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Aharonov-Anandan phase and persistent currents in a mesoscopic ring
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The exact solution for a mesoscopic ring in the presence of a classical, static, inhomogeneous magnetic
field is found and used to derive the formulas for persistent currents. From the derivation, we can see
the close relation of the Aharonov-Anandan phase to the persistent currents. In the adiabatic limit, our
results are shown to be identical with those of Loss et al. , who explored the connection between the per-
sistent currents and the Berry phase.

The problem of persistent currents in mesoscopic rings
has attracted much attention for years. ' " In recent ex-
periments, Levy et al. found the evidence for a flux-
periodic persistent current in a mesoscopic ring threaded
by a magnetic flux. Subsequently, some interesting inter-
pretations of the experiments were proposed. ' On the
other hand, there has been much interest in the adiabatic
geometric phase —Berry phase' and its nonadiabatic
generalization —Aharonov-Anandan (AA) phase. ' Re-
cently, Loss, Goldbart, and Balatsdy' studied the per-
sistent currents in a mesoscopic ring in the presence of a
classical, static, inhomogeneous magnetic field by exam-
ining the coupling between spin and orbital motion
through the Zeeman term. With the help of a path-
integral approach to decouple the spin and orbital motion
in the adiabatic approximation, they first demonstrated
the deep connection between the Berry phase and the
persistent currents and discussed possible experimental
verification. The purpose of this paper is to find the exact
solution' and corresponding persistent currents for the
system studied by Loss, Goldbart, and Balatsdy without
using the adiabatic approximation. ' In our approach,
the connection between the AA phase and persistent
currents is exhibited. In the adiabatic limit, the AA
phase becomes the Berry phase. With the help of it, the
results in Ref. 1 are reobtained. The condition for the va-
lidity of the adiabatic approximation is then discussed. '

The Hamiltonian H for an electron of mass m, charge
e, and spin —,', confined to a ring of radius a, in the pres-
ence of an inhomogeneous magnetic field BR'(8)=V'X A,
is as follows

H=[Pe —ea A /c ] /'(2ma ) gefiBR(8). tr/(4m—c ), ('1)

with Pe= inc}/t)8 —and R'(8)=e, siny+e, cosy. The tilt
angle y describes the deviation of the magnetic field
B&(8) from the z axis. Here, the ring lies in the x yplane-
with its center at the origin, r, 8, and z are the usual cy-
lindrica1 coordinates, and e„and e, are radial and axial
unit vectors located at the point 0 on the ring for the

cylindrical-coordinate system.
We now turn to the exact solution of the stationary-

state Schrodinger equation with Hamiltonian (1). Be-
cause of the cylindrical symmetry, the system possesses a
conserved quantity, Pe+A'o /2. From the periodic con-
dition for the wave function in a ring, it is easily seen that
the common eigenstates of P+So. /2 and 0 are of the
form

( 8 ) ien /8( 2) 1/2

(8) cine/(2 )1/2

cos(P„ /2)
e' sin(P„/2)
—sin(P„ /2)

e' cos(P„/2)

(2a)

(2b)

cos+ 8 sing
+Awg

e "sing cos+

with w„=iil[n+1/2 —eaA/(Pic)]/(ma ) and wii
geB/(4mc). In order —to get the exact solution, we

have to determine p„. In the following, we show that the
problem of determining p„ is equivalent to finding the
AA phase and dynamical phase for a time-dependent sys-
tem.

Considering the time-dependent Schrodinger equation,

(ibid/"t)t)@=H, (t)@, H, (t)=fiwtth(t) o, (4)

where n is an integer and p„ is a 8-independent parame-
ter. By calculating the expectation values of o. as a func-
tion of 8, it is readily seen that p„ is the angle by which
the spin deviates from the z axis. The stationary-state
Schrodinger equation can then be written as

H+„„=A' [n —eaA/(A'c)] /(2ma )+„„
0 0

+ Aw~ 0
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for the spin motion of an electron in a time-varying mag-
netic field BR(t )

'= B [siny cos( w„ t ), siny sin( w „t ),cosy ].
It is easy to see that there exists an invariant I, ( t ) satisfy-
ing dI, (t)/dt i h—' '[I„H, ]=0,

