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We calculate the electromagnetic response functions of a fractional-quantum-Hall-effect iFQHE) sys-
tem within the framework of the fermion Chem-Simous theory for the FQHE, which we developed be-
fore. Our results are valid in a semiclassical expansion around the average-field approximation (AFA).
We reexamine the AFA and the role of fluctuations. We argue that, order-by-order in the semiclassical
expansion, the response functions obey the correct symmetry properties required by Galilean and gauge
invariance and by the incompressibility of the fluid. In particular, we find that the low-momentum limit
of the semiclassical approximation to the response functions is exact and that it saturates the f-sum rule.
We obtain the spectrum of collective excitations of FQHE systems in the low-momentum limit. We find
a rich spectrum of modes which includes a host of quasiparticle-quasihole bound states and, in general,
two collective modes coalescing at the cyclotron frequency. The Hall conductance is obtained from the
current-density correlation function, and it has the correct value already at the semiclassical level. We
applied these results to the problem of the screening of external charges and fluxes by the electron fluid,
and obtained asymptotic expressions of the charge and current-density profiles, for different types of in-
teractions. Finally, we reconsider the anyon superfluid within our scheme and derive the spectrum of
collective modes for interacting hard-core bosons and semions. In addition to the gapless phase mode,
we find a set of gapped collective modes.

I. INTRC)DUCTION

The physical systems which exhibit the fractional
quantum Hall efFect (FQHE) present a very rich response
to external electromagnetic perturbations. While some of
the observed phenomena, such as cyclotron resonance,
can be understood in terms of simple global motions of
the center of mass under the combined influence of elec-
tric and magnetic fields, the spectrum of collective excita-
tions is certainly determined by the interactions. Ciiven
the unusual features of the Laughlin states and its gen-
eralizations, it is expected that some features should
largely determine the behavior of the collective modes
also. However, in spite of the great progress that has
been made in the understanding of the ground state, a
general theory of the electromagnetic response functions
and of the spectrum of collective modes, valid for all the
incompressible states, has been lacking. This is the main
motivation and goal of this paper.

Various theoretical approaches have been proposed to
explain the FQHE. The Laughlin-Haldane-Halperin'
approach is based on the Laughlin variational ansatz for
the ground-state wave function. The Laughlin wave
function gives the correct value for the Hall conductance,
and yields an excellent ground-state energy. ' Later on,
Halperin realized that the quasiparticles supported by
this state exhibit not only fractional charge but that they
are anyons, particles with fractional statistics. A hierar-
chy of daughter states at other fractions different from
the fundamental fractions, i.e., v=1/m, can be con-
structed by considering a Laughlin-type ground state of
the fractionally charged quasiparticles defined relative to
the parent state one step up in the hierarchy. The

higher-order FQHE states occur at a sequence of rational
filling fractions.

Related to this approach is the composite fermion
theory of the FQHE developed by Jain. He found that
the low-energy states of the FQHE can be described in
terms of weakly interacting composite fermions, where a
composite fermion is an electron bound to an even num-
ber of vortices. He also proposed simple Jastrow-Slater
trial wave functions for the incompressible FQHE states
as well as for their low-energy excitations. The validity
of these wave functions was confirmed by calculating nu-
merically their overlap with the true Coulomb states for
systems with small number of particles.

Another approach consists of an effective Landau-
Ginzburg field theory for the FQHE. ' It was shown
that the mean-field solutions and the small fluctuations of
the Landau-Ginzburg effective action give a correct qual-
itative description of the physics of the low-energy de-
grees of freedom. This approach has revealed the ex-
istence of a deep connection between the phenomenon of
superfluidity and the FQHE.

Although a lot of progress has been made in the under-
standing of the FQHE, the electromagnetic response
functions for a generic incompressible state have not been
calculated and, similarly, the spectrum of collective exci-
tations has not been determined for a general state. In a
previous work, we presented a theory of the FQHE
based on a second-quantized fermion path-integral ap-
proach. There we showed that the problem of interacting
electrons moving on a plane in the presence of an exter-
nal magnetic field is equivalent to a family of systems of
fermions bound to an even number of fluxes described by
a Chem-Simons gauge field. The semiclassical approxi-
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mation of this system has solutions that describe
incompressible-liquid states, Wigner crystals, and soliton-
like defects. We studied the Gaussian fluctuations
around the liquidlike solution.

In this paper we use the fermion field theory of Ref. 8
to study the collective excitations of the fully polarized
FQHE states in the sequence 1/v= I /p+2s (where p and
s are two positive integers) recently introduced by Jain.
In 1986 Girvin, MacDonald, and Platzman used the sin-
gle mode approximation to obtain the lowest collective
mode in the lowest Landau level (the intra mode) for the
states in the Laughlin sequence' (p =1 in our notation).
Our results include, in addition to the intra mode, the
inter mode. In fact we find that in general there is a rich
spectrum of collective modes. We also find that there are
two modes converging to the cyclotron frequency, and
that in general these two modes have different spectral
weights in the density correlation function. We discuss in
detail the form of the dispersion curves and the spectral
weights of the various modes for different types of pair
interactions. It should be possible to observe these modes
in resonant Raman scattering experiments. Recently, the
magnetoplasmon modes of integer Hall states have been
observed in light scattering experiments. '

The semiclassical approach of Ref. 8 is closely related
in spirit to the theories of anyon superfluidity. In both
cases an argument is given by which a system of interact-
ing particles (electrons in the case of the FQHE) is seen to
be exactly equivalent to a system of fermions coupled to a
Chem-Simons gauge field with a properly chosen cou-
pling constant. The mean-field theory then strips the
fluxes from the fermions, to which they are locally bound,
and replaces the fluxes by an average. While this approx-
imation is certainly very appealing, it has the serious
problem that it breaks a number of space-time sym-
metries quite explicitly. In particular, it breaks both
Galilean and magnetic invariance. It turns out that the
leading quantum fluctuations around this state, i.e., the
collective modes, restore these symmetries, in the uni-
form Q~O limit, already at the Gaussian level. Indeed,
we find that the quadratic or Gaussian level of the semi-
classical expansion gives the correct value of the Hall
conductance of the system. Also, at this level, we verify
that the leading order of the density correlation function
saturates the f-sum rule. This is an essential result to
show that the absolute value squared of the wave func-
tion of all the (incompressible) liquid states has the
Laughlin form at very long distances, in the thermo-
dynamic limit. " As an application of our results, we
derive the form of the response to external test charges
and fluxes. Using the same methods, we study the prob-
lem of an interacting gas of anyons, and we find the spec-
trum of collective excitations.

The paper is organized as follows. In Sec. II we review
the fermion Chem-Simons theory for the FQHE
developed in Ref. 8. We discuss the problem of the viola-
tion of Galilean invariance by the mean-field solution,
and its restoration after the fluctuations are considered at
the Gaussian level. In Sec. III we calculate explicitly the
electromagnetic response functions, discuss their analytic
properties, the spectrum of collective excitations, and

some experimentally observable consequences of our re-
sults. We also calculate the Hall response of the system,
and verify the saturation of the f-sum rule. In Sec. IV we
study the response of the system to external charges and
fluxes. We give explicit expressions for the asymptotic
long distance form of the induced charge and current
density profiles, for different types of pair interactions. In
Sec. V we apply our methods to the problem of the in-
teracting anyon gas, and derive their spectrum of collec-
tive modes. Section VI is devoted to the conclusions.

