PHYSICAL REVIEW B

VOLUME 47, NUMBER 12

15 MARCH 1993-11
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A tight-binding model in the three-center representation, with an orthogonal sp® set of orbitals and in-
teractions up to third neighbor, is introduced. This model gives a good description of bulk Si and Ge
and reproduces known results for their band structures, including the lowest conduction band, their den-
sity of states, effective masses, deformation potentials, and dielectric function. Also, this is an efficient
model as far as computer time is concerned; therefore, it is most appropriate for application to superlat-
tices (SL’s). In particular, it is used to study the electronic properties of some strained Si/Ge superlat-
tices. Their band structure, confinement of superlattice states, transition probabilities, effective masses,
and spin splittings were investigated and the influence of the strain and superlattice periodicity was stud-
ied. It was found that under specific conditions of growth, some SL’s can be direct-gap materials. Final-
ly, the comparison with experimental results shows that the present model is a realistic one and can be
used to describe the electronic properties of the strained Si/Ge SL’s and clarify many of the points that

are under debate.

I. INTRODUCTION

Recent developments in advanced epitaxial techniques
(molecular-beam epitaxy, metal-organic vapor deposition,
etc.), have made superlattices (SL’s) one of the most
promising research fields in semiconductor physics.
Among these structures, the coherently grown lattice-
mismatched (Si), /(Ge),, superlattices have been the ob-
ject of considerable interest, since they provide the possi-
bility of designing structures that exhibit desired elec-
tronic and optical properties.! 3 This is possible because
these properties can be modified by strain effects, zone
folding of the bands, and quantum confinement effects.
One of the exciting prospects for these SL’s is that of en-
gineering a new direct-gap material from the two constit-
uent materials (Si and Ge), which are indirect semicon-
ductors. The first theoretical work on this subject was
carried out by Gnutzmann and Clausecker.* The techno-
logical importance lies in the expectation that the direct-
gap Si/Ge SL’s may be used as components in integrated
optoelectronic devices, in conjunction with the already
well-established and highly advanced silicon technology.

Up to now, a lot of experimental and theoretical works
have been reported for the Si/Ge SL’s. Most of the ex-
perimental work consists of electroreflectance,
photoreflectance, piezoreflectance, and photolumines-
cence measurements.” " '© Very recently, dielectric func-
tion and absorption measurements have also been report-
ed.!!”!* The first samples that have been experimentally
investigated were finite SL’s grown on Si or Ge. Because
of the critical thickness limit of the SL’s grown on pure Si
or Ge, the idea of strain-symmetrized SL’s have been sug-
gested by Kasper et al.!> Special interest has been devot-
ed to structures with n +m =10, since theoretical predic-
tions and experimental evidence are in support of the idea
that these SL’s are direct-gap materials.”!1"12:16718 Be_
cause of the relative difference in the electronic structure
of the constituent materials, the most appropriate
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theoretical methods for SL band-structure calculations
are the microscopic ones. Such methods are the ab initio
and empirical pseudopotential method, the LMTO
(linear-muffin-tin-orbitals) method, the empirical tight-
binding method, etc. Indeed many theoretical articles
based on previous methods have been published for a
variety of Si/Ge SL’s.!3730 From these studies, it seems
that the least computationally involved and simplest
method is the empirical tight-binding one. It is the aim
of the present paper to show that electronic and optical
properties of Si/Ge SL’s can be reliably calculated with
this method.

In the case of Si/Ge strained SL’s, the electronic struc-
ture of the constituent elements has been extensively
studied. It would then be a good test for our model to de-
scribe all this knowledge in connection with it in an
effective and economical way. For the interpretation of
the experimental data, theoretical results concerning the
lower conduction and upper valence bands, effective
masses, deformation potentials, transition probabilities,
and the dielectric function are needed. Many tight-
binding schemes have been introduced in the past in or-
der to obtain this information. Up to now, not a single
one exists that has been demonstrated to correctly repro-
duce all the previously mentioned experimental data.
The simplest tight-binding approach is to use an orthogo-
nal sp> basis set with nearest-neighbor interactions.’! It
is then possible to obtain a quite accurate description of
the valence bands but not the conduction ones. Since the
conduction bands are important in many phenomena,
much effort has been spent on their accurate description.
In this spirit, Pandey and Phillips®? have introduced some
second-neighbor interactions. Now the valence bands are
accurate but the conduction bands are still not of the
same quality. An advance in this problem has been made
by Mattheiss and Patel,>®> who have proposed a
nonorthogonal tight-binding basis set within the two-
center approximation and interactions up to third neigh-
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bors. This amounts to a total of 26 nonequivalent in-
teraction parameters. Thus a very good description of
the valence and the lowest conduction bands has been
achieved. The nonorthogonality of the basis set makes
the calculation quite complicated. To avoid these com-
putational difficulties, a very interesting idea has been in-
troduced by Vogl, Hjalmarson, and Dow.** These au-
thors have introduced one additional orbital to the
minimal sp? basis set. This new orbital has been termed
s* and its purpose is to take into account, in an effective
way, the d excited atomic states not included in the
minimal basis sets. Within this basis set a good descrip-
tion of the lowest conduction bands has been obtained in
the A and A directions of the Brillouin zone (BZ), while
the X direction, which is important for optical properties,
is not well described. In all the above calculations the
two-center approximation to the interatomic potential
matrix elements has been used. On the other hand, it is
more advantageous to use the full three-center represen-
tation at the cost of a slightly larger parameter set.
Papaconstantopoulos®® has determined sets of interaction
parameters for 53 elements, both two center and three
center and with orthogonal and nonorthogonal basis sets.
The best description, as expected, is the one with a
nonorthogonal basis set and three-center integrals, but it
is computationally the most time consuming.

In the previous models, the interaction parameters
have been determined for the equilibrium atomic spacing,
and no prescription was given as to how these interaction
parameters change with the lattice constant or strain.
This is a very important issue, since in the Si/Ge SL’s the
materials are under strain. Brey and Tejedor?® have care-
fully adjusted the Vogl, Hjalmarson, and Dow>* parame-
ters and determined, by comparison to ab initio calcula-
tions, how the parameters change with a change in the
lattice constant. In this way they were the first to deter-
mine the electronic structure of the (Si)4(Ge), and
(Si)¢(Ge)g superlattices. An improvement to this ap-
proach was the work of Rucker, Enderlein, and
Bechstedt.?> These authors have used three-center in-
tegrals and local-field terms to describe the effect of strain
on the on-site matrix elements. A very good description
of the valence bands and the lowest conduction band has
been achieved both in equilibrium and in the presence of
strains. As far as the determination of the dielectric
function is concerned, there were some unsuccessful at-
tempts.%37 It is not clear whether this discrepancy is due
to inadequate bands or transition matrix elements, as
these quantities together determine the dielectric func-
tion.

In our model, we use an sp3 set of orbitals for each
atom and interactions up to third-order neighbors. The
orbitals between atoms are assumed to be orthogonal and
the three-center representation is used. In addition, the
spin-orbit interaction is taken into account. In order to
test the validity of our model, we apply it to bulk Si and
Ge. In this way we calculate the interaction parameters
of the model for these materials. Using these parameters,
we obtain the band structure, transition probability,
effective masses, and optical properties for bulk Si and
Ge. Furthermore, we describe how to obtain, through a
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scaling relation, the interaction parameters for the
strained materials. In this way, we are able to calculate
the deformation potentials of these materials. Having the
interaction parameters for bulk Si and Ge, we can then
apply the same model to strained Si/Ge SL’s. Their band
structure, confinement effects, effective masses, and spin
splittings are studied. In addition, we determine the
influence of valence-band offset (VBO) on the band struc-
ture, and compare the present theoretical results to ex-
periment.

There is much experimental data on various Si/Ge
SL’s, mainly from photoluminescence, electroreflectance,
absorptance, and piezoreflectance experiments. Their in-
terpretation is difficult, since these are complicated spec-
tra. In addition, there is recent evidence that some of
these spectra may contain artifact structures not originat-
ing from the SL. With this in mind, we will attempt a
comparison of the first allowed transitions, calculated
with the use of the present model, to the experimental
ones. The motivation is to see if there is some consistent
agreement and discuss the cases where this is not true.

