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We report ab initio calculations of the lattice constants and the electronic band structure of the hexag-
onal wurtzite-structure semiconductors ZnO and ZnS. We employ the local-density approximation and
solve the Kohn-Sham equations for nonlocal, separable, and norm-conserving pseudopotentials self-
consistently. We use basis sets of localized gaussian orbitals with s, p, d, and s symmetry. In particu-
lar, we investigate the inAuence of the Zn 3d electrons on the results for the lattice constants and the
band structure. Results of calculations employing both Zn + and Zn"+ ionic pseudopotentials are
presented and discussed. For ZnS, both the cubic zinc blende and the hexagonal wurtzite polytype have
been studied. The calculated lattice constants are found to be in excellent agreement with experiment
for both semiconductors when the d electrons are explicitly taken into account as valence electrons. The
agreement of the calculated bands of ZnS with experimental data and with the results of a plane-wave
calculation from the literature using about 6.000 plane waves for the cubic crystal is very good except for
the absolute energy position of the d bands. For ZnO the calculated bands agree better with angle-
resolved photoemission data when the Zn' + pseudopotential is employed. The agreement, however, is
still far from satisfactory and the calculated absolute position of the d bands is off, again. The discrepan-
cies seem to be related to correlation effects in the narrow d bands. We find the Zn 3d electrons to
strongly interact with the 0 2p electrons in ZnO. According to our results, the p-d mixing in ZnO is
about twice as large as in ZnS.

I. INTRODUCTIC)N

ZnO is a compound semiconductor whose ionicity re-
sides exactly at the borderline between covalent and ionic
semiconductors. It is at the "ionic extreme" of
tetrahedr ally coordinated compound semiconductors
whose zinc-blende or wurtzite structures lead to their
classification as covalently bonded bulk materials. ZnO
is thus the prototype of tetrahedrally coordinated, ionic
II-VI compound semiconductors. Other materials of this
group, are e.g. , ZnS, CdS, or CdSe. The prototypic ZnO
has been the subject of detailed experimental and theoret-
ical investigations. ' Nevertheless, a first-principles cal-
culation of the electronic and structural properties using
modern ab initio pseudopotentials is missing for this
wurtzite semiconductor as well as for hexagonal ZnS.
This is probably related to the fact that the four basis
atoms in the hexagonal unit cell require an enormous
number of plane-wave basis states for a convergent
description since strongly localized wave functions and
pseudopotentials are involved. ZnO is one of the worst
cases for a pseudopotential description since both the 0
2p and Zn 3d orbitals are the lowest-lying orbitals of the
respective symmetry type. Therefore the screening of the
nuclear charge by core electrons is very incomplete in
both cases. The oxygen pseudopotential cannot be or-
thogonalized on lower-lying p states and the zinc pseudo-
potential cannot be orthogonalized on lower-lying d
states. Both pseudopotentials and the related wave func-
tions are strongly localized. Oxygen has very tightly
bound 2p electrons and Zn has very tightly bound 3d
electrons which sense the nuclear attraction very
efficiently. A proper description of the O 2p and the Zn

3d valence electrons thus enforces a considerable numeri-
cal effort.

In many earlier attempts to calculate the ZnO band
structure, the Zn 3d electrons have been considered as
core electrons, reducing the numerical e8'ort drastically
when a plane-wave basis set is used. This reduction in
computer time and program size has had its price. Form-
er calculations ' could not estimate the contribution of
the Zn 3d electrons to the bonding properties in the wurt-
zite semiconductors ZnO and ZnS. Further shortcom-
ings of these approaches will be commented on further
below. The lack of a reliable bulk description led to con-
troversies about the nature and origin of possible surface
states at the ZnO (1010) surface. ' An ab initio study of
the above-mentioned crystals can thus provide useful in-
formation on the nature of their electronic bulk states
and it is a mandatory prerequisite for state of the art sur-
face band-structure calculations of wurtzite-structure
ZnO and ZnS. In addition, total energy calculations
yield theoretical lattice constants. They indicate how
well ground-state properties of ZnO and ZnS are de-
scribed within the local-density approximation (LDA).