II. REVIEW OF THK CHKRN-SIMONS
FIELD THEORY FOR THE FQHE

In this section we review the Chem-Simons field theory
for the FQHE that we developed in Ref. 8. Our work
was motivated by the following argument by Jain. The
Laughlin wave function,

%(z„.. . , z~)= Q (z, —z ) exp
, 4l' (2.1)

can be factorized as follows:

4(z, , . . . , z&)= g (z; —z ) 'g&(z&, . . . , z&),
i(j

(2.2)

where g, is the wave function for a completely filled
lowest Landau level

y, (z„.. . , z~)= g (z, —z )exp
4I

(2.3)

Here the set of labels (z,. J (i =1,. . . ,N) are the coordi-
nates of the N electrons in complex notation (z=x+iy )
and l is the cyclotron radius. The odd integer m is equal
to the inverse of the filling fraction v=N/N&= 1/m of
the lowest Landau level, where N& is the total number of
flux quanta going through a sample of linear size L,
N&=(1/2m. )[BL /(Pic/e)]. In analogy with Laughlin's
construction of the quasihole wave functions, Jain ob-
served that the phases associated with the first factor in
Eq. (2.2) can be thought to represent an even number
(m —1) of fluxes which are attached to each coordinate
z, where an electron is present. Since the electrons bind
to an even number of flux quanta, they retain their fer-
mion character.

This observation suggests the possibility of studying
the FQHE as an integer quantum Hall effect (IQHE) of
bound states, i.e., composites of electrons attached to an
even number of fluxes, filling up an integer number of
Landau levels of the unscreened part of the field. In or-
der to do so, we need a theory where particles and fluxes
are bound together. That is precisely what the Chern-
Simons gauge theory does. In 1982 Wilczek pointed out
that a particle current coupled to a Chem-Simons (CS)
gauge field produces states with fractional statistics
through the binding of particles to fluxes. Therefore, if
we want to get the Laughlin wave function by attaching
m —1 fluxes to each electron, it is reasonable to think
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that the theory should contain fermions coupled to a
Chem-Simons gauge field with an appropriate value of
the Chem-Simons coupling constant 0.

Following these ideas, in Ref. 8 we studied the problem
l

of a system of interacting electrons moving on a plane in
the presence of an external uniform magnetic field B per-
pendicular to it. In the second quantized language, the
action for this system is given by

S= f d z @*(z)[iDO+p]@(z)— ~DQ(z)~ .—
—,
' f d z f d z'(~P(z)~ —p)V(~z —z'~)(~P(z')~ —p), (2.4)

where P is the average particle density, it|(z) is a second
quantized Fermi field, p is the chemical potential, and D„
is the covariant derivative which couples the fermions to
the external electromagnetic field A„. The electrons are
assumed to have an interparticle interaction governed by
the pair potential V( ~r~ ). In what follows we will assume
that the pair potential has either the Coulomb form, i.e.,
V(~r~)=q /~r~, or that it represents a short-range in-
teraction such that in momentum space it satisfies that
V(Q)Q vanishes at zero momentum. This includes the
case of ultralocal potentials (i.e., with a range smaller or
of the same order as the cyclotron length l), in which
case we can set V(0) =0, or short-range potentials with a
range longer than I such as a Yukawa interaction.

In Ref. 8 we showed that this system is equivalent to a
system of interacting electrons coupled to an additional
statistical vector potential a„(@=0,1,2) whose dynamics
is governed by the Chem-Simons action

0cs= f d x—e„xa"7 (2.5)

D =op+/ —3 +lap
C

(2.6)

provided that the CS coupling constant satisfies
8=(1/2m)/I/2s, where s is an arbitrary integer. In Eq.
(2.5) xo, x„and x2 represent the time and the space
coordinates of the electrons, respectively, and 9' is the
field tensor for the statistical gauge field,
V =8 a —8 a . In the equivalent theory the covariant
derivative given by

couples the fermions to the statistical gauge field and to
the external electromagnetic field. For arbitrary values of
0, the system is a set of anyons with statistical angle
5=1/20, measured with respect to Fermi statistics. On
the other hand, if 8=(1/2m. )/I/2x, then 5=2ns, and. the
system still represents fermions.

The Chem-Simons action implies a constraint for the
particle density jo(x) and the statistical Aux X, given by
jo(x)=8%(x). This relation states that the electrons cou-
pled to a statistical gauge field with Chem-Simons cou-
pling constant 0 see a statistical Aux per particle of 1/0.
Hence, for 8=(1/2m. )/1/2s, each fermion picks up a sta-
tistical flux equal to I /8=2m(2s), i.e.., an euen number of
Aux quanta (2s) is attached to each particle. Hence, if
the coefficient of the Chem-Simons term is chosen in
such a way that an even number of Aux quanta get at-
tached to each electron, all the physical amplitudes calcu-
lated in this theory are identical to the amplitudes calcu-
lated in the standard theory, in which the Chem-Simons
field is absent. Of course, this is true provided that the
dynamics of the statistical gauge fields is taken into ac-
count exactly.

In the scheme that we presented in Ref. 8, the dynam-
ics of the Chem-Simons gauge fields is taken into account
in a semiclassical expansion, which is a sequence of well-
controlled approximations. In practice, we consider the
leading and next-to-leading order in the semiclassical ap-
proximation. Using the constraint enforced by the
Chem-Simons term, the action becomes (in units in
which e =c =A' = 1 )

Ss= f d z g'(z)[iDO+pg(z) — ~DQ(z)~ +—e„~a"V .—
—,
' f d z f d'z'[8%(z) —P]V( z —z'~)[8%(z') —P] .

(2.7)

The quantum partition function for this problem is, at
zero temperature,

Z= f 2)P'2)QXla„exp(iS~) . (2.8)

Since the action is quadratic in the fermions, they can be
integrated out. The efFective action (S,s) is given by the
sum of the fermion contribution to the effective action
(the logarithm of the fermion determinant, which
represents the fermionic fluctuations), the Chem-Simons
terms, and the interaction term. The resulting theory can
be treated within the saddle-point expansion. The exter-

nal electromagnetic field can be written as a sum of two
terms, one representing the uniform magnetic field B, and
a sma11 Auctuating term A„whose average vanishes
everywhere. The latter will be used to probe the elec-
tromagnetic response of the system.

The path integral Z can be approximated by expand-
ing its degrees of freedom in powers of the Auctuations,
around stationary configurations of S',~. This require-
ment yields the classical equations of motion. These
equations have many possible solutions, i.e., Quid states,
Wigner crystals, and nonuniform states with vortexlike
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configurations. We will only consider solutions with uni-
form particle density, i.e., the liquid phase solution. This
is the auerage P'e-ld app-roximation (AFA), which can be
regarded as a mean-field approximation. At the mean-
field level the electrons see a total Aux B,~, equal to the
external magnetic Aux partially screened by the average
Chem-Simons fiux, i.e., B,&=B+(X)=B—p/8. It is
easy to see that the uniform saddle-point state has a gap
only if the effective field B,z is such that the fermions fill

exactly an integer number p of the effective Landau lev-
els, i.e., those defined by B,~. In other words, the AFA
to this theory yields a state with an energy gap if the
filling fraction satisfies I/v= 1/p+2s, where p and s are
arbitrary positive integers. Only for incompressible
states (i.e., with a gap) the perturbative expansion is
meaningful. If the system is compressible, i.e., gapless,
the perturbative expansion breaks down. The breakdown
is signaled by infrared divergencies at low temperatures.
This is what happens if an effective Landau level is not
completely filled. The case of a half-filled effective Lan-
dau level was analyzed recently by Halperin, Lee, and
Read. '

Thus, at the mean-field level, the FQHE of a gas of fer-
mions in a uniform magnetic field is equivalent to an
IQHE for fermions bound to an even number of fiux

quanta in the presence of a partially screened external
magnetic field. Now we consider the Gaussian (or semi-
classical) fiuctuations of the statistical vector potential a
around the mean-field state. Unlike other mean-field ap-
proaches (such as Hartree-Fock), the Gaussian correc-
tions must alter the qualitative properties of the state de-
scribed by the AFA. The reason is that the AFA violates
explicitly space-time symmetries, such as Galilean invari-
ance (more generally, magnetic inuariance) which, for
translationally invariant systems, must remain unbroken
and unchanged. Thus the center of mass of the system
must execute a cyclotronlike motion at, exactly, the cy-
clotron frequency of noninteracting electrons in the full
external magnetic field, as demanded by Kohn's
theorem. ' A naive application of the AFA would sug-
gest that the cyclotron frequency is renormalized down-
wards since the effective field seen by the composite fer-
mions is smaller than the external field B. Hence, the
magnetic algebra may appear to have changed. We will
see below that the Gaussian fluctuations yield the correct
cyclotron frequency and, thus, restore the correct mag-
netic algebra.