The paper is organized as follows: in Sec. II, the
description of bulk Si and Ge in terms of our model is
presented. Their band structure, density of states, optical
properties, and deformation potentials are analyzed. Sec-
tion III deals with the strained Si/Ge superlattices. In
particular, the band structure of Si/Ge SL’s is studied,
and the influence of periodicity (n+m), composition
(n/m), strain, and valence-band offset is investigated.
Also, effective masses and spin splittings are calculated
and discussed. A comparison with experimental results is
also given. Finally, in Sec. IV, we give our conclusions.

II. BULK MATERIALS

A. Band structure

The band structures of bulk Si and Ge have been calcu-
lated with the use of several methods, the results being in
general agreement. We have described these materials
with our model and adjusted the values of the interaction
parameters so as to obtain agreement with the results of
previous methods. The starting values for the interaction
parameters were taken to be the corresponding ones
given by Papaconstantopoulos.>®> During the adjustment
procedure, attention was paid to obtain a good descrip-
tion of the upper valence and lowest conduction bands,
which mainly determine the optical properties. As an in-
put, the bands calculated by Chelikowsky and Cohen,
using nonlocal empirical pseudopotentials (EP’s) have
been used. The resulting set of interaction parameters is
given in Table I, in the notation of Slater and Koster. In
Figs. 1 and 2, the resulting electronic structures of Si and
Ge, respectively, are presented. The spin-orbit interac-
tion is included. In Table II, comparison is made, for
some key energies, between the tight-binding results and
those of nonlocal empirical pseudopotentials.

For the case of Si our results compare well to those of
EP calculations. The main features of the bands are
reproduced quite accurately. More specifically, the
highest valence and lowest conduction bands run parallel
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FIG. 1. The energy-band structure of Si, calculated with the
present tight-binding model. The top of the valence bands is set
at zero energy.

along the A direction, a very important feature for the
determination of the E, structure in the dielectric func-
tion. In addition, the bands are well described around
the X point and more specifically along the A and =
directions. Concerning the = direction, only a few tight-
binding models have achieved such a good description.
The distance between the conduction-band minimum Af
and the T point is equal to 0.89(27/a ), where a is the lat-
tice constant. The lowest direct and indirect gaps are

FIG. 2. The energy-band structure of Ge, calculated with the
present tight-binding model. The top of the valence bands is set
at zero energy.

given in Table III, and are in good agreement with the ex-
periment. 334

For the case of Ge, our results are also in good agree-
ment with those of EP calculations. A comparison of the
present band energies to those calculated with the nonlo-
cal empirical pseudopotential method, Table II, shows
that the agreement is very good. The same is true for the
values of the fundamental and direct gap, in comparison
with the experimental data as given in Table III.

TABLE 1. Interaction parameters (in eV) for our tight-binding model which resulted from fitting to
the nonlocal empirical pseudopotential band structure. (The notation is that of Slater-Koster.)

Silicon Germanium
E(0,0,0) —6.3193 —7.2114
E,,(0,0,0) 2.2494 1.6376
E(0.25,0.25,0.25) —1.8376 —1.3711
E,(0.25,0.25,0.25) 1.0087 0.9127
E..(0.25,0.25,0.25) 0.3209 0.2979
E,, (0.25,0.25,0.25) 1.4889 1.2935
E(0.5,0.5,0.0) 0.1940 0.1150
E,.(0.0,0.5,0.5) —0.0395 0.0250
E..(0.5,0.5,0.0) —0.1840 —0.0724
E..(0.5,0.5,0.0) 0.0626 0.0710
E,.(0.0,0.5,0.5) —0.2646 —0.1683
E,,(0.5,0.5,0.0) —0.0378 —0.0748
E,,(0.0,0.5,0.5) —0.0829 —0.1298
E(0.75,0.25,0.25) —0.0674 —0.1036
E,(0.75,0.25,0.25) 0.2717 0.1710
E,(0.25,0.25,0.75) —0.1262 —0.0432
E, . (0.75,0.25,0.25) 0.0869 0.1287
E,,.(0.25,0.25,0.75) 0.0094 —0.0092
E,,(0.75,0.25,0.25) 0.0152 —0.0076
E,,(0.25,0.25,0.75) 0.0952 0.0659
Ao 0.0150 0.1000
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FIG. 3. The density of states of Si. (a) Comparison between
the present tight-binding model (solid line) and the nonlocal
empirical pseudopotential method (dashed line), and (b) experi-
mental results of Ref. 42.

B. Density of states

As another check for the quality of the parameters
yielded by our model, we have calculated the density of
states (DOS) for Si and Ge, a property that provides a
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FIG. 4. The density of states of Ge: The experimental results
of Ref. 43 (dashed-dotted line), the present tight-binding results
(solid line), and the nonlocal empirical pseudopotential results
(dashed line) are presented.

good test since it depends not only on the band energies
but also on their gradient with respect to the wave vector
(group velocity). The calculations were performed with
the tetrahedral method by dividing the fundamental unit
cell of the reciprocal lattice into 725X 10° tetrahedra.
This is a large number to guarantee that there will be no
significant errors in the calculation. The resulted DOS
for Si is presented in Fig. 3(a), along with one from a
nonlocal empirical pseudopotential method. The two

TABLE II. Eigenvalues (in eV) at I', X, L, and K points. A comparison is made to the correspond-
ing eigenvalues of nonlocal empirical pseudopotentials.

TB EP TB EP
Silicon
I —12.13 —12.36 L;, —11.21 —9.55
1";5, 0.00 0.00 LY —17.90 —6.96
s 3.41 3.43 L3 —1.16 —1.23
S 4.18 4.10 LS 2.17 2.26
L§ 5.39 4.34
H —7.54 —17.69 K’ —8.18 —8.69
X5 —2.89 2.86 K’ —7.25 —7.18
§ 1.16 1.18 K? —4.28 —4.56
K? —2.50 —2.54
K¢ 1.58 1.66
Germanium

g —12.56 —12.66 L} —10.22 —10.39
ry —0.30 —0.30 L —8.13 —17.61
H 0.00 0.00 L} —1.56 —1.63
s 0.90 0.90 45 —1.36 —1.43
$ 2.97 3.01 L§ 0.79 0.76
< 3.27 3.22 L 4.04 4.16

H —8.45 —8.65

4 —3.19 3.29

¢ 1.17 1.16
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TABLE III. Calculated values for the gaps (in eV) compared
to experiment.

Theory Experiment
Silicon
E@(Fg;—l"ﬁ;) 3.41 3.40°, 3.38°
E (s —Af) 1.05 1.13¢
Germanium
EQ( ry—rse) 0.90 0.90¢
E (I'§—Lg) 0.76 0.76°

#Zucca and Shen (Ref. 39).
bJellison and Modine (Ref. 40).
°Harrison (Ref. 31).
dZwerdling (Ref. 41).

curves agree well in the region of valence bands and quite
well for the conduction bands up to 4 eV. In Fig. 3 (b),
the experimental data are presented. In Fig. 4, the calcu-
lated DOS for Ge, using the present parametrization, is
presented along with the pseudopotential results and the

experimental data. The comparison is better than that of
Si.42.43

C. Effective masses

The electron and hole effective masses is another set of
important parameters which influence many phenomena
such as transport of electrons and holes, excitonic states,
etc. The calculated hole effective masses at the I point,
for the [111] and [100] directions, are given in Table IV,
along with the experimental data. The heavy-hole masses
are the most anisotropic ones, while the spin-split holes
are almost isotropic, and for that reason only one value is
presented. In general, the agreement with the experimen-
tal values is good. The largest deviation occurs for the
heavy holes of Ge along the [111] direction. In Table V,
the calculated electronic effective masses at I' and at the
minimum of the conduction band are presented and com-
pared with the experimental ones. From this table, it is
evident that m7 agrees well for Si but deviates greatly for
Ge. Also, m[ deviates in both cases by as much as 40%.
The theoretical values are in all cases lower than the ex-
perimental ones. This underestimation is quite under-

C. TSERBAK, H. M. POLATOGLOU, AND G. THEODOROU 47

standable, since in these calculations phenomena such as
the electron-phonon interaction were not included. Such
effects have been discussed by Beni and Rice,*® and it was
found that they tend to increase the effective mass.
Therefore, the discrepancy is not as serious as the num-
bers indicate.