The paper is organized as follows. In Sec. II we briefly
summarize the ingredients of the calculations and in Sec.
III we present our results for ZnS and ZnO. There is
only very rare experimental information on the less popu-
lar hexagonal wurtzite phase of ZnS. We calculate,
therefore, the band structure for the cubic modification of
ZnS as well, and compare our results with experimental
data obtained for this modification. ' ' The atoms are
tetrahedrally coordinated in both polytypes so that the
nearest-neighbor configurations are the same. The calcu-
lated electronic band structure of ZnO is compared with
the results of angle-resolved photoemission spectroscopy
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(ARPES) data. A short summary in Sec. IV concludes
the paper and details on the calculation of matrix ele-
ments using separable pseudopotentials are given in the
Appendix.

II. METHOD OF CALCULATION

Our calculations are performed in the framework of
local-density theory within the local-density approxima-
tion. ' We have used nonlocal, norm-conserving pseudo-
potentials' in the separable form as suggested by Klein-
man and Bylander. ' In order to study the inhuence of
the Zn 3d electrons on the lattice constants and the band
structure, we have carried out two different calculations.
First, we consider the Zn 3d electrons as core electrons,
i.e., we use a Zn + ionic pseudopotential. Second, we in-
corporate the Zn 3d electrons as valence electrons using a
Zn' + ionic pseudopotential. The Zn, 0 +, and S +

pseudopotentials are taken from the tables published by
Stumpf, Gonze, and Schel.er. ' In addition, we have
generated a Zn' + pseudopotential (not tabulated in Ref.
18) following the prescriptions of Gonze, Kackell, and
Schemer' with the s part of the potential chosen as the
local component to avoid ghost states. We use the
Ceperley-Alder form of the exchange and correlation
energy as parametrized by Perdew and Zunger. '

The wave functions are expanded in terms of linear
combinations of Gaussian orbitals (LCGO) consisting of
Bloch sums of atom-centered Gaussians times a polyno-
mial having s, p, d, or s* symmetry. The s orbital
denotes the polynomial r representing the s-like "trace"
of d states. For ZnS it turned out to be sufficient to use
two s, p, d, and s' shells with decay constants of 0.2 and
0.6 (all length being measured in atomic units) to
represent the orbitals at each Zn atom when the Zn +

pseudopotential is used. For the S orbitals we use three s,
p, and s* shells with decay constants of 0.2, 0.5, and 0.8.
With two Zn and two S atoms in the unit cell, this
amounts to 70 basis states so that 70X 70 matrices have
to be diagonalized for each wave vector k. When the
Zn' + pseudopotential is employed, a larger basis set is
necessary to represent the extremely localized Zn 3d
valence electrons. In this case the Zn orbitals are
represented by two s, p d, and s shells with decay con-
stants of 0.17 and 0.5 and three additional d shells with
decay constants of 2, 6.6, and 20 to properly describe the
highly localized occupied 3d states. This yields 35 basis
functions for each Zn atom while the number of S basis
states remains unchanged. Thus our band-structure cal-
culations with Zn' + ionic pseudopotentials for hexago-
nal ZnS require the diagonalization of 100X 100 matrices.
In cubic ZnS 50X50 matrices occur since there is only
one Zn and one S atom in the unit cell. In the calcula-
tions for ZnO we use the respective number of Zn basis
states for the two different ionic pseudopotentials. The 0
orbitals are described in this case by three s, p, and s*
shells with decay constants of 0.3, 0.9, and 3.5. Thus,
also for ZnO our calculations require diagonalizations of
70X70 (Zn pseudopotential) or 100X 100 (Zn' + pseu-
dopotential) matrices, respectively. To test an improved
description of the localized nature of the 0 2p orbitals,

