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Brittle fracture of disordered media are studied using Monte Carlo simulations in both two and three
dimensions (3D). Elastic and superelastic percolation networks with central and bond-bending forces
are used as models of disordered media. We find that the distribution of fracture strength in a solid with
broadly distributed microscopic heterogeneities, aud in randomly reinforced materials, is adequately de-

scribed by the classical Weibull distribution, rather than the recently proposed Csumbel distribution.
System-size dependence of the external stress F for fracture is also studied. We find that, contrary to re-
cent claims, for a d dimensional system of size L, F is given by F-Ld '/(1uL)~, where 0 ~ g ~0.5. The
fractal dimension of the cracks is found to be about 1.7 in 2D, close to that of fracture surfaces of natural
rocks at small scales. The scaling of the fracture stress crf near the percolation threshold p, is found to

T
obey, of -(p —p, ),where p is the fraction of intact springs (or the damage level) and, Tf -—2.42 in 2D
and Tf -—2.64 in 3D. The 2D result is in agreement with the experimental estimate of Tf for fracture of
thin perforated metal foils. These values are also close to the lower bound, Tf ~f —vd;„, where f is

the critical exponent of the elastic moduli of the system, v the correlation-length exponent of percola-
tion, and d;„ the fractal dimension of the shortest paths on a percolation cluster. Finally, we study the
similarities and differences between fractured and percolation networks.

I. INTRODUCTION

In papers I and II of this series we investigated linear
elastic properties of disordered media using percolation
networks with central and bond-bending (BB) forces. We
paid particular attention to the scaling laws that the elas-
tic moduli of central force (CF) and BB models obey near
the percolation threshold p„ investigated the conditions
under which such scaling laws may be universal, and ar-
gued that these scaling laws can provide a theoretically
consistent explanation for the experimentally observed
power laws for mechanical and rheological properties of
a large class of disordered materials including composite
solids, gel polymers, and porous rocks.

In this paper we employ elastic and superelastic per-
colation network to study fracture properties of disor-
dered systems such as composite solids and natural rocks.
In general, the growth of cracks and the formation of a
macroscopic fracture in a disordered system is a non-
equilibrium and nonlinear phenomenon. As such, the
class of problems that we study in this paper is very
different from those which were investigated in papers I
and II. However, one main goal of this paper is to inves-
tigate whether there are any relations with or similarities
between, elastic percolation networks (EPN's) studied in
papers I and II and the fractured networks studied in this
pape~

There already exists' an extensive literature on the
general problem of mechanical failure of disordered sys-
tems. The traditional approaches of fracture mechanics
to failure phenomena have certainly provided the frame-
work for analyzing a wide variety of problems without
considering the effect of microscopic disorder. The basis
for most of these traditional approaches is the important
criterion developed by Griffiths, who proposed that a

single crack becomes unstable to extension when the elas-
tic energy released in the crack extension by a small
length b, l becomes equal to the surface energy required to
create a length AI of crack surface. However, this cri-
terion is valid for solids that are macroscopically homo-
geneous.

In real engineering materials, and in natural rocks, the
presence of large number of fIaws with various sizes,
shapes, and orientations makes the problem far more
complex. Disorder comes into play in many ways during
a fracture process. Even small, initially present disorder
can be enormously amplified during fracture. This makes
fracture a collective phenomenon in which disorder plays
a fundamental role. In fact, due to disorder brittle ma-
terials generally exhibit large statistical fluctuations in
fracture strengths, when nominally identical samples are
tested under identical loading. Because of these statisti-
cal fluctuations, it is insufficient, and indeed inappropri-
ate, to represent the fracture behavior of a disordered
material by only its average properties, an idea which is
usually used in mean-field approaches: Fluctuations are
important and must not be neglected.

In the past few years, several relatively simple network
models have been introduced for both electrical and
mechanical failure of disordered systems. In these mod-
els each bond of the network is supposed to describe the
disordered system on a microscopic level, with failure
characteristics described by a few control parameters.
For example, for modeling of brittle fracture the bonds
may represent the microscopic elements of a disordered
solid that follow the laws of linear elasticity up to a criti-
cal threshold (e.g., in their length), beyond which they
can break irreversibly and create a microscopic crack in
the system. The sequence of breaking bonds and the spa-
tial patterns they form are supposed to present a real
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breaking process. Various properties of such failure phe-
nomena have recently been investigated, and several
important features of their behavior have been discussed
(see below). It is straightforward to incorporate almost
any kind of disorder in such models and study its effect
on the fracture properties.