D. Optical properties

Many optical properties, such as the dielectric func-
tion, the reflectivity, absorptance, etc., are related to the
band structure of crystalline solids. Most of them can be
derived from the dielectric function e(w)=¢(®)+ig)(w)
by appropriate relations. In addition, the dielectric func-
tion can be measured directly and reliably by spectro-
scopic ellipsometry. Therefore, it is worth calculating
this property for Si and Ge. The imaginary part of the
dielectric function is calculated in the random-phase ap-
proximation with the momentum matrix elements calcu-
lated using the relation

_m dH (k)
#i  dk

The real part €, of the dielectric function is calculated by
a Kramers-Kroning relation, with the contribution from
energies larger than 10 eV taken into account by the tail
formula Bw/(w?*+7?)%,® where parameters 8 and y are
determined by the continuity condition.

Figure 5(a) shows the calculated €, of Si, as a function
of the photon energy, along with the experimental data.
Notice that the onset of €, occurs at 3.33 eV, while for
higher energies it rises very steeply and reaches a value
around 25, at an energy of only 0.3 eV above the onset.
This behavior is due to the parallel valence and conduc-
tion bands along the A direction. The contribution of the
different interband transitions to €, is also calculated
(Fig. 6). It is obvious that the main contributions to E,
and E, structures come from transitions between the
highest valence and the lowest conduction band (4—5);
the numbering of the bands starts from the lowest
valence band. The Van-Hove singularity associated to
the E, structure, occurring at 3.55 eV, is due to transi-
tions along the A direction. Two Van-Hove singularities
are associated to the E, structure and appear at energies
of 4.09 and 4.5 eV. The first one results from transitions
close to point X, and the second one from the = direction.

P (1

TABLE IV. Calculated hole effective masses of Si and Ge in units of the free-electron mass, m,.

m ;[100] mn[111] m 3,[100] m[111] mgo.
Expt. 0.153 0.537° 0.234°
Theory 0.147 0.133 0.533 0.854 0.234
Expt. 0.044 0.043° 0.284° 0.376° 0.095¢
Theory 0.060 0.056 0.381 0.728 0.137

“Barber (Ref. 44).
®Dexter, Zeiger, and Lax (Ref. 45).
‘Aggarwal (Ref. 46).
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TABLE V. Calculated electron effective masses of Si and Ge
in units of m, at I' and the minimum of the conduction band.

Si mX* mi(A) m#(A)
Experiment 0.916* 0.191%
Theory 0.528 0.568 0.173

Ge mX mX(L) mf(L)
Experiment 0.038° 1.570° 0.081°
Theory 0.052 0.990 0.129

“Hensel, Hasegawa, and Wakayama (Ref. 47).
®Aggarwal (Ref. 46).
°Fink and Braunstein (Ref. 48).

The bulk of the transitions that contribute to the E,
structure comes from a large volume of the BZ around
the point (0.6,0.6,0.2) (27 /a). The calculated real part of
the dielectric function, €;, is presented in Fig. 5(b), along
with the experimental spectra. One can observe that the
results of our calculations for €, and g, are quite close to
the experimental ones, with the exception of the region
near the E, structure. This discrepancy is due to exci-
tonic effects not included in our calculations. The value
of €, at zero energy, related to a sum rule for transition
probabilities, is found equal to 10.5, while the experimen-
tal value is 11.7.>2 The 10% deviation may be attributed
to many-body phenomena.

The dielectric function of Ge is presented in Fig. 7 and
compared with the experimental data of Vina, Logothe-
tidis, and Cardona.’® The onset of €, appears at 0.9 eV,

60 ™ T . . T . T T
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Experiment
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50 . A —— Theory 1
40 - Si /": ---- Experiment

T
>

2 3 4 5
Energy (eV)

FIG. 5. The dielectric function of Si. (a) Imaginary part
€;(w) and (b) real part €/(w). The experimental curves are from
Ref. 51. The different structures are indicated in (a).
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which corresponds to the lowest direct gap at the center
of the BZ. In contrast to Si, here we have well-resolved
structures resulting from spin-split-off bands, because of
the larger spin-orbit interaction. The E, structure is well
separated from the E, by as much as 2 eV. The contribu-
tion of the different interband transitions to €, is given in
Fig. 8, from where it can be seen that the main contribu-
tion comes from the transitions 4—5, with a significant
contribution from the interband transitions 3—5. The
steep rise of €, at energies around 2 eV is due to the
parallel bands along the A direction. The energies of the
Van-Hove singularities that contribute to E, and E; +A,
structures are 2.24 and 2.44 eV, respectively. The main
peak in g,, occurring at 4.4 eV, results from an extended
region of the BZ around the point (0.75,0.2,0.2) (27 /a),
and a small region around point K. The so-called E
structure occurs at 3.4 eV. There are also two structures
which have been denoted with E} and which occur at en-
ergies of 5.4 and 5.8 eV. The interband transitions re-
sponsible for these structures are the 3—6 and 4—6,
around the L point. Our results show, in addition, a
small structure at 4.82 eV, which has no counterpart in
the experimental spectra. This structure is due to transi-
tions around the X point. The good description of the
dielectric function is a justification for the validity of for-
mula (1), used for the calculation of momentum matrix
elements.

E. Deformation potentials

The influence of strain results in a change of the atomic
positions in the crystal. The determination of the new
positions is a difficult problem. For relatively small
strain, the problem can be approached by the theory of
elasticity. This condition holds to a good degree in the
case of strained Si/Ge superlattices. Therefore, before
going on to the SL case, we need to know the properties
of strained Si and Ge along the [001] direction.

In the tight-binding method, the matrix elements of the
Hamiltonian are sums of products of three-center in-
tegrals with phase factors.>* For the matrix elements be-
tween orbitals located on nearest-neighbor atoms, the
three-center integrals can be expressed as products of
two-center integrals with directional cosines. These two

60
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FIG. 6. The decomposition of £,(w) for Si into different inter-
band contributions. The most significant parts are shown.
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(a) Imaginary part

center integrals are independent of the directional
cosines. In addition, we assume that the more distant
three-center integrals are independent of directional
changes induced by a small strain. For these two-center
integrals, as well as the more distant three-center in-
tegrals, it has been deduced from several calcula-
tions3!:3%36 that a power-law scaling of the form

HaB=H2B(d0/d)v (2)

is appropriate. In addition, the uniaxial strain lifts the

Energy (eV)

FIG. 8. The decomposition of &,(w) for Ge into different in-
terband contributions. The most significant parts are shown.
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degeneracy between the p, and p,,p, orbitals. In the
linear approximation, the on-site p-orbital integrals are
equal to

E;'y=Ep+bp(£”—sl), E;=Ep—2bp(s”—sl) , (3)
where €, and ¢, are the strain components parallel and
perpendicular to the interface, and b, is an appropriate
uniaxial splitting parameter.

In many cases, the exponent v in Eq. (2) was chosen
equal to 2,336 independent of the orbitals involved in the
matrix elements, but, as was later shown,’’ a more judi-
cious choice of the exponent results in a better descrip-
tion of the strained system. For this reason we choose to
have exponents that depend upon the orbitals. The aim
of the present section is to obtain good values for the de-
formation potentials for Si and Ge by adjusting the ex-
ponent of the scaling law, as well as b,. The strain under
consideration has two components, a hydrostatic and a
uniaxial one. In addition, the electronic states of interest
are those of band maxima and minima at the I point, and
those of the conduction-band minima in the A direction
and at the L point. The change in energy of the above
states under hydrostatic and uniaxial strain along the
[001] direction, in terms of (a) the absolute hydrostatic
deformation potentials a and a"’ for the conduction- and
valence-band extrema, respectively, at the I point; (b) the
absolute deformation potentials Z5+1EL and Z)+ 125
for the conduction-band extrema at the L point and the A
direction, respectively; (c) the uniaxial deformation po-
tential b for the top of the valence band; and (d) the uni-
axial deformation potential £2 for the conduction-band
minima along the A direction, is given by 58

E(V,)=—8E}—(1)8E, ,
E(V))=—(1)Ag—8E} +(1)8E,

+ 1/ TA2+ 8dE g, +(D)(8E g 2]
SE(V3)=(1)Ag—8E} +(1)8Eq,
+(2)SEggo1 )*1”

_%\/[A(z)"' AgSE o, @

A )=[EF+(DES] Tre]+(L)E8 (e —¢)) ,
8E(A,)=[E3+(HEZ] Tr[e]—(2)Z5(g,—
SE(L)=[Ef+(1EL]Trle],

€),

with 8E;=a"Tr[e], 8E¢ = —2b(g;—¢;), A, the spin-
orbit splitting at I', and [€] the strain tensor.