I,(t) =siny„cos(w„t )cr'+siny„sin( w„t )o +cosy„o

(5)

with y„=tg '[siny/(cosy —w„/2wii ) ]. The eigenvalue
equation of I,(t) is

I, (t)@„„(t)=@@„„(t)(p=+, —)

with N„+(t)= [cosy„/2, exp(iw„t )siny„/2]r and
(t) =[—siny„/2, exp(iw„t)cosy„/2] . It is easily

found' that the exact solution of Eq. (4) is

exp i [ —w„(1—p cosy„)/2
—pwiicos(y„y)]dt' 4—„(t),

which satisfies the cyclic condition' for the time interval
[0,2ir/w„]. The AA phase and dynamical phase associ-
ated with this cyclic evolution are

2n. /w„
@„„(t)(id/&t )@„„(t)dt= ~—(1—p cosy„)

and

2m. /w„I @„„(t)[ fi '—H, (t)]C „„(t)dt
= —2prtwii cos(y„—y) /w„,

respectively. According to the invariant theory, '

ikey—/dt+H, (t) is diagonal in the representation with
the bases @„„(t)(p = +, —),

0 0 cos+
[ —isa/at+H, (t))@„„(t)=Rw„0 1

+fiw, exp iw„t siny

exp( iw„t—)siny

cos+ 4 „„(t)

= [iiiw„( 1 —p cosy„) /2+ piriwii cos(y„—y) ]@„„(t), (7)

where the term A'w„(1 —pcosy„)/2 is related to the AA
phase and the term pfiwiicos(y„—y) is related to the
dynamical phase. By comparing the stationary-state
Schrodinger equation (3) and Eq. (7) satisfied by the in-
stantaneous eigenstates of invariant (5), the P„ is deter-
mined and the corresponding exact eigenfunction 4„„
and eigenvalue E„„obtained

n +n

= tan '
I siny/[cosy —w„ /(2wii ) ], (8)

4'„„'=exp(in8)/(2ir)'~ N„„(t=8/w„), (9

E„„=fr[n eaA /(—iric)] /(2ma )+iriw„(l —pcosP„)/2

+pAwii cos(P„y ) (10)

The equilibrium expectation values of the dimension-
less persistent charge and spin currents, i.e., (J ) and
(J') (i =1,2, 3), in canonical ensemble are defined as fol-
lows:

(J ) =Z 'tr[exp( DH)(P& —eaA /c)gi']/A'—

(p=0, 1,2, 3),
where o. is the identity operator in spin space and Z is
the partition function at temperature T= I/(Pi~'). With
the help of the exact eigenvalues of H, we calculate the
expectation values (Ji') for a ring having one electron
only,

(J') =(J') =0 (12)

—(sin P„)/2]exp[ PE„„]. —(13)

It is apparent that they are applicable to a ring contain-
ing a noninteracting Fermi gas.

Now we turn to the adiabatic limit of the exact solu-
tion (8). It should be pointed out that the original prob-
lem is that of solving the stationary Schrodinger equation
(3). In this problem, the usual adiabatic approximation is
without meaning. In Ref. 1, the adiabatic approximation
is introduced in a path-integral approach to the problem.
In the present paper, solving Eq. (3) reduces to solving
Eq. (4) which is a time-dependent Schrodinger equation.
In this time-dependent problem, the usual adiabatic ap-
proximation is meaningfu1. The condition for the validity
of the usual adiabatic approximation is siny(w„ /wii )~0,
which can also be expressed as (siny/awii )( V„„
+@A'cosP„/2ma )~0, where V„„ is the expectation
value of the electron's velocity for the state 4„„.Ap-
parently, this condition requires that B be suKciently
large. Under the condition sing(w„/wii )~0, we have

n X (14)

(J ) =Z ' g {pcosP„[n—eaA/(Ac)+(1 —pcosj3„)/2]
n, p

(J ) =Z ' g [n —ea A /(A'c )
n, p

+ ( 1 —p cosP„)/2]exp[ PE„„], (11)—

E„+=alii [n —eaA /(Pic)] /(2ma2)

+ fiw„( 1 —cosy ) /2+ iiiw~

=E„++A' sin y/( 8ma ), (15a)
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FIG. 1. Charge current (J ) and its adiabatic approximation
(J, ) as functions of temperature T (mK) for y=n/6, 8=100
Gs, a =3000 A, and —eaA /(A'c) —[ —eaA /(A'c)]=0. 4.