In this paper we study several issues that are of funda-
mental importance to the fracture of disordered systems.
We first describe brieAy the models that we use in this pa-
per. We then study the distribution of fracture strength
(DFS) in EPN's and superelastic percolation networks
(SEPN's), the stress-strain diagrams for the fracture of
the elastic networks to see whether they follow universal
scaling laws, and the scaling law of fracture stress crf at
and near p, . Finally, we compare various properties of
percolation and fractured networks to see whether they
share any common features.

II. PERCOLATION MODELS OF FRACTURE

We consider an L XL triangular network, or an
L XL XL cubic or bcc network with periodic boundary
condition in one (2D) or two directions (3D). The bound-
ary condition in the other direction depends on the prop-
erties of interest that we wish to calculate. Every site of
the network is characterized by the displacement vector
u; =(u;„,tt;~, u,,), and nearest-neighbor sites are connect-
ed by springs. We consider here the case of a brittle ma-
terial for which a linear approximation is valid up to a
threshold (defined below). The displacement u, 's are
computed by minimizing the elastic energy E with
respect to u,. given by

E=—g [(u,. —u~. ).R, ] e,"+—g (58,,k) e;.e;k,
&ij & (jik)

where all notations are the same as in papers I and II.
Following Sahimi and Goddard, three general classes of
disorder can be considered. (i) Deletion or suppression of
a fraction of the bonds at random or in a prescribed
manner. This may represent the porosity of the system
before the fracture process begins. Alternatively, one can
designate a fraction of bonds as the rigid bonds (i.e., take
e;t= ~ for such bonds). This would present another
form of percolation effect (the SEPN's studied in papers I
and II), and can be thought of as random reinforcement
of the material in order to make it more resistive to
mechanical breakdown. Various forms of such reinforce-
ments are in fact used in practice. (ii) Random or
prescribed distribution of elastic constants e of the bonds.
The idea is that in real composites or rocks the shapes
and sizes of the channels through which stress transport
takes place are broadly distributed quantities, resulting in
a different e for each channel or bond. (iii) Random or
prescribed distribution of the critical thresholds. For ex-
ample, each bond can be characterized by a critical dis-
placement or length l„such that if it is stretched beyond

l, it breaks irreversibly. The idea is that a solid material
made up intrinsically of the same material (same e every-
where) may contain regions having different resistances

to breakage under an imposed external stress or potential
because of, e.g. , defects in manufacturing process.

We now introduce a threshold value l, for the length of
a bond, which is selected according to the probability
density function

where in most cases we used y =0.8 and y =0 [a uniform
distribution in (0,1)]. We use this power-law distribution
because, unlike the uniform distribution, such power laws
can give rise to unusual scaling laws for percolation net-
works and their universal properties, and, therefore,
we would like to see to what extent such extreme distri-
butions can affect failure phenomena studied here. We
then initiate the failure process by applying a fixed exter-
nal strain (or stress) to the network in a given direction.
The nodal displacements u; are then determined by the
same numerical methods discussed in paper I. Various
failure criteria are then used (see below) to break the
bonds of the network. Two different models of fracture
are also employed. In model 1 only one bond is broken at
each stage of the simulations, which is equivalent to as-
suming that the rate at which the elastic forces relax
throughout the network is much faster than the breaking
of one bond. In model 2 all bonds that meet the failure
criterion are broken. After a spring, or a set of springs, is
broken, we recalculate the nodal displacements u; for the
new configuration of the network, select the next spring
(set of springs) to break, and so on. If the external stress
or strain is not large enough to break any new spring, we

gradually increase it. The simulation continues until the
network finally becomes macroscopically disconnected.