The values of v resulting from the above-mentioned ad-
justment for Si and Ge are v, =3 and v,, =v,,=1.8. We
observe that the values of v for the pp and sp interactions
is very close to 2. The calculated values for the deforma-
tion potentials are then given in Table VI, along with the
experimental ones. Taking into consideration the spread
of the experimental values, we conclude that the compar-
ison between theory and experiment is satisfactory. A
discrepancy appears (wrong sign) in the value of the de-
formation potential Z5+1E% for Si. This discrepancy is
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TABLE VI. Calculated deformation potentials (in eV) compared to experiment.

Deformation Si Ge

potentials TB Expt. TB Expt.
a‘—a® —11.84 —9.13 —9.28,—9.5"
Ef+(1)ES—q, —0.77 1.41°, 1.5+0.3° —0.9
Ei+(3)EL—a, —4.42 —2.64 —2.0+0.5¢, —3.8°
b —2.21 —2.1£0.1° —25 —2.8+60.15°
S 8.86 8.610.4° 7.24

2Goni, Syassen, and Cardona (Ref. 61).
®Landolt-Bornstein (Ref. 59).

°Laude and Pollak (Ref. 60).

9Balslev (Ref. 62).

¢Paul and Warschauer (Ref. 63).
{Chandrasekhar and Pollak (Ref. 64).

mainly due to the exclusion of the d orbitals from the
basis set. In the tight-binding model of Brey and
Tejedor,?® where the effect of the d orbitals was partially
included through the s* orbital, the latter deformation
potential has been correctly described. It should be not-
ed, however, that deviations in this deformation potential
are not important for the description of strained Si. This
is due to the fact that the position of the conduction-band
minima is determined mainly from the uniaxial deforma-
tion potential 2, whose value is approximately six times
larger than that of Z5 +(1)Z5.

Strain in Si and Ge can be produced by growth on a
Si;_,Ge, substrate. The lattice constant of the substrate
is well described by the Vegard law, according to which it
is a linear function of x. For pseudomorphic growth on
this substrate, the lattice constant of the material along
the growth plane is defined by the substrate lattice con-
stant, and the perpendicular one by Poisson’s ratio.
Therefore, the concentration x of Ge in the substrate
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0.0 0.5 1.0 0.0 0.5 1.0
X X

FIG. 9. Energies of the three top valence states at I'
(V1,V2,V3) and the lowest conduction states at A,,, A, and L
for biaxially distorted (a) Si and (b) Ge, grown on a
Si;_,Ge,(001) surface, as a function of x.

defines the strain. We have calculated the energies of the
valence-band maxima (V,,V,,V;) and the conduction-
band minima (Axy, A,, and L) as a function of x for
strained Si (s-Si) and strained Ge (s-Ge) grown coherently
on the surface (001) of the Si;_,Ge, alloy. The results
are presented in Fig. 9. The continuous lines are deter-
mined by relations (4), using the experimental values of
the deformation potentials. The change in the valence-
band energies, as well as the splitting |E(A,,)-E(A,)| for
s-Si and s-Ge, are in good agreement with the experimen-
tal results. In the case of s-Si, the conduction-band
minimum always occurs in the A, direction, while in the
case of 5-Ge it occurs in the A, direction for x <0.33
and at the L point for x >0.33.%764

Finally, the band structures of s-Si and s-Ge have been
calculated. In Figs. 10 and 11, the results are shown for
the band structure of s-Si grown on the Ge(001) substrate
and s-Ge grown on Si(001), respectively. For the case of
s-Si, the upper valence state has p, character, while for
the case of s-Ge it has p,,p, character. For the s-Si, the
top two valence bands have, along the A, direction, a
splitting of about 0.3 eV, while along A, they are almost
degenerate, and along I' NV the splitting is about 0.2 eV.
The case of Ge is similar. Notice here a splitting of 0.4
eV along the I' N direction.

Energy (eV)

FIG. 10. The band structure of strained Si, coherently grown
on a bulk Ge(001) surface.
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FIG. 11. The band structure of strained Ge, coherently
grown on a bulk Si(001) surface.

III. SUPERLATTICES

A. Structure and symmetry

Both Si and Ge crystallize in the diamond structure,
but their lattice constants differ by about 4.2%. As a re-
sult, the Si/Ge superlattices are under internal stress.
This stress produces a distortion of the lattices and
creates dislocations for the case of thick layers. For thin
layers, the growth can be pseudomorphic (without dislo-
cations), in which case the lateral lattice constant is the
same in the Si and Ge layers and equal to that of the sub-
strate and, for growth on the Si;_,Ge, alloy, is, to a
good approximation, given by Vegard’s law:

a;=(1—x)ag +xag, - (5)

For pseudomorphic growth, the lattice constant along
the growth axis is given with good accuracy by Poisson’s
ratio.® The strain in each layer will then be given by

=4
g = 1 (6)
a;
and
=], )
1 _v[ f

where a; is the lattice constant of the undistorted bulk

TABLE VII. Symmetries for pseudomorphic (Si), /(Ge),,
SL’s grown along the [001] direction.

Space
(8i), /(Ge),, group System Lattice?
n=m=1 TS cubic F
n,m even; n+m=4k D3, orthorombic P
n,m odd; n+m =4k D3, tetragonal P
n,m even; n+m=4k +2 D3 orthorombic 1
n,m odd; n+m=4k+2 D3, tetragonal I
n+m =odd D} tetragonal 1

2F is face centered, P simple, and I body centered.
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(a) (b)

FIG. 12. The Brillouin zone for superlattices with (n+m)/2
(a) even and (b) odd.

material and v; the corresponding Poisson ratio.

According to valence-force-field calculations and
self-consistent total-energy pseudopotential calcula-
tions,?! the interlayer distance at the interface is fairly
close to the mean value of the interlayer distance in the
distorted materials.

The crystal symmetry of (Si), /(Ge),, SL’s has been
studied in detail.®*%° When both # and m are even, the
structure is orthorhombic. If at least one of n or m is
odd, then the structure is tetragonal The space groups
for each case are given in Table VII, and the superlattice
Brillouin zone (SBZ) for (n+m)/2 even or odd is given
in Fig. 12.

66,67

B. Electronic structure of (Si), /(Ge), superlattices

As was previously done for the bulk materials, we use
here a third-neighbor empirical tight-binding (TB) Ham-
iltonian with an sp> set of orbitals including spin-orbit in-
teraction. As a consequence of the lattice deformation,
there is a change in the distance between atoms and the
bond angles. This will introduce some modifications,
which are taken into account in the manner described in
the preceding section. The strain dependence of the
valence-band offset (VBO) has been also taken into ac-
count by interpolating between AE,(Si), the VBO of
strained Ge on Si(001), and AE,(Ge), the VBO of strained
Si on Ge(001).

AE,(x)=(1—x)AE,(Si)+xAE,(Ge) , (8)

where x is the concentration of Ge in the substrate,
AE,(Si)=0.84 ¢V, and AE,(Ge)=0.31 eV.%

Figure 13 presents the band structure of a (Si),/(Ge),
SL grown on Si and Ge, as well as the strain-symmetrized
one. For the case of a (Si),/(Ge), SL grown on Si, be-
cause of the tetragonal distortion, the top valence state at
I" has p, and p, character, while the next lower one has
p,. They differ by 0.11 eV. For the same SL grown on
Ge, the previous ordering of the states reverses and the
energy difference becomes 0.15 eV. The conduction-band
minima of the SL are along the A, (4A,) directions for
growth on the Si (Ge) substrate. Figure 14 presents the
band structure of (Si);/(Ge)s. For growth on the Ge(001)
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substrate, the SL becomes a direct-gap material. The
folding of the Brillouin zone produced by this superlat-
tice periodicity brings the minimum of the Si conduction
band to the I'" point. Indeed, theoretical calculations!® 18
predicted that this SL, grown on an appropriate sub-
strate, becomes a direct-gap material.