We will now review the semiclassical expansion for this
system. At the Gaussian level, the effective action for a„
is

S' '(a", 2")=—,
' d x d y a "(x) II„' '(x,y)a (y)+ —Sos(a„—2„)0

2

2 f d x d y[S(x)—B(x)]V(x —y)[X(y) —B(y)] . (2.9)

Equation (2.9) holds provided that the nonquadratic
dependence in the fluctuating part of the statistical vector
potentials a„ is small. Recall that these nonquadratic
terms result from expanding the (logarithm) of the fer-
mion determinant in powers of the fluctuations around
the average-field approximation. The kernels that enter
in the expressions for these terms are (connected) current
correlation functions (or response functions) of the
mean-field theory. Thus, the tensor II„' ' is the polariza-
tion tensor of the equivalent fermion problem at the
mean-field level, and it is obtained by expanding the fer-
mion determinant up to quadratic order in the statistical
gauge field. It was shown in Ref. 8 that this tensor is
transverse (as a result of gauge invariance). analytic in

I

Q /B, & and that it has simple poles at co=ken, (with k an
integer different from zero), where co, =co, /(2sp+ I) is
the cyclotron frequency associated with the effective
magnetic field B,~. As a result, II„' ' has a gradient ex-
pansion in powers of the inverse of the effective magnetic
field I/B, it, or equivalently, in powers of the inverse of
the external magnetic field 1/B. In fact, the dimension-
less parameter of this expansion is Q /B (we are working
in a system of units such that A'= c =e = 1). It also turns
out that, within this approximation, the limits of B~~
and M~0 are not equivalent (see the explicit form of
II„',' given in Appendix 8 of Ref. 8).

The nonquadratic terms in a„ in the effective action
are of the form

Sdt=S' '(a", 2")+— d x&d x2d x3a "(x& )a (xz)a (x3)II@ 3(x] x2 x3)+
3f

(2.10)

where the kernel II„' '&(x &, x2, x3 ) represents a three-point
current correlation function in the mean-field theory.
Thus, in the language of Feynman diagrams, while
II„' '(x „x2 ) can be viewed as a fermion bubble with two
amputated external collective mode lines, II„' '&(x &i,ix2, x3 )

again has one fermion loop tied to three amputated exter-

I

nal collective model lines a„. Each one of these nonqua-
dratic kernels have the same gauge invariance (i.e.,
transversality) and analytic properties as the Gaussian [or
random-phase approximation (RPA)] kernel. In particu-
lar, this means that, in momentum and frequency space,
these kernels must be a hnear combination of tensors (of
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the appropriate rank) which have the correct transversal-
ity properties, times a set of functions which are analytic
in Q and have poles at frequencies equal to an integer
multiple of the effective cyclotron frequency. Therefore,
the nonquadratic terms necessarily have powers of
Q /B, ~ (for each one of the external momenta and fre-
quency entering the fermion loop) which are higher than
the ones found at the quadratic level. Since the mean-
field theory has an integer number of filled Landau levels,
the energy denominators of the kernels do not change
this counting in powers of Q /B, fc. In conclusion, the ex-
pansion of the fermion determinant, and hence of the
effective action, is actually an expansion in powers of
Q /B,z, or equivalently, in powers of Q /B. However,
an expansion in powers of Q /8 is also a gradient expan-
sion. Thus, the gradient expansion and the semiclassical
expansion mix and are not independent from each other.

The semiclassical expansion is obtained according to
the following rules. The propagator for the fluctuations,
which represent collective modes, is the inverse of the
kernel of the Gaussian action. Since the pair potential
enters only through the propagator for the fluctuations,
the perturbation theory is not an expansion in the powers
of the pair interaction. From this point of view, this ex-
pansion is very different from conventional expansions
around the Hartree and Hartree-Fock approximations.
The vertices of the expansion are the kernels for the non-
quadratic terms. This expansion lacks a natural small pa-
rameter (i.e., a coupling constant) and it should be re-
garded, like all semiclassical expansions, as an expansion
in the number of fermion loops (i.e., RPA plus correc-
tions). One should keep in mind, however, our previous
discussion on its exactness in powers of Q /B. In what
follows we will make extensive use of the formal proper-
ties of this expansion.

The semiclassical expansion has many features in com-
mon with the perturbation theory that Fetter, Hanna,
and Laughlin' (FHL) have developed for the treatment
of the anyon gas. Although, superficially, they look very
different, it is easy to check that it is in fact the same pro-
cedure. The starting point, in both cases, is the average-
field approximation. However, when FHL study the fluc-
tuations, they fix the Coulomb gauge V.a=0. In this
gauge, and by making use of the Chem-Simons constraint
p(x)= —8%(x), one can eliminate the gauge field alto-
gether and the resulting Hamiltonian contains nonlocal
three and four fermion interactions. In FHL, these non-
quadratic terms are dealt within a Hartree and Hartree-
Fock with various improvements adopted to keep track
of gauge invariance. Our functional methods keep track
of gauge invariance automatically. The expansions look
different only because of the different choice of gauge.
Our propagators at the Gaussian (or semiclassical level)
are the RPA propagators (although in a different gauge).
While being equivalent, our approach is conceptually
simpler and the computations are more direct.

Up to this point we have reviewed the main features of
the theory introduced in Ref. 8. In the next section we
will use the efFective action of Eq. (2.9) to calculate the
full electromagnetic response functions of this theory.

K D=coQ K0(co, Q) ie kQkKi(co, —Q),
K,1=co 6; K0(co, Q) ie; .coK, (co, Q—).

+(Q 5;J.—Q;QJ. )K2(co, Q),
where the functions K&(co,Q)(1=0, 1,2) are given by

(3 2)

K0(co, Q) = —8
D co~

(8+ II i ) 110
K, (co, Q) =8+8 +8 V(Q)QD co, D co,

II2+ V(Q)(co 110—II, +Q 11011~)
Kz(co, Q) = —8

D co,

and

(3.3)

(3.4)

(3.5)

III. ELECTROMAGNETIC RESPONSE
FUNCTIONS FOR THE FQHE

Since the effective action S' ', Eq. (2.9), is quadratic in

a„, we can integrate out this field and obtain the effective
action for the electromagnetic Iluctuations A „,Sea ( A „).
We will use this efFective action to calculate the full elec-
tromagnetic response functions at the Gaussian level.
Since this calculation is based on a one-loop effective ac-
tion for the fermions (i.e., a sum of fermion bubble dia-
grams), this approximation ainounts to a random-phase
correction to the average-field approximation.