III. RESULTS AND DISCUSSION

Before we start to discuss specific results for the solids,
it is worthwhile to take a look at the energy levels of the
isolated 0, S, and Zn atoms forming Zn0 and ZnS. The
LDA energy levels of the various states are summarized
in Table I. The oxygen 2s states and the sulfur 3s states
reside very low in energy as compared to the other states
of the three atoms. They can be expected to yield narrow
bands way below the valence bands of the semiconduc-
tors and to show very little hybridization with the other
states. The remaining states give rise to the valence and
lower conduction bands of ZnO and ZnS. We note that
the Zn 3d electrons reside 3.3 eV in energy below the S 3p
electrons but only 1.2 eV below the 0 2p electrons. The
energy gaps for both ZnS and ZnO predominantly result

TABLE I. Atomic LDA energy levels for various states of 0,
S, and Zn, in eV.

0 Zn

E —9.2
—23.8

—7.1
—17.3

—1.5
—6.2

—10.4

we have in addition carried out calculations using five s,
p, d, and s* shells per 0 atom yielding 170X 170 Hamil-
tonian matrices. The deviations of the resulting bands
from those calculated with the three s, p, and s* shell ox-
ygen basis turned out to be less than 0.15 eV. The results
presented in this paper have been calculated, therefore,
with the smaller basis set for the 0 atoms.

The local part of the pseudopotentials is of long range.
Therefore it is convenient to carry out the computation
of the Hamiltonian matrix elements for this part of the
potential in momentum space. The matrix elements of
the short-range nonlocal part of the pseudopotential, on
the contrary, can efficiently be evaluated in real space due
to their separable form. Details are given in the Appen-
dix. The total energy of the system is determined using
the momentum-space formalism of Ihm, Zunger, and
Cohen. This method involves integrations over the
Brillouin zone which are carried out using six (ten) spe-
cial k points within the irreducible wedge of the Bril-
louin zone for the wurtzite (zinc-blende) structure.
The charge density is calculated in real space on a
grid with spacings of nearly 0.1 A corresponding to
31 X 31 X 51 =49 011 points in the real-space unit cell
when the localized Zn 3d electrons are included. A sub-
sequent transformation into momentum representation is

efhciently carried out using the fast-Fourier-transform al-
gorithm.

To test the appropriateness and the flexibility of our
LCGO basis sets, we have performed plane-wave band-
structure calculations for hexagonal ZnS using the Zn +

ionic pseudopotential, in addition. Convergent results
are obtained with 840 plane waves corresponding to an
energy cutoff of 21 Ry. The band structure calculated
with only 70 localized Gaussian orbitals agrees to within
0.1 eV with the plane-wave results.
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from a bonding-antibonding interaction between the
anion p states and the cation 4s states. The mainly p-like
bonding states at the anions are pushed down and the
mainly s-like antibonding states at the cation are pushed
up in energy by this interaction. In consequence, the
anion p states are shifted even closer to the Zn 3d energy
level and we can expect that the 0 2p states become near-
ly resonant with the Zn 3d states because of their small
initial energy separation of only 1.2 eV (see Table I).
Therefore a considerably stronger p-d hybridization will
occur in ZnO, as compared to ZnS, and correlation
effects which are typical for narrow d bands might turn
out to be much more important in ZnO than in ZnS.

A. ZnS

Let us begin our discussion with the hexagonal
wurtzite-structure crystal ZnS. In this case we expect
less-pronounced influences of the Zn 3d electrons in the
anion-derived valence bands due to the simple energetic
considerations mentioned above. We first address the re-
sults for the case where the 3d electrons are treated as
core electrons.

