured from the band edge
has been used, with o.;=0.2(Q; E). A—s the oscillator
strengths and transition frequencies have been calculated
only for the sizes mentioned in Table IV, the data for
R =16 A are obtained by linear interpolation. The ex-
perimental and theoretical spectra agree well in the rela-
tive strengths of the two resolved absorption peaks, and
in the position of the first. However, the second peak in
the calculated spectrum is about 150 meV below that in
the experimental spectrum. The homogeneously
broadened single-particle spectrum has also been investi-
gated by Bawendi et al. using the PLE technique. In

(4)

where f; is the oscillator strength, 0; the transition fre-
quency, and I, is the homogeneous half-width of the ith
interband transition, and the sum is over all the transi-
tions from the filled levels to the unfilled ones. For calcu-
lating the absorption spectrum of a collection of QD's
with a distribution of sizes, we have to include the conse-
quent inhomogeneous broadening, which may be taken
into account by averaging Eq. (4) over a suitable size dis-
tribution. However, in the absence of a detailed
knowledge of the size distribution, we assume simply that
the Lorentzians in Eq. (4) may be replaced by 5 functions,
and that the size dispersion leads to a gaussian disper-
sion of the transition frequencies. We assume also that
the oscillator strengths are only weakly size dependent.
Then, the total absorption coefficient for a dilute collec-
tion of quantum dots is given by

0.6—

0.4-

0.2—

theory
---—expt.

(a)

Ib)

I—
L3

CL
—8 ~

CL

2

0

a(cu)-gf, exp[ —(co —0;) /o; j, 0.4 0.6 0.8

her - Eg (eV}

1.2

where 0; are the transition frequencies appropriate to the
average size, and o, is the net broadening of the ith tran-
sition.

It may be mentioned here that we have neglected the
local-Geld correction, which arises from the fact that the
electric-field penetration into a quantum dot depends on
its dielectric function. This can cause a shift of the reso-

FIG. 4. (a) Calculated (solid line) and experimental (dashed
line, adapted from Ref. 4) absorption spectra of a collection of
CdSe QD's with mean radius 16 A. (b) Theoretical single-
particle absorption spectrum with homogeneous half-widths of
35 meV compared with the PLE spectrum taken from Ref. 4.
The calculated individual transitions are indicated by vertical
lines with heights proportional to the oscillator strengths.
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Fig. 4(b), the PLE spectrum for 16-A CdSe QD's is com-
pared with our calculated homogeneously broadened ab-
sorption spectrum. We have used Lorentzian broadening
with a half-width of 35 rneV. The major individual tran-
sitions are also indicated, by straight lines, with the
height of the line representing the strength of the transi-
tion. We shall denote the two peaks in the experimental
absorption spectrum [Fig. 4(a)] by A and B. The PLE
spectrum resolves further substructure, denoted by C and
D, between peaks A and B. As is apparent from the
theoretical plots, the first peak 2 is due mainly to a single
transition, the 1I 8 -to-1I 6 transition, and may be denot-
ed 1(S+D) to Is+ in the spirit of the EMA. It is to be
noted that as the transition frequencies given in Table IV
include only the confinement energy, the Coulomb bind-
ing energy of 230 meV should be subtracted to obtain the
net shift from the band gap shown in Figs. 4(a) and 4(b).
The peak B is due to a large number of transitions, as can
be seen from the figure. The calculated single-particle
spectrum very well reproduces the frequencies of the
peaks seen in the PLE spectrum. However, the two differ
considerably in the relative height of the peak D, which is
very much stronger in the calculated spectrum, though
the strength of the B, C, and D peaks taken together
compares well with the PLE. This difference is rnanifest-
ed in the absorption spectra also, as the 150-meV
discrepancy mentioned earlier. This discrepancy may be
due to the simple way in which the Coulomb interaction
is included in the calculation, using the EMA value for
the 1s-1s exciton for all the transitions, and the neglect of
the surface polarization energy. A more elaborate calcu-
lation of these energies within tight-binding theory may
lead to a better agreement.

It may be mentioned that the many closely spaced
transitions that make up the peak B remain unresolved in
the PLE spectrum of Ref. 4. Thus the width of the peak
B in the PLE spectrum is not entirely due to the homo-
geneous broadening of a single transition, but is due to
the presence of a number of closely spaced unresolved
transitions as well. Further, in the hole-burning experi-
ment of Bawendi et al. , the peaks 3, B, and C bleach
together. This observation is consistent with our results,
as some transitions with the 1s CB level in common con-
tribute to each of these peaks.