In order to integrate out the statistical gauge field a„
we must fix the gauge. The electromagnetic effective ac-
tion, being gauge invariant, is independent of the choice
of gauge for the statistical gauge fields in the path in-
tegral. We fix the gauge c)„a"=a (where a is an arbitrary
real number) using the standard Faddeev-Popov pro-
cedure (see Ref. 15). The result is explicitly gauge invari-
ant and all dependence on the parameter a cancels out.
At the one-loop level [governed by the effective action of
Eq. (2.9)] we need to know the inverse of the polarization
tensor of the equivalent fermion problem, H„' '. In Ref. 8,
we showed that II„'' can be written in terms of three
gauge invariant tensors, an E term, a B term, and a
Chem-Simons term. These three tensors plus BV.E and
a gauge fixing term [such as ( I/2a)(c)„a") which corre-
sponds to the Landau-Lorentz gauge if a~0] close an
algebra that can be used to invert the polarization tensor
and to calculate explicitly the electromagnetic response
functions.

After integrating out the statistical gauge field in Eq.
(2.9), the effective action for the electromagnetic fluctua-
tions A„ turns out to be

S;s (A„)=—,
' f d x f d'y A„(x)K" (x,y)A (y) . (3.1)

Here E" is the electromagnetic polarization tensor. It
measures the linear response of the system to a weak elec-
tromagnetic perturbation. Its components can be written
in momentum space as follows

K00=Q K0(co, Q),
K0 =coQ KD(co, Q)+. i@ kQkK, (co, Q. ),



47 RESPONSE FUNCTIONS AND SPECTRUM OF COLLECTIVE. . . 7085

D (co, Q ) = IIDc' —( II, +8) + IIO[ I12—0 V(Q ) ]Q . (3.6!

The coefficients II& (I =0, 1,2) are functions of co and Q,
and are given explicitly in Appendix B of Ref. 8. V(Q) is
the Fourier transform of the interparticle pair potential.
As we mentioned before, we needed to include a gauge
fixing term to be able to compute the functional integral
in Eq. (2.9). But at the end of the calculation all the
terms which contain the gauge fixing coefficient (a) can-
cel each other and the final result for the response func-
tions is, as it must be, gauge invariant. The other tensor
that we have introduced to make the calculations, BV E,
is not present in the final answer either.

We want to stress here that the thermodynamic limit is
crucial for the accuracy of our results. Notice first that
in the electromagnetic effective action of Eq. (3.1) we are
neglecting higher-order response functions, i.e., correla-
tion functions of three or more currents or densities. We
have shown in Sec. II that these higher-order correlation
functions have higher-order powers of Q /B than the
quadratic term. Strictly speaking, these terms are not
negligible for a finite system because, in this case, there is
a minimum value that the momentum can take, deter-
mined by the linear size of the system L, i.e., ~Q~ ) I/L.
But in the thermodynamic limit, L ~ (x) and the momen-
tum can go to zero. In other words, only for an infinite
system one is allowed to keep only the quadratic term in
the electromagnetic action, Eq. (3.1), and to neglect the
higher-order correlation functions.

The electromagnetic response functions determined by
K„have the following properties.

(i) We saw in Ref. 8 that the polarization tensor at
mean-field level II„' ', has poles at every value of the
effective cyclotron frequency (co, =B,ir/M— ) This co. rre-
sponds to the physical picture, at mean-field level, of an
IQHE of the bound states in the presence of a partially
screened external magnetic field, B,ff. Once we take into
account the Gaussian fluctuations, it is easy to prove that
all the poles that are present in the numerator and the
denominator of the K„components through the H 's

cancel out, and the poles of the response functions are
determined only by the zeros of their denominator,
D(co, Q). In other words, the collective excitations of this
system will be determined only by the zeros of D(co, Q).

(ii) The leading order term in Q of the Zoo component
of the polarization tensor saturates the f-sum rule.

(iii) The Gaussian fiuctuations of the statistical gauge
field are responsible for the FQHE. In particular, the
Gaussian corrections yield the exact value for the Hall
conductance. In the remainder of this section we will dis-
cuss these properties and their experimentally accessible
consequences in detail.

1. Case p =1

In this case the filling fraction is v= I /m, where
m =1+2s, i.e., the Laughlin sequence. We find that
there is a family of collective modes whose zero-
momentum gap is kB„where k is an integer number
different from 1 and m, and whose dispersion curve
~„(Q) is

2

cok(Q) = (kB, ) +
2B,s.

'
/c —1 1/2

2 2k(m —1)(k —1)
(k —1)!(k—m )

(3.7)

The residue in Zoo corresponding to this pole is

2
. k —1

Res(Z~, a)„(Q))= —Q co,
eff

2k(m —1)(k —1)X
(k —1)!(k—m)(k —m )

2 2

(3.8)

The cases k =1,m have to be treated separately. In gen-
eral, we find that there is no mode with a zero-
momentum gap at co, . Instead, at Q=O, there is a doubly
degenerate mode with a gap at co, . This degenerate cy-
clotron mode can be viewed as the mixing of the modes
with k =1 and with k =m. Thus, the mode with k =1
has been "pushed up" to the cyclotron frequency (at
Q=O). Halperin, Lee, and Read' have recently found a
similar result. For QWO, the degeneracy is lifted and
these two modes have different dispersion curves.

For the special case of v= —,', i.e., m =3, this effect is

particularly important. The dispersion relations for the
cyclotron modes are given by

—2 1/2

ca+ (3.9)
2

co+(Q) = co, +
2Beff

where

2M V(0)
2' 8+ 2MV(0)

2m

2 1/2

constants to be determined. Thus, we substitute this ex-
pression into the functions II;(co,Q) which appear in
D(co, Q), and expand both the numerators and the
denominators in powers of Q. Looking at the coefficients
of the leading and subleading terms of this expansion, we
are able to determine the values of P and y for al the pro-
posed solutions. This procedure is quite straightforward
to carry out. Only the modes with k =1,m require spe-
cial care.

A. The spectrum of collective excitstioas

For simplicity, we have studied the zeros of D(co, Q) in
two cases, when the number of effective Landau levels
filled is p =1 and p =2. The (more tedious) case of gen-
eral p can be studied by straightforward application of
the same methods. We have looked for solutions of the
form co =(kB, ) +P(Q /2B, &)y, where P and y are two

The residues corresponding to these poles are

Res(Koo, co+(Q) ) = —Q co, 1+
277 Q,'+

(3.10)

(3.1 1)

For v=1/m, m ~ 5, the collective modes whose zero-
momentum gap is the cyclotron frequency, m„are
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Q z (m —1) 2MV(0)
2B,ff ' (m —2) 2'

1/2

(3.12}
I

with residue

Res(TOO co+(Q))= —Q co,' 2'
The other cyclotron mode has the dispersion

(3.13)

z Q q 4m (m —1) 4 (m —1) 2MV(0)
~c

2Beff (m —1)! (m —2) 2m.

—1. 1/2

(3.14)

with residue

Q 4m (m —1) (m —1) 2MV(0)' 2~ 2B„ (m —1)! (m —2) 2m

—2

(3.15)

The above results are valid only if the pair potential
V(Q), has a gradient expansion in powers of Q, i.e., for
short-range interactions. V(0) stands for the leading or-
der term in that expansion.

If the pair potential has the Coulomb form, i.e.,
V(Q)=2m. q /~Q~ in two spatial dimensions, both, the
dispersion relations with zero-momentum gap at the cy-
clotron frequency and their residues get modified. The
expressions valid in this case are, for any allowed value of
m

with residue

~Q~'~~
—'~

Res(ICOO, co (Q) }=—Q co, 2' (2B, )

4m (m —1)
(2Mq ) (m —1)!

2. Case p =2

(3.18)

co+(Q) = a), + co, 2Mq
eff

with the same residue given by Eq. (3.13), and

z ~Q~ q 4m (m —])~
co ( )= co, — CO

(2B, )
' 2M (m —l)~

(3.16)

(3.17)

In this case the filling fraction is v =2/m where
rn =1+4s. The same remarks about the pair potential
are valid in this case. If the pair potential has a gradient
expansion in powers of Q the following results hold.