III. DISTRIBUTION OF FRACTURE STRENGTHS

H(crf )=1—exp( cL "of ), — (3)

where c and m are constant, and d is the dimensionality
of the system. However, Duxbury and Leath" formulat-
ed a new distribution which is usually referred to as the
Gumbel distribution (GD), and is given by

H(trf )=1—exp[ cL exp( —k/of )]—, (4)

where k and 5 are also constant. Equation (4) is supposed
to be valid for percolating systems that are far from p, .
One can use Eqs. (3) and (4) directly to see which distri-

We define stress, or fracture strength o.f, of a system as
the lowest externally applied stress at which the system
breaks down. Similar to the previous works, ' we use
the hypothesis that the eventual failure of the system is
governed by the most critical Aaw in the system, i.e., the
weakest part of the system fails first. Hence, calculation
of the full distribution function of fracture strength crf
reduces to the calculation of the distribution function of
the most critical Aaw in the system. It can be shown that
this is an excellent approximation for the failure stress of
the system.

Traditionally, the Weibull distribution (WD) has been
used in fitting fracture strength data. This distribution is

given by
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bution fits the data better. However, a more sensitive test
of the validity of these two distributions can be made" if
we rewrite Eqs. (3) and (4) in alternative forms. If we
define a quantity A by

in[1 H(o—& ) ]A=A =3 = —ln ~—
w 6 L d

then, the WD can be rewritten as

A =a, ln(1/o~)+b, ,

while the GD can be rewritten as

AG =a2(1/o&)+b2 .

).0

0.8—

H (o-, )

0.6-

0.2 I

)0

p =0.8

l2 &Qx )Q

These two equations predict linear variations of A with
ln(1/o. &) or of AG with I/o&. The exact value of 5 has
not been determined yet, but lower and upper bounds for
it have been proposed. ' '"

We first studied the DFS in a CF triangular network,
both near and far from p, . Fracture in a CF network is
not only of theoretical interest, it might also be of direct
relevance to mechanics of granular packings, if the fric-
tion between the packing's particles is very small. Heal
and Srolowitz' already considered this system and corn-
puted the DFS at p =0.9. They found that the GD fits
their data much more accurately than the %'D, and that
1~5~2. We used a network of L =40, and simulated
1000 realizations at p=0. 9, which represents a much
more extensive simulation than that of Heal and Sro-
lowitz. ' The threshold values l, and the elastic con-
stants e of the bonds were the same for all bonds, and the
stretched spring whose length was maximum and larger
than its l, was broken. The distribution H(o f) was

found to have an almost symmetric, S-like shape. In
agreement with Heal and Srolowitz, we also found that
WD does not provide a very accurate fit of the simulation
data, and that a GD with 5=2 provides the most accu-
rate fit of the data.

Next, we lowered p to 0.8 and simulated another 1000
realizations. The resulting H(a&) is shown in Fig. 1,
where it is seen that this distribution has a long tail and is
very narrow. We found that neither the WD nor the
GD, for any 0 ~ 5 ~ 2, can fit the results accurately. If we
interpret 1 —p as the porosity of the system, we see that
as the porosity of the medium increases, neither the GD
nor the WD can accurately present the fracture strength
data. Van den Born et al. ,

' who measured the mechani-
cal strengths of highly porous ceramics, reported that the
length dependence of the mechanical strength is well de-
scribed by both distributions, but, for the failure pressure
dependence, the GD with 5=1 is more accurate. Evi-
dently, the critical porosity (percolation threshold) of
their system was very large (i.e., the percolation threshold
of the solid matrix is very low), so that the porous ceram-
ic whose strength they measured was far above its p, . Fi-
nally, we simulated 2000 realizations at p„=0.641, and
found that the resulting H(o &) is essentially a Dirac func-
tion.

Before presenting the results with the BB model, we
should discuss the above results. In a percolation clus-
ter far from p„ there are many multiply connected paths,

FIG. 1. Distribution of fracture strengths in a CF triangular
network at p =0.8.

called macrolinks, which support stress transport. In
such a system, the DFS may appear as a result of one or
both of the following factors: (a) Iluctuations of the indi-
vidual characteristics of the bonds (l, and e) in the net-
work and, (b) fluctuations of the macrolink sizes X
around the percolation correlation length g. Since in our
simulations described above l, and e were the same for all
bonds, the first factor cannot contribute to the DFS. As
one approaches p„ two changes take place: First, one
has fewer macrolinks and, second, the contributions of
the shorter macrolinks to stress transport become negligi-
ble compared with those of the longer macrolinks. Thus,
macrolink-to-macrolink fluctuations also decrease. At
p„ there is only one huge macrolink and, therefore, all
fluctuations disappear completely and the DFS should be
a Dirac function.