1. Calculations using a Zn + pseudopotentia1

For the lattice constants of hexagonal ZnS we obtain in
this case a =3.34 A and c =5.43 A. The respective ex-

0
perimental lattice constants' are 3.82 and 6.26 A. Our
calculated values are about 13%%uo too small as compared
to the experimental data. At the first glance, this
discrepancy is rather astonishing, since LDA calculations
within the ab initio pseudopotential scheme yield lattice
constants in excellent agreement with experiment for a
wide class of materials. The above discrepancy should
therefore not be attributed to the LDA but rather to the
use of an ionic Zn + pseudopotential. In fact, the treat-
ment of the Zn 3d electrons as core electrons in a Zn +

pseudopotential is based on the assumption that the
closed 3d shell is chemically inert. This, however, is not
justified, as we will show below. The same has been noted

for other IIB-VI compounds ' and for a III-U com-
pound whose outermost cation d bands occur within
the valence-band spectra. Also for those systems the cal-
culated equilibrium lattice constants turned out to be in-
correct if the repulsion of the cation d electrons was
neglected. Moreover, such calculations fail to predict the
essential electronic features correctly. Wei and Zunger
have discussed this phenomenon for zinc-blende structure
IIB-VI compound semiconductors. The same obtains
for wurtzite-structure ZnS and ZnO as we will show in
this paper.

Let us now move on to the electronic structure. In
Table II we show electronic eigenvalues of wurtzite ZnS
at the I point and of zinc blende ZnS at the I and L
points calculated with the Zn + pseudopotential. For the
zinc-blende structure experimental data are available and
they are shown for comparison in Table II as well. First
we note that respective energy levels for both structures
are similar. At the same time we realize that the mea-
sured binding energy of the I „and L „states is about 2
eV larger than that calculated with the Zn + pseudopo-
tential. Further shortcomings of these calculations be-
come obvious when the respective theoretical and experi-
mental data for zinc-blende ZnS are compared. The
width of the mainly anion-p-derived valence bands (L„),
e.g., is significantly underestimated by 1.2 eV and many
further discrepancies can be seen in Table II. Amazingly
enough, the calculated energy gap of 3.55 eV compares
favorably with the measured value of 3.8 eV for cubic
ZnS, in marked contrast to the general experience that
LDA calculations usually yield gap energies which are
only 50% or less of the experimental gap. In view of all
the other discrepancies mentioned above, this near agree-
ment for the gap energy calculated with the Zn + pseu-
dopotential has to be viewed as purely fortuitous. Of
course, we cannot directly compare our results for hexag-
onal ZnS with the experimental data for cubic ZnS. It is
nevertheless useful to compare the theoretical results for
both structures with one another. As mentioned already,
the energy positions of the sulfur s states and the widths

TABLE II. Electronic eigenvalues (in eV) of wurtzite and zinc-blende ZnS for Zn + and Zn' + pseu-
dopotential calculations in comparison with the plane wave (PW) results of Ref. 32 and experimental
data from Ref. 13. The experimental position of the d bands is taken from Ref. 14. The center of gravi-

ty of the d bands in wurtzite is noted with E (Zn 3d). The experimental lattice constants are used in

these calculations.

ZnS

Wurtzite
Zn'+

LCGO
7n12+

LCGO ZnS

Zn'+
LCGO

Zinc blende
12+ Z 12+

LCGO PW Expt.

r„
I3,
13,r„
r,.
I1,
I3,r„
E(Zn3d )

—12.09
—11.11
—4.45
—0.67

0.00
3.23
3.89
6.94

—13.22
—12.24
—5.30
—0.91

0.00
1.97
3.44
7.21

—5.8

r, .
Ll,
L lu

L3u

~15u

I1,
I.1,
I 15c

I lsd
I 12d

—11.60
—10.65
—4.31
—0.61

0.00
3.55
4.43
7.06

—13.14
—12.19
—5.14
—0.89

0.00
1.77
3.03
6.20

—5.84
—5.27

—13.07
—12.10
—5.43
—0.90

0.00
1.84
3.05
6.15

—6.63
—6.16

—13.5
—12.4
—5 ~ 5
—1.4

0.0
3 9w 3 8zB

8.3
——90
——90
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of the mainly anion-derived valence bands turn out to be
similar in both cases. This is understandable in terms of
the fact that the tetrahedral nearest-neighbor
configurations are the same in both cases. Furthermore
we observe that the calculated gap of 3.55 eV for the
zinc-blende modification is larger than the respective
value of 3.23 eV for the hexagonal crystal. This trend is
in marked disagreement with experiment which yields
gap energies of 3.8 eV for cubic and 3.9 eV for hexagonal
ZnS.