We find that there is a family of collective modes
whose zero-momentum gap is kco„with kWl, m, and
whose dispersion curve cok(Q) is

~+ Q ~ (m —1)(k —1)k(k+2)
2B,fc ' (k —m)(k —1)!

(3.19)

The residue corresponding to this pole in Too is
k —1

Res(TOO, cok(Q)) = —Q co,
eff

(k +2)(k +1)k (k —1)
(k —1)!(k—m)(k —m )(m+1)

(3.20)

The collective modes whose zero-momentum gap is the cyclotron frequency, co„are

co+(Q) = co, +
eff

4 (m —1) 2MV(0)
(m —2) 2n.

1/2

(3.21)

with residue

Res(KOO, co+(Q)}=—Q co, (3.22)

and

(Q)= Q2
m 2

2B,ff
q m (m —1) (m +2) (m —1) 2MV(0)

(m —1)! (m —2) 2'
1/2

(3.23)

with residue
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2 v Q m (m —1) (m +2) (m —1) 2MV(0)
' 2~ 2B„ 2(m —1)! (m —2) 2'

—2

(3.24)

If the pair potential has the Coulomb form, the dispersion relations with zero-momentum gap at the cyclotron frequen-
cy become

~+(Q) = co, + co,4Mq
eff

(3.25)

with residue given by Eq. (3.22), and

2 ~Q~ 2 m (m —1) (m +2)
2 CO~

(2B,fr) 2Mq (m —1)!
(3.26)

with residue

2 v lQI
™l m (m —1) (m+2)

2~ (2B,&) 2(2Mq ) (m —1)!
(3.27)

In this section we have found the spectrum of collective
excitations for some values of the filling fraction. Our re-
sults are a generalization of the work of Kallin and
Halperin' who studied the spectrum of collective modes
for the integer quantum Hall effect within the RPA. We
find a family of collective modes with dispersion relations
whose zero-momentum gap is ken„where k is an integer
number different from 1 and m. When k=m, i.e., the
zero-momentum gap is the cyclotron frequency, there is a
splitting in the dispersion relation for finite wave vector.
One of these solutions, co, has negative slope for small
values of Q. Therefore, there must be a roton minimum
at some finite value of the wave vector. Since our results
are accurate only for small Q, our dispersion curves do
not apply close to the roton minimum. Nevertheless, this
mode is expected to become damped due to nonquadratic
interactions among the collective modes. On the other
hand, the collective mode with lowest energy has k =2, is
stable (at least for reasonably small wave vectors) and, at
small wave vectors, it disperses downwards in energy.
This behavior suggests that there should be a magnetoro-
ton minimum for this mode. This result is consistent
with the work of Girvin, MacDonald, and Platzman.

The splitting of the cyclotron mode for v= —,
' is a little

puzzling. It only happens for v= —,
' and for short-range

interactions. In all other cases, only the residue for one
of the two cyclotron modes is proportional to Q . Stan-
dard lore has it that Kohn's theorem demands that there
should be one and only one mode converging to the cy-
clotron frequency as Q ~0 with residue proportional to
Q . Zhang has emphasized this point recently. It is gen-
erally assumed that Kohn's theorem is valid even at
nonzero wave vectors and that it requires the existence of
only one mode with residue proportional to Q converg-
ing to co, . However, at nonzero wave vectors, these argu-
ments make the unstated assumption of the analyticity of
the current operators on the wave vectors. While this
may well be correct, it is an additional assumption and it
does deserve closer scrutiny. The results from our theory
do indeed predict the existence of only one mode at co,
with residue proportional to Q, which is the statement of

Kohn's theorem. And, also, for all filling fractions and
for all pair potentials (except v= —,', and short-range in-

teractions) we do find only one mode with residue Q
even at nonzero wave vectors. The case v= —,

' and short-
range interactions appears to be exceptional in that we
find two modes which coalesce at the cyclotron frequency
as Q ~0. But both of these modes have residue propor-
tional to Q, with different amplitude, and together they
satisfy the sum rule. ' While it is possible that the non-
Gaussian corrections may change this result since, in a
sense, these are subleading pieces in Q, these non-
Gaussian corrections are expected to be very small at
small wave vectors.

We close this section with a few comments on the va-
lidity of this spectrum of collective modes beyond the
semiclassical approximation. Primarily we have to con-
sider the physics at moderately large wave vectors and
the (expected) effects of non-Gaussian corrections. At the
Gaussian (RPA) level we found a family of collective
modes which, for suKciently small momentum, are
infinitely long lived (i.e., the response functions have 5-
function sharp poles at their location). These modes
represent charge-neutral bound states. It is in principle
possible that, for Q sufficiently large, these modes should
become damped. The threshold should occur when the
energy of the collective mode becomes equal to the ener-
gy necessary to create the lowest available two-particle
state: a quasiparticle-quasihole pair. In the AFA, the en-
ergy of a pair is equal to 6, . Gaussian fluctuations are
expected to renormalize this energy upwards and to give
it a momentum dependence. This is in principle calcul-
able with methods of this paper but this result is not
available at the present time. Non-Gaussian corrections
to the RPA are also expected to give a finite width to
(presumably) all the collective modes but the lowest one.
This is so because the corrections to the semiclassical ap-
proximations are due to effective vertices (due to virtual
quasiparticle-quasihole pairs) which couple the various
collective modes and, thus, induce the higher-energy
modes to decay down into the lower modes. However, by
gauge invariance, these vertices have a momentum
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dependence and should vanish as Q~O. Thus, the width
of the higher-energy modes goes to zero as Q~U and
these modes only become sharp at Q=O. But at Q=O
the only accessible mode is the cyclotron mode (the other
modes have a vanishingly small spectral weight). These
arguments strongly suggest that the only truly sharp
mode, at Q=O, is the cyclotron mode, which is required
to be stable by Kohn's theorem. ' Since the modes with
zero-momentum gap at ken„k ~ 3, are not the collective
modes with lowest energy, it is possible that at finite wave
vectors they may also decay into the collective mode with
lowest energy (the mode with k =2, which has a gap at
B,). These issues remain to be invertigated.

B. Experimental consequences

In this section we discuss the experimental conse-
quences of the results that we have just derived.

The density correlation function can be probed by opti-
cal absorption and by Raman-scattering experiments.

In the first case, the optical absorption is proportional
to the imaginary part of the density correlation function.
We predict that there will be absorption peaks at a
discrete set of frequencies which, for Q~O converge to
co=kB„where k is an integer number greater than two.
Since the spectral weight of these modes vanishes as
Q~O, the associated absorption peaks are, for a strictly
translationally invariant system, only observable at
nonzero momentum.

In the case of the Raman scattering, the geometry
must be such that there is a component of the incident
light wave vector in the plane of the sample. The Raman
spectrum, I(co), is also proportional to the imaginary part
of the density correlation function.

We have seen that in the limit ~Q~ &&1 ', where 1 is
the magnetic length, most of the weight of Koo(co, Q) is in
one of the cyclotron modes. The pole in Koo(co, Q) for
the lowest excitation frequency, cok with k =2, has a resi-
due which is proportional to ~Q~, i.e. , it is smaller by a
factor of ~Q~ than the residue at the highest weighted
mode at the cyclotron frequency.