In Fig. 15, the probability amplitude (|¥|?) on the
different atomic sites is shown for states at T’ of a
(Si)4/(Ge), SL grown on Si and Ge. V; (C;) is the ith
valence- (conduction-) band state at I', counting starts
from the upper valence (lower conduction) state. In the

N N N

Energy (eV)

Energy (eV)

Energy (eV)

R 7T M X T R

FIG. 13. The band structure of a (Si),/(Ge), SL, (a) grown on
Si(001), (b) strain symmetrized, and (c) grown on Ge(001).
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same figure, the decomposition of the wave function in
terms of the eigenstates of the average crystal’® is
presented. These results imply that valence states ¥, and
V, are slightly confined in the Ge layers, while C,; and C,
are strongly confined in Si layers. This comes from the
fact that the maximum of the Ge valence band is well
above the corresponding maximum of Si, while the
minimum of the conduction band of Si is below the corre-
sponding minimum of Ge. In addition, the slight
confinement of ¥V, and ¥, in Ge has its origin in the
small value of the effective mass of these hole states.

2
Q_

Energy (eV)
o

XP Tz

FIG. 14. The band structure of a (Si)s/(Ge)s SL, (a) grown on
Si(001), (b) strain symmetrized, and (c) grown on Ge(001).
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State C; does not show confinement, C, is more or less
confined at the interface, and finally Cs is strongly
confined in the Ge layers. Concerning the decomposition
of the wave function, the conclusions are that V,, V,,
and Cs come mostly from I' states, C, and C, from X
states, and C; and C, mostly from A states of the average
crystal. This is very important for the understanding of
the transition probabilities between these states.

We have also calculated the transition probabilities be-
tween the valence V; and conduction C; states at I'. In
the calculation of | M, (k)|?, where M, (k) is the momen-
tum matrix element between the valence and conduction
states at k, we have taken the mean value of this quantity
for the three polarizations (x,y,z). The results are
shown in Fig. 16. For the (Si),/(Ge), SL, the states V),
and V, as well as C, transform according to the I'"" rep-
resentation of the double group, and C, according to I"' ™.
As a result, the lowest permitted transitions are the V-
C, and V,-C,. The probabilities for transitions V,;-C,
and V,-C, are two to three orders of magnitude lower
than the transitions ¥,-C5 and V,-Cs. This can be easily
understood using the decomposition of the wave function
in terms of the average crystal wave functions (Fig. 15).
According to this analysis, V|, V,, and C5 consist mostly

(a) Cs Cs
Llllll'l ‘I 1
C Cs
= 1l .
3 Cs Cs
Sl | S
-g Cz Cz
2 il L
Q. C, C,
£
. L
%- V, V,
0
o
o [l
oSi V2 vV,
mGe

r X
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of T states, and C, and C, mostly of X states of the aver-
age crystal. Thus the transition probabilities for V-C,
and V,-C, are considerably smaller than the V;-C5 and
V,-Cs ones.

Regarding the transition probabilities for the case of
the (Si)s/(Ge)s SL, the results are similar to those of
(S1)4/(Ge),, the main difference being that in this case the
V,-C, transition is permitted. The value of the momen-
tum matrix element is now up to three orders of magni-
tude smaller than the first transition, which has character
of the average crystal (V,-Cs). This property of the
(S1)s/(Ge)s SL, in conjunction with the existence of a
direct gap, makes this superlattice a possible candidate
for use in optoelectronic devices.

C. Influence of strain, superlattice periodicity,
and composition

The lattice period and composition of a SL, as well as
the strain produced by the substrate, influence the super-
lattice electronic properties. In Fig. 17, the variation,
with respect to n, of the band gaps of the (Si),/(Ge), SL
is presented. The main conclusions drawn are the follow-
ing.

(b) Cs Cs
i ’ .
c Ca
N
'gl N L]
Cs Cs
o
Sl ]
N C, Cs
3
%_1 L L .
2 c, c,
O
S e
E
_.8 Vi \Z
o
~
oSi V2 V2
uGe

r X

FIG. 15. The probability amplitude (|W¥|?) along different atomic sites for valence (¥;) and conduction (C;) states at T for a
(Si),/(Ge), SL (left side). The decomposition of the corresponding wave function in terms of average crystal states (right side): (a) su-
perlattice grown on Si(001) and (b) grown on Ge(001).
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(a) For growth on Si, the fundamental gap is always in-
direct, it appears in the A direction, and does not depend
strongly on n. This is because the wave function of the
corresponding conduction state extends in both materi-
als. For the same SL, the direct gap has a totally
different behavior. It depends strongly on r, and its value
reduces for n > 2. This is due to the confined character of
the lower conduction states at I".

(b) For strain-symmetrized SL’s, as well as for growth
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FIG. 16. Transition probabilities |M,(k)|> in units of
(h /a)?, between valence (¥;) and conduction (C;) states at T",
for superlattice (Si),/(Se)4, (a) grown on Si(001), (b) strain sym-
metrized, and (c) grown on Ge(001).
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on Ge, we get a totally different picture. Superlattices
with n =5 and 7 become direct-gap materials. The in-
direct gap for all cases appears in the A, direction and its
value depends on #n, because this state is mostly confined
in Si layers.

Figure 18(a) shows the dependence of the gaps on the
composition x of the substrate alloy. The fundamental
gap for the (Si),/(Ge), SL is always indirect and in the
direction A (A)) for x $0.2 (x 0.2). The similar be-
havior of direct and indirect gaps in the A, direction
comes from the fact that the corresponding conduction
states have similar behavior, e.g., are confined in Si. The
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FIG. 17. Band gaps for different values of n for (Si), /(Ge),
SL’s, (a) grown on Si(001), (b) strain symmetrized, and (c) grown
on Ge(001).
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slope change at x ~0.6, in the variation of the gaps, is
due to the anticrossing of the upper valence bands, as is
shown in Fig. 19(a). For x =0, the upper valence band
V, has heavy-hole, band ¥V, light-hole, and band ¥V,
split-off characters. For x =1, the characters of V| and
V, interchange, while that of V; remains the same.

The corresponding results for the (Si)s/(Ge)s SL are
presented in Figs. 18(b) and 19(b). In this case, the funda-

X

FIG. 19. Variation, as a function of x, of the energies at I" of
the three upper valence states of (a) (Si);/(Ge); and (b)
(Si)s/(Ge)s SL’s grown on Si; _, Ge, (001).

mental gap is indirect for x $0.6 and in the direction A
(A) for x $0.2 (0.25x 50.6). For x 20.6, no indirect
gap in the A, direction exists anymore, since it has col-
lapsed to the I" point. The behavior of valence states V|,
V,, and V5 for (Si)s/(Ge)s is similar to that of (Si),/(Ge),,
except that now states V', and V, cross at x ~0.6.

Finally we have investigated the effect of the SL’s com-
position on its electronic properties. For this purpose, we

TABLE VIII. Band gaps (in eV), transition energies (in eV), and the corrsponding transition proba-

bilities (in units of 4?/a?) of the lowest transition at T, for superlattices (Si), /(Ge) g ,.

Si substrate

n E;(I‘) E,;(A“) E;(Al) AE(V,—C;) M., (k)|?