A network in which CF's dominate all other forces is
not an adequate representation of most disordered ma-
terials, because such networks have very high percolation
thresholds (see paper I), and their stress-strain diagram
during fracture is not realistic, as was shown by Beale
and Srolowitz. ' Hassold and Srolowitz' and Yan, Lee,
and Sander' studied fracture of a system whose elastic
energy, up to the threshold l„was given by the Born
model,

(XiE= g [(u; —u~) RJ] e~+ g (u; —u, ) ej .
2 (

~ ~ ) ( ~ ~ )

The percolation threshold of this system is the same as
that of scalar percolation (see paper II). However, it is
well known that this does not represent a rotationally in-
variant system, which makes the model unphysical for
representing disordered solids. Therefore, we studied the
DFS in the BB model on the triangular network which is
rotationally invariant, and has not been studied before.
We used an L =60 triangular network with P/a=0. 1

and p =0.9, and simulated 1000 realizations of the sys-
tem to calculate the DFS. We found that, similar to the
CF model at p =0.9, the DFS has an S shape. Figure 2
shows the fit of the results with the GD. In contrast with
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FIG. 2. Gumbel distribution fit of fracture strengths of a BB
triangular network for P/a =0.1,p =0.9, L =60, and 5 = 1.

FIG. 4. Weibull distribution fit of fracture strengths of a su-

perelastic triangular network with BB forces, for P/a=0. 1 and
I.=40. The fraction of rigid bonds is 0.1.

the CF case, the GD with 5= 1 provides the most accu-
rate fit of the data. However, we also found that the fit of
the data with the WD is only marginally worse than that
of the GD, which is again in contrast with what we found
for the CF case. However, when we studied the same sys-
tem at p =0.5, the results of which are shown in Fig. 3,
we found that the results can be accurately represented
by the GD with 5=1, while the WD provided consider-
ably less accurate fit of the data. Thus, in contrast with
the CF model, the accuracy of the fit of the results, for
the BB model near p„with the GD becomes considerably
better. Note that the p =0.5 network that we studied is
well below the CF percolation threshold, which is 0.641
(see paper I).

Next we studied the DFS in a superelastic percolation
network with BB forces, and determined it for three
values of p, where p now refers to the fraction of rigid
bonds in the network. We again used an L =60 network
with P/a= 1 and simulated 1000 realizations for each p.
We found that, for p =0.1, the WD provides an excellent
fit of the data; this is shown in Fig. 4. Since in a SEPN,
or in a reinforced material that can be Inodeled by a

SEPN, there is a broad distribution of the rigidity or elas-
tic moduli of the various islands (or clusters) of rigid and
soft zones, the implication is that the WD may be more
appropriate for representing the fracture strength of such
materials. In contrast, we found that the GD with any
1 ~ 5 ~ 2 cannot provide an accurate fit of the data. The
best fit of the data with the GD was obtained with
5=0.1. However, a power law, such as 1/of in the GD,
with a very small value of the exponent, is essentially
equivalent to a logarithmic law, which makes the GD
with a very small value of 5 essentially equivalent to the
WD. Similar results were obtained with p=0. 20. We
then studied the system at p =p, =0.347, and found the
resulting H(rrf) to have an S shape and to be very broad.
As Fig. 5 indicates, an accurate fit of the data is provided
by the GD with 5=0.5, which is again a small value of
the exponent 5. We may conclude that for a disordered
material in which there is a broad distribution of elastic
properties, a Weibull-like distribution, instead of the GD,
can provide a better representation of the DFS.
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FIG. 3. Same as in Fig. 2, but at p =0.5.
FIG. 5. Gumbel distribution fit of the results for a BB tri-

angular network with P/a =0. 1 and L =40, using 6 =0.5.
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IV. SCALING LAWS
FOR TWO- AND THREE-DIMENSIONAL

FRACTVRKD NETWORKS
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For the simulations reported in this section, we use a
slightly different failure criterion from what we used in
the previous section, although the two criteria are essen-
tially equivalent. The motivation for this is explained
below. As before, we initiate the failure process by apply-
ing a fixed external strain on a fully connected network in
a given direction (thus calculating the Young's modulus
7) and determining the nodal displacements u;. We use
two different failure criteria to initiate the formation of a
crack. In the first method, we select and remove that
spring for which the ratio p= I l /l, is maximum, where
l is the current length of the spring in the strained net-
work and l is the maximum microscopic length of a
bond in the network. In the second method, we select
and remove the bond for which U =fl, /f is minimum,
where f is the total microscopic force that the spring
suffers, and f~ is the maximum microscopic force on a
bond of the network. Both CF and BB models are used,
and in the latter case both f and f include the BB or
angle-changing forces.