We have also found that there is a splitting in the cy-
clotron modes. If the pair potential has a gradient expan-
sion in ~Q~, i.e. , short-range interaction, the pole at co

[Eqs. (3.14) and (3.23)], has a residue that is smaller by a
factor of ~Q~

' ' than the residue of co+ [Eqs. (3.12)
and (3.21)]. The relative Raman intensity, I(co+)/I(co ),
is proportional to (2B,tr/Q )' ' which is a big number
within our approximation. If the filling fraction is v= —,',
both modes have the same Q dependence in their spec-
tral weight, but the relative intensity is =2.5 provided
that V(0) =0. Except for v= —,', the splitting between the
two modes at the cyclotron frequency satisfies, at leading
order in ~Q~, b, co =co+ —co =co+ —co„which is propor-
tional to ~Q~ . Up to this order, experimentally one
should observe one mode dispersing co+ [Eqs. (3.12) or
(3.21)], and the other as co=co, . For v= —,

' the splitting is
also proportional to ~Qj . In this case one should observe
both modes [co+ and co, Eq. (3.9)], but with diff'erent in-
tensities.

C. Saturation of the f-sum rule

We show now that the long wavelength form of Zoo,
found at this semiclassical level, saturates the f-sum rule.
This result implies that the non-Gaussian corrections do
not contribute at very small momentum. In a separate
publication" we have used this result to show that the
absolute value squared wave function of all the (in-
compressible) liquid states has the Laughlin form at very
long distances, in the thermodynamic limit.

The retarded density and current correlation functions
of this theory are, by definition

D„„(x,y) = i 8(xo yo )—& G
I [J„(x)J„(y)] l

G ), (3.28)

where J„(p=0,1,2) are the conserved currents of the
theory defined by Eq. (2.4), and

~
G ) is the ground state of

the system. Using this definition and the commutation
relations between the currents, one can derive the f-sum
rule for the retarded density correlation function Doo. In
units in which e =c =6=1, it states that

L coD oo co, (3.29)

On the other hand, it is easy to show (see, for instance,
Ref. 19) that the polarization tensor K„and the density
and current correlation functions D„satisfy the follow-
ing identity

5J„(x)
K (x,y) = D„(x,y)+-53, y

(3.30)

From Eqs. (3.2) and (3.3) we see that the leading order
term in Q of the zero-zero component of the electromag-
netic response is given by

P Q'
M ~2 ~~+« (3.31)

where we have used that p/B =v/2~.
The correlation functions that we derive from the path

If the pair potential has the Coulomb form, the residue
of co [Eqs. (3.18) and (3.27)] is smaller by a factor of
~Q~

' ' than the residue of co+ [Eqs. (3.16) and (3.25)],
and this is valid for all the values of the filling fraction
that we have studied. The splitting between these two
modes satisfies, at leading order in ~Q~, bc@ =co+ —co„
which is proportional to ~Q~. For v diff'erent from —,', the
relative intensity between the two modes is proportional
to (2B,ir/Q )' 'MV(Q), which is bigger than 1 within
our approximation. For v= —,', the relative intensity is
proportional to MV(Q). This factor can be written in
terms of the magnetic length and the cyclotron energy as
follows [V(Q)/1]/co, . Since our approximation is only
valid in the limit 1/~Q~ ))1, the numerator satisfies
V(Q)/1 ))2mq /1. The second term in this inequality is
the Coulomb energy at the magnetic length, which
is typically of the same order of magnitude
as the cyclotron energy. Therefore, [ V( Q) /1 ] /co,
))(2mq /1)/co, = l. In other words, the relative intensi-
ty for v= —,

' is also bigger than one.
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integral formalism are time ordered. Therefore, if we use
the relation between time-ordered and retarded Green's
functions, and Eqs. (3.30) and (3.31), we see that the lead-
ing order term of Koo saturates the f-sum rule, Eq. (3.29).

It is important to remark that the coefticient of the
leading order term of Koo cannot be renormalized by
higher-order terms in the gradient expansion, nor in the
semiclassical expansion. In the case of the gradient ex-
pansion, it is clear that higher-order terms have higher-
order powers of Q, and then, do not modify the leading
order term. In the case of the corrections to Too origi-
nating in higher-order terms in the semiclassical expan-
sion, they also come with higher-order powers of Q .
The reason of that is essentially the gauge invariance of
the system. This implies that the higher-order correla-
tion functions must be transverse in real space, or
equivalently they have higher-order powers of Q in
momentum space. Being higher-order terms in the Q
expansion they cannot change the leading order term.

As we have already mentioned, these results hold for
any model Hamiltonian for the two-dimensional electron

gas (2DEG) with reasonably local interactions, i.e., with
pair interactions that obey Q V(Q) ~0 as Q ~0.

D. Hall conductance

We show now that, already within our approximations,
this state does exhibit the fractional Hall effect with the
exact value of the Hall conductance. We have previously
shown elsewhere ' ' that this is the case using the
effective action of the statistical gauge fields. Here we
show that, as expected, the electromagnetic response
functions exhibit the correct FQHE.

In order to do so, we will calculate the Hall conduc-
tance of the whole system. Since we are only interested
in the leading long-distance behavior, it is suf6cient to
keep only with those terms in Eq. (3.1) which have the
smallest number of derivatives, or in momentum space,
the smallest number of powers of Q. Therefore, from
Eqs. (3.1) and (3.2), we see that the leading long-distance
behavior (i.e., small momentum) of the effective action for
the electromagnetic field is governed by the Chern-
Simons term. In this limit Eq. (3.1) turns out to be

d2
S;7f(A„)=——I 2 f A„(—co, —Q)E, (co, Q)e„&Q A„( co, Q),

2 (2~)2 2~
(3.32)

11,(o,o)
lim lim E, ( co, Q ) =q-o ~-0 ' ' 0+ II,(0,0)

(3.33)

where Q =co and Q'= —Q; according with the conven-
tion that we have used in Ref. 8.

To study the Hall response of the system, we will now
consider the limit of small co and small Q. We have
checked that in this theory the two limits commute

IV. ELECTROMAGNETIC RESPONSE
TO AN EXTERNAL CHARGE AND FLUX

In this section we will study the linear response of the
system to a static charge and a static Aux.

Consider the case of a static probe of electric charge q,
located at the origin. The electromagnetic vector poten-
tial can be written as

11,(o,o)
lim limK, (co,Q)=

oq o
' 8+II, 00 (3.34) Ao(x, t)=

(4.1)

This is a consequence of the incompressibility of the
ground state. Since 8=1/2m. 2s and II,(0,0)=p/2m. ,

A~(x, t ) =0,j=1,2,
or in momentum space

(3.35) Ao(to, Q) =(2m. )'5(co)
i

(4.2)

where v is the filling fraction. The electromagnetic
current J„ induced in the system is obtained by
differentiating the effective action S,s.(A„) with respect
to the electromagnetic vector potential. The current is
J„=(B,tt/2)e„&F" . Thus, if a weak external electric
field E~ is applied, the induced current is Jk=8,~IkEt.
We can then identify the coeKcient 0,& with the actual
Hall conductance of the system o. and get

(3.36)

which is a fractional multiple of e Ih (in units in which
e=R=1). Thus, the uniform states exhibit a fractional
quantum Hall effect with the correct value of the Hall
conductance.