3 0.980 0.730 0.956 0.980(V,—C,) 0.19 1072
4 0.902 0.751 0.897 0.985(V,—C,) 0.45%X107?
5 0917 0.784 0.897 0917(V,—C,) 0.15X107?2
6 0.918 0.815 0.897 0918(V,—C,) 0.14x1073
7 0.959 0.868 0.930 0.959(V,—C,) 0.17x1073

Ge substrate

3 0.625 0.989 0.619 0.625(V,—C,) 0.29X 1072
4 0.490 0.982 0.590(V,—C,) 0.76 X 1072
5 0.456 0.981 0.456(V,—C,) 0.31X1072
6 0.414 0.973 0.593(V,—C,) 0.36Xx1073
7 0.384 0.969 0.434(V,—C,) 0.23X1072
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have studied superlattices of the form (Si), /(Ge);o_,.
These superlattices have the same folding of the BZ and
similar band structure. Results for band gaps, the energy
of the lowest allowed transition, as well as the corre-
sponding transition probability are given in Table VIII.
For growth on a Si(001) substrate, the fundamental gap is
always indirect along the A direction and increases with
n. For growth on Ge, all superlattices with n >3 have a
direct gap, whose value decreases with n.

D. Effective masses

In order to study in detail the band behavior in the
neighborhood of the center of the SBZ, we calculate the
energy dispersion E,(k), using a fairly dense lattice of
points, in the high-symmetry directions of the SBZ. In
Fig. 20, the energy dispersion is shown in the vicinity of
I" for the three upper valence bands (V,V,,V;) and the
two lower conduction bands (C,,C,), for the (Si),/(Ge),
SL grown on a Si(001) substrate, and for the [110], [110],
[100], and [001] directions. Note the anisotropy as well
as the nonparabolic behavior of the valence bands in the
(001) plane. This is due to the anticrossing of the bands
close to the I' point and the absence of spin degeneracy
(Kramer’s degeneracy) for SL’s that do not exhibit inver-
sion symmetry. On the other hand, parallel to the [001]
direction the bands do not show the previously outlined
behavior. We must, at this point, mention that all SL’s
studied in the present work exhibit similar dispersion of
the bands near I'. Figure 21 shows the energy dispersion
close to I'" for a (Si)s/(Ge)s SL grown on Si.

We calculate the effective masses for the holes, as well
as the electrons for various directions, by fitting the ener-
gy bands very close to I with a fourth-order polynomial.
Table IX shows the effective masses of the holes and the
electrons for SL’s (Si),/(Ge), (n=2-6) grown on Si.
The effective masses of the holes for the upper three
valence bands have been calculated parallel to the [100]
and [001] directions. From this table, we come to the
conclusion that the change of the periodicity leaves al-
most unchanged the effective masses of the holes. This
comes mainly from the fact that the superlattice potential
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FIG. 20. The energy dispersion in the vicinity of I', and
along the [110], [110], [100], and [001] directions for the three
upper valence and the two lower conduction bands, for a
(Si)4/(Ge),4 SL grown on Si(001).
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FIG. 21. The energy dispersion in the vicinity of I', and
along the [110], [100], and [001] directions for the three upper
valence and the two lower conduction bands, for a (Si)s/(Ge)s
SL grown on Si(001).

does not drastically influence the higher valence states at
I', which are satisfactorily described by the correspond-
ing average crystal states.”®

Similar conclusion can also be drawn for the electron
effective masses parallel to the growth plane. The
effective masses at I" for the [001] direction and the two
lower conduction bands exhibit significant changes and
strong dependence on the periodicity of the SL. We also
note the appearance of a negative effective mass for band
C,, coming from the folding of the average crystal BZ.
Also, the effective mass of the C, band for (Si)¢/(Ge)g on
Si has a large value, which is due to the small dispersion
of the corresponding band along the [001] direction.
Another conclusion that can be drawn from Table IX is
that parallel to the interface plane the effective mass of
the higher valence state V| is smaller than that of V,,
while the opposite is true in the [001] direction. In Table
IX, we also show the longitudinal (m)) and transverse
(m}) effective masses of the conduction-band extrema in
the directions A, and A;. We remark that the electron
effective masses at the extremum A, remain almost un-
changed with n and take value close to the corresponding
Si values. (m!=0.568my,m}=0.173m,). In the A,
direction, the former masses exhibit sizable variation.
This comes from the confinement of the states along the
growth axis. The mass m}A;) does not change
significantly, and takes values comparable to those of
mel(A”).

The dependence of the hole and electron masses on the
composition of the SL is included in Table X, for SL’s
grown on a Si(001) substrate with n +m =10. States V;
and V, are characterized by effective masses that change
slightly with the variation of composition in the [100]
direction. More precisely, they increase as the number of
Si layers increases. Parallel to growth axis [001], the
effective masses of bands V| and V, exhibit a more pro-
found change, because they are influenced to a greater ex-
tent by the variation of the SL potential.
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TABLE IX. Effective masses (in units of m,) along the [100] and [001] directions for (Si), /(Ge),

SL’s grown on Si(001).
Holes
mﬂ/] ml'fz m#/s mll’l mtllz mll/3
n:m [100] [100] [100] [001] [001] [001]
2:2 —0.156 —0.170 —0.487 —0.396 -0.370 —0.109
3.3 —0.155 —0.169 —0.452 —0.402 —0.335 —0.107
4:4 —0.156 —0.169 —0.444 —0.412 —0.327 —0.106
5:5 —0.157 —0.172 —0.444 —0.440 —0.339 —0.106
6:6 —0.163 —0.175 —0.448 —0.497 —0.366 —0.107
Electrons

mg‘l mﬂ'z me, mé; mJ' mg me“ mg
n:m [100] [100] [001] [001] 4y 4y A, A
2:2 0.213 0.215 —0.213 0.127 0.656 0.173 0.588 0.184
33 0.179 0.183 —0.040 0.038 0.621 0.171 0.636 0.186
4:4 0.197 0.195 —0.183 0.135 0.616 0.171 0.734 0.183
5:5 0.173 0.180 —0.258 0.188 0.622 0.172 0.950 0.180
6:6 0.185 0.184 —0.659 4.901 0.626 0.183

The effective mass of the split-off band remains practi-
cally unchanged with respect to the composition of the
SL. The electron effective masses of the A extrema do
not depend on the SL composition. In the [001] direction
there is a different behavior. The composition influences
the confinement of states in this direction and, as a result,
there exists a considerable change of the effective mass
ml(A,). The effective mass m2(A,) practically does not
change, and takes values close to those of Si.

Continuing our study, we have analyzed the depen-
dence of the effective masses on the substrate, particular-
ly for the (Si),/(Ge), SL (orthorhombic symmetry) and
(Si)s/(Ge)s SL (tetragonal symmetry) cases, both grown
on a Si;_,Ge, (001) substrate with x ranging from 0 to 1.
Figure 22 shows the dependence on x of the effective
masses for the three upper valence bands of the

(Si),/(Ge), SL in the [110], [110], [100], and [001] direc-
tions. The anisotropy in the effective masses for the V,
state (s.0. character) parallel to the interfaces is almost
negligible, while for the two upper valence states (with hh
and lh character) parallel to the interface it is consider-
ably stronger. In the [001] direction, the curves that de-
scribe the effective masses of bands V| and ¥V, intercept
close to x =0.6. This is a consequence of the anticrossing
of ¥V, and V, at that value of x. The effective masses
close to x =0.6 for ¥, in the [110] direction, and V, in
the [110] direction, take large values. This comes from
the fact that the corresponding bands become consider-
ably flat for growth on a substrate with composition
x=0.6. The variation of the effective mass in the [001]
direction is shown in Fig. 22(d). In this case, the effective
mass of V; increases with an increase of x, contrary to

TABLE X. Effective masses (in units of m) along the [100] and [001] directions for (Si), /(Ge);o—,

SL’s grown on Si(001).