FIG. 2. Spin current (J') and its adiabatic approximation
(J,') as functions of temperature T (mK) for y=m/6, 8=100
Gs, a =3000 A, and —eaA /(A'c) —[—eaA /(itic)]=0. 4.

E„=A' [n —eaA/(iiic)] /(2ma )

+ iriw„( 1+cosy ) /2 —iriw~

=E„+, +A' sin y/(8ma ), (15b)

adiabatic approximation in the low-temperature limit in-
dicated by the subscript zero. It is easy to obtain

(J )o= [n —eaA /(A'c)+(I pcosP—„)/2]
and

where E„„=[iri /(2ma )][n —ea A /(Pic) —p(cosy —1)/
2] +piiiwii (p=+, —) are the eigenvalues obtained in
Ref. 1 in the adiabatic limit there. It is worth pointing
out that E„„and c„„lead to the same partition function
since the difference between E„„and c.„„is independent
of n and p. This is to say that the adiabatic limit here is
in agreement with that in Ref. 1. In the adiabatic limit,
the partition function and persistent currents become

Z, = g exp( —PE„„),
n, p

(J, ) =Z, ' g [n —ea A /(iiic )
n, p,

+p, ( 1 —cosy ) /2]exp( —PE„„),
(J, ) =Z, ' g p[n —eaA/(iiic)+p(1 —cosy)/2]

n, p

X cosy exp( —PE„„)—(sin y) /2 .

(16)

(17)

(18)

With a fixed B, since w„depends on the quantum num-
ber n, even if the adiabatic approximation is valid for the
energy eigenstates near the ground state, it is to be violat-
ed as ~n

—eaA/(iiic)~ becomes large enough. This is to
say that the deviation of the adiabatic approximations
from the exact values for the persistent current increases
as temperature increases. It is clearly seen that the tem-
perature plays an important role in determining whether
or not the adiabatic approximation can be used.

The dependence of the charge and spin currents on
temperature are depicted in Figs. 1 and 2, from which it
can be seen that the exact spin current (J ) is
significantly different from its adiabatic approximation
(J, ) for the parameters chosen there, as temperature is
sufTiciently high. Note that phase coherence is preserved
in the ring with circumference I, =2 pm as temperature
is kept below 200 mK.

We now turn to the discussion of the validity of the

(J )o=pscosP„[ns —eaA /(Pic)+ —,'(1 —p cosP„)]
ng

—(sin P„)/2,
where ng and p~ are the quantum numbers corresponding
to the ground state. Here, we want to point out that,
even in the low-temperature limit, the condition for the
validity of the adiabatic approximation may still be
violated if the parameters (y, B,a ) are not properly
chosen.

From the expression (J o )o=(J )o(o )o—(sin2p„) /2 ( ( cr )o
=p cosp„ is the magnetization) for

g
the low-temperature limit of the spin current, we can see
that the term "—(sin p„)/2" indicates the correlation of
o. and Pe —ea A /c, reflecting the effect of the spin-orbit
coupling in an inhomogeneous magnetic field. These
correlations between spin and orbital momentum were
thoroughly discussed in Ref. 1, and also in Ref. 15, by
Loss, Goldbart, and Balatsdy.

As concluding remarks, it is worthwhile to emphasize
the following: (i) Our method of finding the exact solu-
tion is more complicated than a straightforward diago-
nalization of the eigenvalue equation. ' ' This method,
however, stresses the role of the AA phase and its adia-
batic limit, and is therefore interesting; (ii) the method in
the present paper can only be used to study the special
case of cylindrically symmetrical fields while the path-
integral method' allows the study of arbitrary textures;
and (iii) the experiments proposed by Loss, Goldbart, and
Balatsdy can also be used to verify the results (especially
the nonadiabatic effect) obtained in the present paper.
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