'We are interested in the scaling behavior of the exter-
nal stress or force for breaking the network and its varia-
tions with the size of the system, since in practice this can
be measured easily. This force is proportional to pF or
UF in the models with first and second failure criteria, re-
spectively. Thus, a plot of F versus U (or p) would be
similar to the traditional stress-strain diagrams that are
measured routinely for composite solids (which is why we
used these failure criteria). Instead of showing the results
for each model and network size separately, we try to col-
lapse the data for all values of L onto a single curve. Fig-
ure 6 represents the results for the BB model in the tri-
angular network using sizes 2 =50 and 70, and y=0.
However, the data collapsing is not complete and, as can
be seen, there are three distinct regimes. The first regime
represents the initial stages of crack growth and is far
from the maximum of the curve. In this regime micro-
cracking propagates at a relatively slow rate, and is simi-

lar to a percolation process since the springs are broken
essentially at random. As microcracking proceeds, one
arrives in the second regime, which is in the vicinity of
the maximum. In this regime microcracking is intense
and the network is relatively close to macroscopic failure.
Beyond the maximum, the system is in the so-called
post-failure regime, and is highly sensitive to small varia-
tions in U or p. The qualitative features and the shapes
of these curves are in perfect agreement with direct ex-
perimental measurements and observations ' for vari-
ous kinds of concrete and other disordered solids. To ob-
tain quantitative information on the scaling of F with L,
we assumed that

F- [L '/(ln L )~]h ( U/L '), (9)

Qi ——1+0.1,
/=0. 1,

(10)

and found that 0, and g are insensitive to the parameter

y of the distribution function for the critica1 threshold l„
Eq. (2). In light of these results, we reanalyzed our 3D
results presented previously, ' and found that Eq. (9) can
describe the data very well if we take

0)——2+0. 1,
/=0. 2,

(12)

(13)

which suggest that for a d-dimensional system (d =2, 3)

F [L -'/(ln L )~]h( U/L ') . (14)

Our 3D results were obtained with very small networks
(the largest size used was L =12). Recent simulations of
van den Born using 3D CF networks with sizes up to
L =32 also agree with Eq. (14). Note that Eq. (14) has a
simple interpretation: L, " ' is the surface area on which
the stress F is exerted, and (lnL )~ is just the manifesta-
tion of size effects on the fracture process.

We also looked at the variations of F with N„ the
number of broken springs during the fracture process.
Figure 7 shows the results for the BB model in the tri-
angular network, where we have attempted to collapse
the data for I =50 and 70 onto a single curve. If we as-
sume that

where 0, and g are two presumably universal critical ex-
ponents, and h is a scaling function. The logarithmic
term is suggested by the theoretical analyses of Duxbury,
Heal, and Leath' and Kahng et al. " We varied both 0&
and f in order to obtain the most complete collapse of
the data. We obtained

F-L 'g(N, /L '), (15)

4

~ L =50
L=70 we find that the most complete collapse of the data is pro-

vided by
0O' ' I & 1 i i l I & t i I

0.5 f.o ).5 x &0
U/L

02 ——1+0.05,

03 -—1.7+0. 1 .

(16)

(17)

FIG. 6. Collapse of stress-strain data in the fractured tri-
angular network with BB forces for sizes L =50 and 70.

The value of Az is in complete agreement with Eq. (14),
as it must be. Note that 03 represents the fractal dimen-
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0.07

0.05

strain was increased monotonically and continuously un-
til the system failed macroscopically, whereas in the
second method stress was increased monotonically. They
found that in both tests the fracture stress o.f vanished
according to a power law

0.04 (18)

0.03

0.02

where Tf is a new critical exponent which they found to
be

Tf ——2.5+0.4, (19)

0
0 0.2 0.4 0.6 0.8 1.4

FIG. 7. Collapse of stress-strain data in the fractured tri-
angular network with BB forces for sizes L =50 and 70. X, is
the number of broken bonds.

sion of all cracks formed in the network. If we calculate
the fractal dimension of the sample-spanning fracture, we
find it to be about 1.2. This value of 03 agrees with the
fractal dimension of 2D diffusion-limited aggregates
(DLA's). However, we believe that this agreement is for-
tuitous, since there is no relation between the DLA mod-
el and our models. On the other hand, our result for A3
is consistent with that of fracture surfaces of rocks at
small scales, in the range 1.6—1.7.