Figure 5 gives the calculated absorption spectra for
CdS QD's of radius 11 A, as well as the experimental
spectrum of Esch et al. They estimated the size of their
nanocrystallites by applying the single-band EMA with a
finite confinement potential to the first absorption peak,
and obtained a size of 13.4-A radius. However, by
matching their first peak to the tight-binding result, we
estimate the size of their crystallites to be 11-A radius.
Our calculated spectrum for 11-A crystallites is obtained

0

by interpolation between the two sizes of 9 and 12 A.
Esch et aI. obtain two resolved peaks in their absorption
spectrum at 657 and 1168 meV above the bulk band gap.
These may be compared with our calculated spectrum,
with the corresponding two peaks occurring at 710 and
1190 meV above the bulk band gap. We have used a
Gaussian broadening of 200 meV for the lowest two tran-
sitions and 225 meV for the rest. We note that a
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FIG. 5. Calculated (solid line) and experimental (dashed line,
adapted from Ref. 5) absorption spectra of a collection of CdS

0
QD's with mean radius 11 A. The individual transitions in a
single QD are indicated by vertical lines with heights propor-
tional to the oscillator strengths.

We have presented a tight-binding calculation, using
an effective-bond-orbital model, of the optical-absorption

Coulomb binding energy of 390 meV, appropriate for 11-
A CdS QD's, is to be subtracted from the confinement en-
ergies given in Table III to get the transition frequencies
in the absorption spectrum. Quite unlike the case of
CdSe, two transitions, viz. , the 1I 8 -to-1I 6+ and the
1I 7 -to-1I 6+ transitions, separated by only 50 meV, make
up the first observed peak. This difference between CdSe
and CdS arises because of their very different spin-orbit
splittings. This first peak may be denoted by 1(S+D)
to 1s+. The second peak is made up mainly of the fol-
lowing transitions: the 1I 8+ to 1I 8 and 1I 8+ to 1I 7,
which are almost degenerate, and the 1I 6+ to 1I 7 and
1I 6+ to 1I 8, which are also almost degenerate. The
latter two are just outside the energy range shown in Fig.
5. In between are two weaker transitions, as can be seen
from the lines representing the individual transitions.

The calculated optical-absorption spectra of CdSe and
CdS QD's discussed above agree fairly well with the ex-
perimental results. The slight discrepancies that exist
may be related to a number of factors, an important one
being the sensitive size dependence of the energy levels in
QD's. A 10%%uo variation in size could result, on the aver-
age, in a 15%%uo variation in the confinement energy, in the

0
size range considered by us. Thus, an uncertainty of 1 A
in a 16-A-radius QD could lead to a variation of —100
meV. There could be similar effects due to shape and sur-
face structure uncertainties as well. Again, most experi-
ments, including those of Ref. 4, have been performed on
wurtzite QD's. However, the wurtzite structure can be
considered as a weak perturbation on the zinc-blende
structure, as the crystal-field splitting in both CdS and
CdSe is small, and our calculation for the cubic form can
be expected to provide a reasonably accurate description
of the hexagonal form as well.

IV. CONCLUSIONS
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spectra for cubic semiconductor quantum dots of spheri-
cal shape. We have developed a correspondence between
the interband transitions given by tight-binding theory
and those given by multiband EMA in the spherical ap-
proximation. This allows us to apply, to a large extent,
the stringent EMA selection rules to describe the inter-
band transitions, and to label these transitions, using the
simpler EMA notation, in terms of the envelope-function
angular momenta. For illustration, we have considered
CdS and CdSe QD's, which are representative of materi-
als with small and large spin-orbit splitting. By introduc-
ing a Gaussian inhomogeneous broadening, we have ob-
tained optical-absorption spectra which are in good quan-
titative agreement with existing experiments on both CdS
and CdSe. Our results show that the experimentally ob-
served peaks in the absorption spectra correspond to a
number of transitions which are not resolved partly be-
cause of the inhomogeneous broadening. It should be
possible to resolve these broadened peaks in samples with

smaller size distributions as well as by using hole-burning
and photoluminescence excitation techniques. The PLE
spectrum of 16-A CdSe QD's reported in Ref. 4 resolves
some of these transitions. The comparison of the PLE
spectrum with our calculated single-particle absorption
spectrum shows good agreement in the positions of the
peaks, but indicates an intriguing difference in the distri-
bution of oscillator strengths between two of the peaks.
Finally, we note that the size of the QD could be grossly
overestimated if it is obtained by comparing the experi-
mental absorption edge with the single-band EMA calcu-
lation, as is sometimes reported in the literature.
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