The electromagnetic current induced in the system J&
can be calculated by differentiating the effective action,
Eq. (3.1), with respect to the electromagnetic vector po-
tential. In momentum space the induced current is

J„(co,Q)= —,
' A ( —co, —Q)[K„(—co, —Q)

+X „(to,Q)] . (4.3)

In particular, the charge and the current density induced
by the external perturbation, Eq. (4.1) are

Jo(co,Q)= Ao( —co, —Q)EOO(co, Q), (4.4)

J.(co,Q)= —,
' Ao( —co, —Q)[X,.0(

—co, —Q)+Kol(co, Q)],
(4.5)
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or in real space

Jo(x, t)=2mq f QfKo(O, Q)e'~",d2

(2m)

d2Q K, (O, Q)J (,t)=2 q „Bk f (2~)

(4.6)

(4.7)

Jo(x, t)=0,
@0 ejkxk

(4.10)

the uniform state.
The electromagnetic vector potential is in this case

Using the expression (3.3) for Ko, the leading order term
of the induced charge becomes

or in momentum space

A (co, Q)=i2n5(co)40
ejk Qk

(4.11)

(4.8)

Since the external perturbation generates an electric field
in the radial direction, the induced current given by Eq.
(4.7) has only components in the azimuthal direction (g).
The leading order term is

According to Eq. (4.3), the charge and current density in-
duced by this perturbation are, respectively,

Jo(co, Q) =
—,
' A;( —co, —Q)[KO;( —co, —Q)+K;o(co, Q)],

(4.12)

J„(x,t)=o„~q 2
1

(4.9)
Jj(co,Q) =

—,
' A, (

—co, —Q)[KJ;( —co, —Q)+Kj(co, Q)] .

(4.13)
These results coincide with those obtained by Sondhi and
Kivelson, who calculated the current induced by the
presence of a quasiparticle, within the framework of the
Chem-Simons Landau-Ginzburg theory for the FQHE.

The expressions obtained above are formally exact in
the limit of infinite magnetic field. Their corrections can
be calculated by taking into account higher-order terms
in the gradient expansions of the functions Eo and K„
and in the semiclassical expansion. These results hold if
the pair potential V(Q) is such that Q V(Q) vanishes
when Q~O. In both cases, for a short-range potential or
for the Coulomb potential, the corrections to Eqs. (4.8)
and (4.9) will go as 1/fxf and 1/fxf", respectively. In
principle, the corresponding coefficients might be renor-
malized by non-Gaussian fluctuations of the statistical
gauge field.

We now calculate the linear response of the system in
the presence of a static magnetic Aux located at the ori-
gin. We will consider here an infinitesimally thin Aux
tube with intensity %0, such that the system remains in
its ground state even in the presence of the Aux. If the
flux through the solenoid gets to be big enough, the sys-
tem will be able to lower its energy by creating quasipar-
ticles or quasiholes (i.e. , moving into an excited state),
which eventually might screen the Aux. Hence, we ex-
pect that the response to an external infinitesimally thin
solenoid of Aux @o should be a periodic function of 40
with period equal to one Aux quantum. However, this
problem cannot be studied within the mean-field solution
that we have chosen, because there is no way to go per-
turbatively from the uniform or liquidlike ground-state
solution, to a solution which represents an excited state
with one or more quasiparticles present. To recover the
expected periodic behavior of the induced current as a
function of the external Aux, we would have to study not
only the uniform solution of the saddle-point equations,
but also the vortexlike solutions, and sum over all of the
saddle points to obtain the full, periodic, response to an
external arbitrary Aux. In this work we will only consid-
er solenoids with Aux Wo much smaller than the Aux

quantum and, thus, we will only consider the response of

Substituting in these equations the explicit form of the
external probe [Eq. (4.11)],and transforming back to real
space, the induced charge and current are given by

d2J ( oxt)= —4&0 f 2Ki(O, Q)e'~*, (4.14)

d2J (x, t)= —40e krak f K2(O, Q)e'o" .
(2m )

(4.15)

Keeping only the leading order terms in K, (O, Q), Eq.
(3.4), the induced charge becomes

Jo(x, t ) = —K, (0,0)e;k 8; Ak(x), (4.16)

where Ki(0,0) is evaluated at zero frequency and
momentum. Using that K, (0,0)=v/2~, we get

Jo(x, t ) = — %(x), (4.17)

40Q= —v
2m-

' (4.18)

Since the induced charge Q has been determined from
linear response theory, it may seem that Eq. (4.18) should
only hold if the flux No is small relative to the Aux quan-
ta. Equation (4.18) is, however, exact. This follows from
the fact that the leading behavior at small momentum of
the response functions saturates the sum rules and, in
consequence, coefficients such as Ki(0,0) are given exact-
ly by the linear response result. For instance, if %0=2+,

where X=@o5 (x) is the magnetic field associated to the
external flux, Eq. (4.10). It is important to remark that
Eq. (4.17) is strictly valid in the limit in which the exter-
nal uniform magnetic field goes to infinity. Otherwise, we
find that the induced charge has Gaussian factors that in
the limit of infinite magnetic field become 6 functions
which combine to reproduce exactly the magnetic field
produced by the external perturbation [Eq. (4.10)].

The total charge Q induced by the external perturba-
tion is obtained by integrating Eq. (4.17) over the area of
the system. The result is
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J (x, t)=
—B ~/x/ /2e~,~~, Ixle (4.19)

In particular, in the limit of B~~, the above expression
becomes

(4.20)

which is ultralocal.
If the pair potential has the Coulomb form, the leading

order term in the azimuthal component of the induced
current density is given by

J (x, t)=
2

2v @ I
2m

(4.21)

which has a long-range, power-law tail.
We close this section with a remark. The sum rule ar-

guments tell us that the asymptotic long-distance behav-
iors for the charge and current density profiles that we
derived in this section, are exact. However, at shorter
distances they are expected to pick up corrections. For
instance, except for the case of the Coulomb potential,
our results show no dependence on the strength of the
short-range potentials. This is so since we are consider-
ing ultralocal pair interactions, i.e., with a range compa-
rable or smaller than the cyclotron radius. If, for exam-
ple, we consider a Yukawa-like interaction with a range a
much larger than l, but still finite, we should expect a
somewhat different behavior at distances R =a. In fact,
for R ))a ))l we find that the profiles decay exponential-
ly fast with range a (i.e., not Gaussian). For the regime
a ))R ))1we find, for the current density profile, a 1/R
power-law decay crossing over to Gaussian behavior at
the scale of l. In other words, we only expect changes ei-
ther at the cyclotron scale or at any new length scales in-
troduced by the interaction.

V. APPLICATION TO THE INTERACTING ANYON GAS

In this section we consider a system of interacting
anyons in the absence of an external magnetic field. This
problem was previously discussed by many au-
thors. ' ' ' All of these works deal with anyons which,
apart from a hard core, are not interacting.

Here we find the spectrum of collective modes for
different types of pair interactions and we rederived some
of the previously known results on the electromagnetic
response functions within the framework of our theory.

For this problem, we can also expand the path integral
Z around stationary configurations of the effective ac-
tion. There are many possible solutions for the classical
equations of motion, but we only study that one with uni-

the induced charge is just the filling fraction of the sys-
tem. In particular, for v=1/m the induced charge is
—1/m. This result agrees with Laughlin's gedanken ex-
periment argument for the construction of the quasihole.

Finally we consider the current induced by the
solenoid. If the interparticle pair potential is short range,
being its range much smaller than the magnetic length
(I), the induced current density, Eq. (4.15), is

1. Case p =1

Here 0= —1/2m. . Therefore the statistical angle is
5=m and we are dealing with a system of interacting bo-
sons.

We find that there is a family of collective modes
whose zero-momentum gap is kB„where k is an integer
number different from 1, and whose dispersion curve
cok(Q) is

k —1 1/2
Q 2 2

2B,tt
' (k —2)!

(5.1)

The residue in Eoo corresponding to this pole is
k —1

Res(TOO, cok(Q)) =Q
2m. 2B,s.

2

k (k —2)!
(5.2)

In particular, if k =2, the above dispersion relation be-
comes

4m.p
M

2 1/2

(5.3)

To obtain this expression we have used that
co, /2vr=p/Mp. This mode appears to correspond to the
"density mode" of the Bose gas. Notice that all of the
modes with k ~ 2 are expected to become damped due to
the nonquadratic interaction terms which induce decays
into the gapless k=1 modes. The modes with larger
values of k, presumably, should get damped more quickly
than the mode at k =2.