We should mention here the results of de Arcangelis
et al. ,

' who also studied fracture of 2D solids using a
lattice of beams (instead of springs used here). These au-
thors suggested that 0&-—Q2-—0.75 and 03-—1.7. Their
value of A3 is in complete agreement with ours, but when
we reanalyzed their data we found that their results can
be fitted more accurately with Eq. (14). Therefore, we be-
lieve that Eq. (14) provides accurate representation of the
currently available simulation data.

and, therefore, Tf is not identical with the elasticity ex-
ponent f estimated in papers I and II. Sieradzki and Li '

measured the fracture stress of a system composed of a
2-mm thick plate of aluminum with holes punched at po-
sitions corresponding to a triangular network of 21 rows
and 20 columns. The fracture stress was determined by
obtaining the full load-displacement curve for the sample
to failure. They obtained Tf-—1.7+0.1, which is much
lower than that of Benguigui, Ron, and Bergman. This
low value of Tf is presumably because of the fact that
they did not measure o.f in the critical region close to p, .
A glance at their results shows that the measurement
points were too far from p, . Moreover, their sample size
was too small, giving rise to significant size effects.

We carried out Monte Carlo simulations using triangu-
lar and simple-cubic networks with central and BB forces
to see if these models of fracture can reproduce the mea-
sured value of T& Equatio. n (18) can be written in the

1
form of —g f, where g is the correlation length of per-
colation and Tf =Tf/v, with v being the critical ex-
ponent of g. Thus, similar to our analysis in paper I and
II, we can use finite-size scaling method to estimate f'&.

The simulations were done at p, =0.347 for the triangu-
lar network and at p, =0.249 for the simple-cubic net-
work. The statistics of our simulations are given in Table
I. We used

V. SCALING OF FRACTURE STRESS
NEAR THE PERCOLATION THRESHOLD

0 f L t+1+02gl(L)+~3g2(L)] (20)

We now study the scaling of fracture strength (or
stress) of in a percolating system near p, . The motiva-
tion for this study is the experimental works of Bengui-
gui, Ron, and Bergman and Sieradzki and Li. ' In their
experiments, Benguigui, Ron, and Beigman measured
the strain and stress of' a perforated metal foil (a 2D sys-
tem) and of a 2D diluted elastic network near p, . Two
different techniques were used. In the first method, the Tf ——2.42+0. 14 . (21)

to fit our data and estimate Tf. Similar to our analyses in
I and II, we found that g, (L)=(lnL) ' and g2(L)=L
provide the most accurate fit of the data. Figure 8 shows
the results for the triangular network, from which we ob-
tain Tf = Tf /v = 1.82+0. 14, which, together with
v(d =2)=—', , yield

TABLE I. Number of realizations for each network-sized L for calculating the critical exponent T&

[see Eq. (18)] at the percolation threshold.

L 20 30 35 40 45 50

Triangular 1000 800 600 600 600

L 15 18 20

Cubic 600 450 240 120 100 50
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=1.34, predict that

2.45~ TI(d =2) ~2.96,
2.58 ~ T~( d = 3 ) ~ 2.76,

(27)

(28)

which again agree with our results. Moreover, for both
the triangular and cubic networks, our results are close to
the lower bound of Bergman and, therefore, the relation
T& =f—vd;„, cannot be ruled out.

VI. COMPARISON OF PERCOLATION
AND FRACTURED NETWORKS

-15
2.7

I

2.9
I

3.5
In L

I

3.7
I

3.9

FIG. 8. Variations of fracture stress o.&, at the bond percola-
tion threshold of a BB triangular network of size I..