Holes

mll’l milz ml|,3 mlJ71 mlJ}Z m,1,3

n:m [100] [100] [100] [001] [001] [001]
3.7 —0.138 —0.154 —0.442 —0.379 —0.314 —0.100
4:6 —0.148 —0.162 —0.443 —0.410 —0.325 —0.102
5:5 —0.157 —0.172 —0.444 —0.258 —0.440 —0.106
6:4 —0.168 —0.179 —0.445 —0.469 —0.349 —0.110
73 —0.172 —0.187 —0.442 —0.209 —0.352 —0.114

Electrons

mé, méy mé mé, m]) m; m] m,
3.7 0.189 0.183 —0.187 0.145 0.625 0.173 0.875 0.190
4:6 0.181 0.178 —0.392 0.450 0.620 0.174 1.484 0.183
5:5 0.173 0.180 —0.258 0.188 0.622 0.172 0.950 0.180
6:4 0.174 0.174 —0.319 0.213 0.611 0.173 0.862 0.178
7:3 0.170 0.171 —0.209 0.149 0.605 0.173 0.748 0.176
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TABLE XI. Electron effective masses (in units of m,) of a (Si),/(Ge), SL grown on Si,_, Ge,, for different values of x.

m& mgz mé, méz me” m; me” mg

x [110] [110] [001] [001] Ay A A, A,
0.0 0.113 0.760 —0.183 0.135 0.616 0.172 0.734 0.182
0.1 0.112 0.739 —0.182 0.138 0.613 0.174 0.743 0.180
0.2 0.112 0.717 —0.184 0.143 0.610 0.176 0.768 0.178
0.3 0.111 0.694 —0.187 0.148 0.607 0.178 0.794 0.176
0.4 0.110 0.669 —0.190 0.155 0.604 0.180 0.811 0.175
0.5 0.110 0.644 —0.193 0.162 0.602 0.182 0.841 0.172
0.6 0.109 0.617 —0.196 0.169 0.599 0.185 0.880 0.170
0.7 0.109 0.590 —0.198 0.177 0.597 0.187 0.897 0.169
0.8 0.108 0.563 —0.200 0.186 0.594 0.189 0.963 0.166
0.9 0.107 0.535 —0.202 0.195 0.592 0.191 0.979 0.164
1.0 0.107 0.508 —0.202 0.205 0.589 0.194 1.098 0.162

what happens parallel to the interface. The values of the
electron effective masses are given in Table XI. Note the
hole character exhibited by the state C,; along the [001]
direction, and that of the effective masses of C, and C, in
the [110], [110], and [001] directions, do not significantly
depend on the substrate. Also, the effective masses
ml(A)), mel(AH), and m}(A,) do not significantly depend
on the substrate, while mJ(A ) does. The reasons for this
behavior have been stated in the previous analysis. In
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Fig. 23, the hole effective masses of the (Si)s/(Ge)s SL
parallel to the [100] and [001] directions are shown. In
this case the effective masses parallel to the interfaces are
isotropic. In Table XII, the dependence of the electron’s
effective masses on x is presented for the previous SL.

E. Spin splittings

It is well known that the spin-orbit interaction lifts the
band states degeneracies, the most profound effect occur-
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FIG. 22. Effective masses, in units of m,, along the (a) [110], (b) [110], (c) [100], and (d) [001] directions for the three upper valence
states of a (Si),/(Ge), SL, grown on Si, _, Ge, (001), as a function of x.
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TABLE XII. Electron effective masses (in units of m,) of a (Si); /(Ge)s SL grown on Si,_, Ge,, for different values of x.

mé“l mgz mé, mé, m, m/ m]) m,
x [100] [100] [001] [001] Ay Ay A Ay
0.0 0.173 0.180 —0.258 0.188 0.622 0.173 0.917 0.180
0.1 0.171 0.179 —0.332 0.222 0.617 0.175 0.942 0.179
0.2 0.169 0.177 —0.450 0.265 0.613 0.177 1.031 0.176
0.3 0.168 0.176 —0.640 0.317 0.610 0.179 1.085 0.174
0.4 0.166 0.175 —0.986 0.380 0.606 0.182 1.314 0.172
0.5 0.164 0.174 —1.785 0.454 0.603 0.184 1.762 0.169
0.6 0.162 0.173 —5.400 0.544 0.599 0.186 3.344 0.165
0.7 0.160 0.172 7.985 0.654 0.595 0.189 7.985 0.161
0.8 0.159 0.171 2.615 0.794 0.592 0.191 2.615 0.159
0.9 0.157 0.169 1.675 0.987 0.589 0.194 1.678 0.158
1.0 0.155 0.169 1.287 1.292 0.586 0.196 1.287 0.156

ring at high-symmetry points of the BZ. Also, when the
crystal possesses inversion as well as time-reversal sym-
metry, then all the band states are at least twofold degen-
erate (Kramer’s degeneracy). The lack of inversion sym-
metry has as a consequence the splitting, in general, of
states with different spin orientation (this splitting will be
called spin splitting). For instance, the (Si), /(Ge),, SL’s
with » and m odd do not possess inversion symmetry and
therefore do not exhibit Kramer’s degeneracy. Although
this is true, there are some high-symmetry directions

where band states are degenerate with respect to the spin
quantum number. Also, it is known that strain produces
a spin splitting that is linear in k,” e.g.,

|AE|=Ck , 9)

where k is the distance from the band extremum. The
occurrence of such splittings near the band extrema can
affect to a large degree the transport properties of the
SL’s.

In Fig. 24, the absolute values of the spin splittings are
shown for the three upper valence and two lower conduc-
tion bands of the strain-symmetrized (Si);/(Ge)s,

“35 0.0 — . ; . (Si)s/(Ge)s, and (Si);/(Ge); SL’s. The larger spin split-
& $ tings occur for k parallel to the interfaces, i.e., along the
~— . . . . . .
g g ¢ o °c 2 g u (100] direction, while they vanish in the perpendicular
» -0.2 o g " 1 direction. The SL’s with the thinner layers show larger
O ° 5 splittings, compared to the thicker ones, because the lack
& . ° 5 of inversion symmetry is related to the interfaces. Fitting
o —0.4 m 9 the spin splittings by a polynomial of third order, we find
> a nonzero linear term. The values of the ceefficient C of
o o6 oV, | the linear term, Eq. (9), are given in Table XIII. Its value
QL oV, kI[100] for the upper valence state (V1) is quite a bit smaller
o (a) V3 compared to the corresponding ones for V, and Vj;.
0.3 I | ! 1 Also, for the case of V, and V,, it gets smaller as the
0 02 0.4 y 0.6 08 1.0 periodicity increases.
- 00 - ' ' ‘ F. Influence of VBO
\E/ l = = oa g g ° o o o ¢ As we have mentioned before, VBO is a significant pa-
»w —0.2+ o ° n i rameter whose value influences the calculated band struc-
8 a ° " n
€ 0 451 . TABLE XIII. Coefficients of the linear term [Eq. (9)] for the
© 45 o o . T spin splittings along the [100] dire?tion of the three upper
> © o o g o valence and the two lower conduction bands for the strain-
g -0.6 oV, O 9 symmetrized (Si);/(Ge)s, (Si)s/(Ge)s, and (Si);/(Ge); SL’s.
N oV, . . .
= (6) =V kIl[001] 3:3 5:5 7:7
_0_8 | 1 | 1 Cy? 0.007 0.012 0.032
-0 0.2 0.4 0.6 0.8 1.0 Cy, 0.218 0.131 0.073
X Cys 0.209 0.131 0.087
) o Cei 0.008 0.024 0.041
FIG. 23. Effective masses, in units of m,, along the (a) [100] Ces 0.138 0.045 0.009

and (b) [001] directions for the three upper valence states of a
(Si)s/(Ge)s SL, grown on Si, _,Ge,(001), as a function of x.