The mode with k = 1 is "pulled down" and it becomes
gapless (at Q=O). Its dispersion curve is

~(Q) =Uo IQI

where

(5.4)

277p

M' (5.5)

Equation (5.4) is valid provided that the pair potential is
short range, and that V(0)=0. If the pair potential is
V(Q) =2mq /~Q~, the gapless mode has the form

form particle density. At mean-field level the anyons see
a total Aux B,&, which coincides with the average Chern-
Simons fiux, i.e., B,tt= —p/8. In order for this theory to
have a gap in the single-particle spectrum, an integer
number p of effective Landau levels defined by B,ff must
be completely filled. This requirement implies a relation
between p and the statistics parameter given by
p /2~ = —0. Provided that this identity holds, the
coefticient of the Chem-Simons terms vanishes and the
system has a gapless collective mode.

The next step is to take into account the Gaussian fluc-
tuations. We can use the results derived in Sec. III for
the electromagnetic response functions, but with
B,tt= —p/8 and p/2m = —8. For the system of anyons
we have also studied the spectrum of collective modes
only for the cases p =1 and p =2. The general case can
be analyzed by using the same methods.
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~2(Q) =uyfq2IQI .

In both cases the residue is

(5.6) if the limit co~0 is taken first. However, if Q ~0 first,
we find

Res(TOO, co(Q)) = —Q (5.7)

lim K i ( co, Q ) =0 .
Q~O

(5.12)

These results agree with the general discussion by
Fetter of plasmons in two-dimensional compressible
fluids. This behavior is a consequence of the compressi-
bility and two-dimensionality and it is independent of the
statistics of the particles.

2. Case p =2

Here 8= —2/2m. . This is the case of semions. Again
we find that there is a family of collective modes whose
zero-momentum gap is kco„where k is an integer num-
ber different from 1, and whose dispersion curve cok(Q) is

k —1 1/2
Q 2 k+2

2B,s
' (k —2)!

~k(Q)= (kCO, )'—

The residue in Koo corresponding to this pole is
'k —1

2m 2B s k2(k —2)!

2

K (,Q)=—
2 U2Q2

(5.10)

Therefore, Too has a massless pole which corresponds to
a gap1ess collective mode whose .velocity is given by Uo.

In this sense we can say that the Gaussian fluctuations re-
store the compressibility of the system. This coincides
with the results of Refs. 22 and 25.

The coefficient of the Chem-Simons term, Eq. (3.4), has
the properties

(5.11)

In particular, if k =2, the above dispersion curve coin-
cides with Eq. (5.3). Again, the mode at k =2 can be re-
garded as a "density mode. " All of these modes will also
become damped by interaction effects.

The mode with k = 1 is "pulled down" and it becomes
gapless (at Q=O). Its dispersion curves and residue are
the same as in the case p =1, Eqs. (5.4), (5.6), and (5.7),
respectively.

We have further checked that for any other value of p,
the gapless mode and the mode with zero momentum gap
at 2', have the same form as those for p =1, Eqs. (5.3),
(5.4), and (5.6).

We have seen then that the electromagnetic response
functions that we find at the semiclassical level have a
gapless collective excitation. We can see also that there is
a restoration of parity in the uniform limit, and that the
system exhibits Meissner effect. These two last results
are already well known, but we reproduce them here for
completeness.

For short-ranged pair interactions, the density correla-
tion function is, to leading order in Q,

K2(CO, Q)= — EO(CO, Q),277p (5.13}

where according to Eqs. (3.2) and (5.10) Ko is

Ko(co, Q}=— 1

Ql U0Q
(5.14)

The electromagnetic current induced in the system be-
cause of the presence of a magnetic field is Jk=Kk 3 .
Using Eqs. (3.2) and (5.12}we get

Sk = [~'Z, (~,Q)+ Q'A&2(~, Q) j Wk

—QkQ K2(CO, Q)A (5.15)

Therefore, the curl of the current is, in momentum space

~lk Ql~k ~lk 0!~ k
P
M

(5.16)

This is precisely the London equation, where the London
penetration depth is I IA, =4m.p/M.

VI. CONCLUSIONS

In Ref. 8 we developed a Chem-Simons theory for the
FQHE based on a second-quantized fermion path-
integral approach. In this paper we have calculated the
electromagnetic response functions of the fractional-
quantum-Hall-effect system within the framework of that
theory. We made a semiclassical expansion and we
worked around the average-field approximation. As we
have already mentioned above, the mean-field solution
violates explicitly Galilean invariance. At this level of
the approximation, the center of mass of the system exe-
cutes a cyclotronlike motion at the effective cyclotron fre-
quency. In this sense the Gaussian (or semiclassical) fiuc-

Equation (5.12) simply means that the Hall conductance
of the anyon gas is zero. Halperin, March-Russell, and
Wilczek have argued that this result is a consequence of
Galilean invariance. Equation (5.11) can be thought of as
a static response of the ground state to a periodic modu-
lation of the charge density with wave vector Q which in-
duces a periodic arrangement of currents. These currents
give rise to an orbital magnetic moment. Equation (5.11)
is the static (or equilibrium) orbital susceptibility. It is
hard to believe that for the case of bosons, which do not
have any violation of time reversal, there should be any
orbital currents. These results coincide with those of
Hanna, Laughlin, and Ferrer' and Chen et al, at the
Hartree level. Dai et al. ' have shown recently that
non-Gaussian fiuctuations (beyond the RPA) yield a lim-
iting value of zero for K, (co, Q) (as !0~0)for bosons but
not for semions.

Finally, we will show that the system exhibits Meissner
effect. In the limit of long distances, and for short-range
interactions, the coefficient E2, Eq. (3.5), can be written
as
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tuations are essential to restore the original symmetries of
the problem. We saw that order by order in the semiclas-
sical expansion the response functions obey the correct
symmetry properties required by Galilean and gauge in-
variance, and by the incompressibility of the Quid. We
showed that, already at the semiclassical or Gaussian lev-
el, the low-momentum limit of the density correlation
function saturates the f-sum rule, and in that sense this
result is exact, i.e., it cannot be renormalized by higher-
order corrections. We calculated the Hall conductance
out of the density-current correlation functions, and we
found that it has the correct value at this order of the ap-
proximation. We obtained the spectrum of collective ex-
citations in the low-momentum limit for short-range and
for Coulomb interparticle pair potential. We found that
there is a family of collective modes whose zero-
momentum gaps are integer multiples of the effective cy-
clotron frequency. In particular, there are two modes
merging at the cyclotron frequency at zero momentum,
but with different intensities, i.e., different weights in
their residues in the density correlation function. We ar-
gued that all of these modes, except the one with least en-
ergy, will be damped once the higher-order terms in the
semiclassical expansion are taken into account. We also
calculated the linear response of the system to external
charges and fluxes, and found expressions for the asymp-
totic form of the charge and current-density profiles. We
found that the responses to an external charge always
show profiles with universal power-law decays. In con-
trast, the responses to external infinitesimally thin
solenoids exhibit a variety of behaviors which depend on
the nature of the interactions.

Finally, we reconsidered the anyon superAuid within

our scheme and derived the spectrum of collective excita-
tions for interacting hard-core bosons and semions. In
addition to the gapless phase mode, we found a set of
gapped collective modes.

There are still many questions left open. The theory
presented here provides a good description of the uni-
form FQHE ground state, of its collective excitations,
and of its linear electromagnetic response. We have
made a number of predictions about the existence of a
family of collective modes. The observability of them de-
pends not only on their intensities, but also on their life-
times. We have not addressed this problem here. Anoth-
er open point of interest is the study of this theory start-
ing from another solution of the saddle-point equations,
as the Wigner crystals and nonuniform states with vor-
texlike configurations.
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