T~-—2.64+0.3 . (22)

In addition to the experimental result of Benguigui,
Ron and Bergman, there are also some theoretical for-
mulae and bounds for T&, relating it to the percolation
exponents studied in papers I and II. Roy and Chakra-
barti proposed a lower bound for TI based on the
node-link-blob model of percolation backbones near p,
(see paper II). They proposed that

T/ & [f+(d —dsB)v]/2, (23)

where daz is the fractal dimension of percolation back-
bones. This implies that

Tf(d =2) &2. 12,

T/(d =3) & 2.42,

(24)

(25)

both of which agree with our results. Sharper upper and
lower bounds for Tf were proposed by Bergman, "who
suggested that

f vd;„~ T~~f 1, — — (26)

where d;„ is the fractal dimension of the shortest paths,
or the chemical paths, on the backbone. These bounds,
together with, d;„(d =2)= l. 13, and d;„(d =3)

This is in good agreement with the result of Benguigui,
Ron, and Bergman. For the cubic network we obtained

T& = T&/v=3+0. 3, which, together with v(d =3)=0.88,
yields

The last issue that we would like to address in this pa-
per is the relation between fractured and percolation net-
works. In general, the growth of cracks in a disordered
solid is a nonequilibrium and nonlinear phenomenon.
Moreover, the growth of microcracks in a solid is not
usually at random, but is dependent upon the stress or
strain field around the cracks. On the other hand, static
and linear properties of disordered solids are usually
modeled by percolation networks whose bonds are cut at
random to mimic the effect of microporosity of the solid
matrix. Percolation phenomena usually represent
second-order phase transitions, whereas many fracture
phenomena which are studied here or take place in na-
ture resemble first-order phase transitions. However, un-
der certain experimental conditions the accumulation of
damage and the growth of cracks can take place essen-
tially at random as in, e.g. , a solid which is under rapid
thermal cycling, or a system in which the heterogeneities
are broadly distributed, e.g., reservoir rocks, in which
case a percolation process may be able to describe the
phenomenon. Therefore, it is important to know the ex-
tent of similarities between the two phenomena. If there
are similarities between the two, then, percolation phe-
nomena, which are now well understood and much easier
to study, may help us to gain a deeper understanding of
fracture of disordered solids and natural rocks.

There are two ways of comparing a fractured network
with a percolating network. The first method is based on
comparing the force distributions (FD's) and their mo-
ments in the two networks. Figure 9(a) shows the FD
during a fracture process in the triangular network in the
BB model after a few of bonds are broken, with y=0,
P/a=0. 01, and I.=50, using 50 difFerent realizations.
The fraction of the remaining bonds is r =0.985, and the
fracture process is modeled according to model 1 dis-
cussed above, i.e., only one bond is broken at each stage
of the simulation. Figure 9(b) shows the FD in the same
triangular network in which a fraction 1 —r=0.015 of
the bonds have been removed at random, i.e., according
to the percolation algorithm. The qualitative features of
the two FD's are completely similar. Figure 10(a) shows
the FD in the same fractured network in which 90% of
the bonds have remained intact. At this point, the net-
work is at about half the distance between its macroscop-
ic failure point, which is at about r =0.81, and its fully
connected state (r = 1). Figure 10(b) shows the FD in the
percolating triangular network at p =0.7, which is also at
about half the distance between its bond percolation
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FIG. 9. Force distribution in a fractured and a percolation
triangular network with BB forces with y=O, p/a=0. 01, and
L =50. (a) The fractured network at a damage level of 0.015.
(b) The percolation network in which a fraction 0.015 of the
bonds have been removed at random.

FIG. 10. Force distribution in a fractured and a percolation
triangular network with BB forces with y=O. p/a=0. 01, and
L =50. (a) The fractured network at a damage level of 0.1. (b)
The percolation network in which a fraction 0.3 of the bonds
have been removed at random.

threshold p, =0.347 and p = 1. At this point, qualitative
differences between the two processes have already mani-
fested themselves in the two FD's. Finally, if we calcu-
late the FD's very close to the macroscopic failure point
of the network (r =0.81) and at p, of the percolating net-
work, we find that the two FD's are completely different.