2The coefficients C are in units of eV/(27/a).
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ture. The values for VBO almost exclusively used in re-
cent calculations are those of Van de Walle and Martin.%
Nevertheless, different values also appear in the bibliogra-
phy.”2~7* In order to investigate the influence of VBO on
the different band gaps, we have calculated the direct and
indirect gaps of strain-symmetrized (Si)s/(Ge)s and
(8i),9/(Ge),o SL’s for values of VBO ranging from O to 1
eV (according to Ref. 65, the value of VBO in these SL’s
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is 0.607 eV). The results of the calculation are presented
in Fig. 25. According to these calculations, the
(Si)5/(Ge)s SL is a direct-gap material for all the values of
VBO we have used. This gap, as well as the indirect gap
at the Z point (EgZ ), reduce their value as VBO increases.
This is due to the fact that the Si/Ge SL’s are of type II,
with the top valence-band states slightly confined in the
Ge layers and conductor states at I as well as in the T'Z
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FIG. 24. Spin splittings as a function of k along the [100] and [110] directions, for the three upper valence (V,V,,¥;) and the two
lower conduction (C;,C,) bands for the strain-symmetrized (Si); /(Ge); [(a) and (b)], (Si)s/(Ge)s [(c) and (d)] and (Si),/(Ge); [(e) and

(H)] SL’s.
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FIG. 25. The dependence of direct and indirect gaps on the
VBO for strain-symmetrized (a) (Si)s/(Ge)s and (b) (Si),o/(Ge);o
SL’s.

direction confined in Si layers. As VBO increases, the top
of the valence band approaches the bottom of the con-
duction band and, as a result, the band gap decreases.
The indirect gaps E, ’(A”) and E vary to a lesser degree
and mostly for VBO larger than 0.4 eV. This is because
the larger values of VBO produce stronger confinement
in Si of conduction states at AI and X, resulting in a de-
crease of their energy. Gap E,' is practically independent
of the value of VBO.

Superlattice (Si);y/(Ge),, is almost a direct-gap materi-
al. The direct gap at I' is almost degenerate with EZ,
since the lowest conduction band does not show disper-
sion in the I'Z direction. VBO has now a stronger
influence on gaps E; and EgZ in comparison to the
(Si)s/(Ge)s SL. This is due to the fact that thicker SL’s
produce stronger confinement of the states.

We have also studied the influence of VBO on the tran-
sition probabilities at I'. Our calculations show that the
transition matrix elements remain almost invariant for
the previously mentioned variation of VBO.

G. Comparison with experiment

It was stated in the Introduction that the experimental
work on strained Si/Ge SL’s mainly refers to

electroreflectance and photoluminescence measurements.
The first samples studied were finite SL’s grown on Si or
Ge. Then the interest turned to the study of strain-
symmetrized SL’s, since in this case larger crystals can be
grown. On the other hand, the interpretation of the ex-
perimental results is a difficult task, because the SL’s
effects are small and many other contributions can have
similar behavior. For example, in electroreflectance ex-
periments, the Franz- Keldysh oscillations,” and optical
etalon interference effects’® can lead to spectra similar to
the SL ones. In addition, some photoluminescence spec-
tra may originate from defects. Also, special care should
be exercised during growth to keep the periodicity con-
stant throughout the sample. With this in mind we will
try to compare theory and experiment, and find if there is
some consensus between them with regard to the elec-
tronic structure of the SL’s.

For the case of the strain-symmetrized (Si)¢/(Ge), SL,
Zachai et al.® reported strong photoluminescence close
to 0.84 eV. They attributed this peak to a fundamental
quasidirect band-gap transition with an enhanced dipole-
allowed transition rate. Our calculations predict an al-
most direct-gap material with E, '=0.797 eV and
E d_O 806 eV. The first two direct transmons, with ener-
gles equal to 0.806 and 0.874 eV, are dipole allowed for
polarization along the interfaces, with transition proba-
bilities considerably smaller than the first Ge bulklike
transition.

In very recent photoluminescence measurements on
the strain-symmetrized (Si)s/(Ge)s SL, Menczigar et al.'?
reported a peak at 0.76 eV, attributing it to a direct tran-
sition. Our calculations predict the existence of a direct
transition at 0.77 eV, with appreciable transition proba-
bility, in excellent agreement with the experimental ob-
servatlon Similar results have been given by Turton and
Jaros,'® using the empirical pseudopotential method.

We turn now to finite superlattices. In the case of a
finite (Si),/(Ge), SL on a Si(001) substrate, measurements
were performed on a sample with a five-period superlat-
tice embedded in Si. In electroreflectance spectra, the
lower-energy structures were observed at 0.76, 1.03, and
1.23 eV. Our calculations, based on an infinite SL model,
give that the lower transitions at I' have energies of 1.09
and 1.20 eV, but with transition probabilities two to three
orders of magnitude smaller than the E bulklike transi-
tion. These energies differ significantly from the experi-
mental value of 0.76 eV. On the other hand, the calculat-
ed indirect gap of this infinite SL is found equal to 0.80
eV, close to the value of 0.76 eV. Indeed, recent photo-
current’’ measurements attributed indirect character to
the lowest transition found at 0.78 and 0.90 eV. In recent
theoretical calculations for the finite crystal, we have
found,”® using the present model, that the lowest transi-
tions with appreciable probabilities appear at 1.1 and
1.21 eV, close to the corresponding values for the infinite
SL. Therefore, the results for the infinite and finite
(Si),/(Ge), SL’s are not significantly different.

In the case of a (Si),/(Ge)s SL grown on a Ge(001) sub-
strate, measurements have been performed by Pearsal
et al.® on a sample with a five-period SL separated by a
Ge spacer of about 200 A thick. Transitions at 0.80,
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0.96, 1.18, and 1.22 eV were found. The transitions at
0.88 and 1.18 eV were attributed to the E; and E,+A,
structures of Ge, and the rest to SL transitions. Very re-
cent piezoreflectance measurements by Yin et al.!® on
the same structure led to conclusions different from those
of Ref. 6. They found that the observed structures (with
the exception of those related to the substrate) result
from transitions in the Ge spacer and not in the superlat-
tice. For a Ge spacer of 78 monolayers, the lower transi-
tions occur at 0.947 and 0.967 eV, while for 127 mono-
layers the former values become 0.915 and 0.926 eV, re-
spectively. Recent theoretical calculations by the present
authors,’® using the present model, for the finite SL
[(S1)4/(Ge)g]s/[Gelss support this interpretation. More
precisely, the calculations predict the lower transitions
with appreciable probabilities to occur at 0.99 and 1.01
eV and have been attributed to transitions in the Ge
spacer.

All the previous analysis makes clear the usefulness of
our model in the understanding of the electronic proper-
ties of superlattices.

IV. CONCLUSIONS

A new tight-binding model in the three-center repre-
sentation, with an orthogonal sp® set of orbitals and in-
teractions up to third neighbors, is introduced. This
model reproduces known results for bulk Si and Ge, that
is, their band structure, including the lowest conduction
bands, density of states, effective masses, deformation po-
tentials, and dielectric function. In addition, it is an
efficient model as far as computer time is concerned;
therefore it is most appropriate for application to systems
with large unit cells, such as superlattices. As an applica-
tion, the electronic structures of some (Si), /(Ge),, SL’s
have been studied. Their band structure, the confinement
of the superlattice states and their decomposition in
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terms of the average crystal states, the effective masses,
and the spin splittings, have been investigated as a func-
tion of their composition, strain, and layer thickness. For
(Si),/(Ge), SL’s grown on a Ge(001) substrate we found
that, for some cases, the gap changes from indirect to
direct. In particular, (Si)s/(Ge)s; and (Si),/(Ge), are
direct-gap materials when grown on a Ge(001) substrate.
The strain effects were studied for (Si),/(Ge), and
(Si);/(Ge)s SL’s. The (Si),/(Ge), SL is always an
indirect-gap material while the (Si);/(Ge)s SL becomes a
direct one when grown on a Si;_,Ge, alloy buffer with
x >0.6. By varying the concentration x of the buffer al-
loy, the top two valence-band states cross (anticross) at
x=~0.6 for the (Si)s/(Ge)s [(Si);/(Ge)s] SL. Also, we
found that (Si), /(Ge)q_, SL’s are direct-gap materials
when grown on a Ge (001) surface.

Valence bands were found to be anisotropic and non-
parabolic for wave vectors parallel to the interfaces, but
quite close to parabolic along the growth axis. In gen-
eral, we found that the hole effective masses are
unaffected by the strain, composition, and layer thick-
ness, while the electron effective masses along the growth
axis change a great deal. In addition, the spin splittings
for (Si);/(Ge);, (Si)5/(Ge)s, and (Si);/(Ge); SL’s are appre-
ciable (30—-50 meV) parallel to the interfaces, but they
vanish along the growth axis and become smaller for
thicker SL’s.

Finally, the comparison with experimental results
shows that the present model is a realistic one and can be
used to describe the electronic properties of the strained
Si/Ge SL’s and clarify many of the points which are un-
der debate.
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