Next, we used @=0.8, and calculated again the FD's
in the fractured and percolating networks, using another
50 realizations. The rest of the parameters were as be-
fore. Figure 11 shows the results at r =0.7, which should
be compared with the FD of the percolating network at
p=0. 7, shown in Fig. 10(b). In this case, the two FD's
are qualitatively similar. Both are unimodal and very
broad. Increasing y makes P(1,), the distribution of
threshold values l„broader. As a result, more bonds are

fr
broken before the network fails macroscopically and thn e
racture process resembles more closely a percolation

phenomenon. However, when we calculated the FD ve
l

very
c ose to the macroscopic failure point of the fractured
network (r =0.58), we found it again to be very different
from that of the percolation network at p, .
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FIG. 11. Force distribution in the fractured triangular net-
work with BB forces, with y =0.8, p/a=0. 01, and l. = 50, at a
damage level of 0.3. Compare this with Fig. 10(b).
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These results show that, regardless of the value of y (or
the broadness of disorder distribution), the initial stages
of fracture and percolation processes are very similar.
That is, during the initial stages of the fracture process,
the bonds that are broken according to any failure cri-
terion are distributed essentially at random in the net-
work. In these initial stages, the stress enhancement at
the tip of a given microcrack is not strong enough to en-
sure that the next bond that break would be at the tip of
this microcrack. However, as more microcracks nu-
cleate, the effect of stress enhancement becomes stronger,
and the deviation from a random percolation process in-
creases. Beyond a certain point in the growth of the
cracks, there will be no similarities between the two pro-
cesses. Increasing y only enhances and extends the simi-
larities between fracture and percolation processes. In
fact, in the limit y=1, i.e., the limit of a highly hetero-
geneous system in which the bonds of the network are
infinitely weak, we expect the two processes to be essen-
tially identical. This was already suggested in "model
III" of Sahimi and Goddard, although the similarities
and differences between the two phenomena were not
quantified. Roux et al. suggested the same, but they
also did not provide quantitative information.

Given these similarities and differences between frac-
ture and percolation processes, one would naturally be in-
terested to locate the point at which a fracture process
may start to deviate from a percolation phenomenon.
The key clue is already provided in the stress-strain dia-
grams discussed above. Equations (9), (14), and (15) are
statements of finite-size scaling which, as discussed
above, can represent the fracture data up to the max-
imum of the stress, but beyond which the results for vari-
ous network sizes cannot be collapsed onto a single curve,
and finite-size scaling breaks down. This finite-size scal-
ing is also valid for percolatio'n networks for any p in the
interval p, ~p ~ 1 (as long as I. (g), albeit with diff'erent

exponents and scaling functions. Therefore, in the type
of disordered networks we study here, i.e., those that are
microscopically disordered but macroscopically homo-
geneous, fracture and percolation processes are complete-
ly similar up to the maximum in the stress-strain diagram
of the fractured system, i.e., in the regime in which
finite-size scaling is valid for the fractured networks, but
they will not be similar beyond this point.

The second method of comparing fracture and percola-
tion processes is based on the values of the ratios of vari-
ous elastic moduli of the two systems. It has been sug-
gested that for EPN's the ratio C»/p takes on a
universal value at p„ independent of the microscopic
properties of the system (see paper II). We have deter-
mined such ratios for our fractured networks with both

models 1 and 2 and have found that, consistent with ex-
perimental data on fractured rocks, they are indeed
universal at the macroscopic fracture point, but their
value at this point, which we have found to be about 4
for 2D networks, is completely different from that of per-
colation networks, which is about 3. Thus, once again
one observes certain similarities between the two phe-
nomena, but these similarities do not extend all the way
to the percolation and macroscopic failure points.

VII. SUMMARY

We studied fracture properties of disordered systems
based on a number of percolation models. We found that
the distribution of fracture strength in a disordered medi-
um with broadly distributed microscopic heterogeneities
is adequately described by the classical Weibull distribu-
tion, rather than the Gumbel distribution. In this sense,
the Weibull distribution is more robust, and its range of
applicability appears to be broader than that of the Gum-
bel distribution. We also studied size effects in the
stress-strain diagrams during fracture processes and pro-
posed universal scaling laws that relate fracture stress to
the size of the system. Scaling behavior of fracture stress
near p, was also studied, and the appropriate critical ex-
ponents were estimated. Finally, we investigated the
similarities and differences between fracture and percola-
tion processes. We found that the extent of similarities
between the two phenomena depends on the strength of
disorder. If the fracturing system is macroscopically
heterogeneous, the two phenomena are essentially identi-
cal, whereas if it is macroscopically homogeneous, then,
the two phenomena are completely similar up to the max-
imum in the stress-strain diagram of the fractured sys-
tem, but are not similar beyond this point.
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