Summarizing the results presented so far, we have to
conclude that a description of ZnS using a Zn + pseudo-
potential fails to predict the basic features of the electron-
ic structure as well as the equilibrium lattice constants.
In order to improve the results it is obviously necessary
to treat the Zn 3d electrons as what they are, namely as
valence electrons.

2. Calculations using a Zn' + pseudopotential

Employing our separable Zn' + ionic pseudopotential
for ZnS, we obtain for the two lattice constants a =3.79
A and c =6.19 A in excellent agreement with experi-
ment. The deviations are roughly 1%. A slight underes-
timate of the lattice constants is typical for LDA calcula-
tions when the Ceperley-Alder form of the exchange-
correlation energy is used. We thus find that orthogonal-
ization effects, p-d interactions, and cationic d-d repul-
sions increase the lattice constants by roughly 13%.

The electronic eigenvalues for both polytypes of ZnS
resulting for the Zn' + potential are given in Table II as
well. First we note that now the calculated energy levels
of the sulfur s bands (I „,L„)agree very well with ex-
periment. The general finding that respective energy lev-
els are very similar for cubic and hexagonal ZnS is
confirmed, in addition, illustrating the similarity of both
polytypes. The calculated gap energies now show the
typical LDA behavior amounting to roughly 50% of the
measured gaps. It is noteworthy, in particular, that now
the gap for the wurtzite-structure crystal turns out to be
larger (1.97 eV) than that of the zinc-blende-structure
crystal (1.77 eV), in agreement with the experimentally
observed trend. Comparing the results for the cubic ZnS
with experiment, we see that the overall agreement be-
tween theory and experiment is good. The position of the
sulfur s band (I &, ) is close to experiment and the width
of the upper valence bands (L„) is increased by nearly
0.7 eV as compared with the results from the Zn + pseu-
dopotential calculations. The dispersion of the highest
valence band (L3„)now is larger, but it is still somewhat
underestimated. The unoccupied conduction-band states
(see, e.g. , I &&, ) are in good agreement with
experiment —given a general 2-eV offset error in the
LDA theory for the conduction states of ZnS. For a dis-
cussion of the "gap problem" in LDA, see, e.g. , Refs. 30
and 31. The energy values of the Zn 3d bands are given
in Table II as well. They are more than 3 eV higher in
energy as compared to experiment. We will comment on
this point in more detail further below.

Let us digress for a moment from the discussion of
physical features and address a more formal point of the

calculations. One of the big advantages of using LCGO
basis sets is the fact that inclusion of localized d orbitals
does not increase the number of basis states drastically.
As we mentioned already in the Introduction, the use of a
Zn' + potential increases our basis set only from 70 to
100 Gaussian orbitals for hexagonal ZnS. This is in
marked contrast to the case of plane-wave calculations.
For the Zn + potential in hexagonal ZnS we obtain essen-
tially the same results with 70 Gaussian orbitals as with
840 plane waves in the set, as mentioned already. With
the Zn' + potential employed for cubic ZnS, Martins,
Troullier, and Wei have shown that a set of about 6.000
plane waves (corresponding to an energy cutoff of 121
Ry) is necessary for convergence. The need of such a
huge basis set for the bulk electronic structure already
renders surface calculations basically unfeasible with
plane waves. We remind the reader that we need only 50
localized Gaussian orbitals in our LCGO basis set for cu-
bic ZnS. The eigenvalues obtained by Martins, Troullier,
and Wei for cubic ZnS are shown in Table II for compar-
ison. It is amazing to see how extremely well our results
agree with those of Ref. 32. The only noteworthy
difference occurs in the position of the d bands, which is
0.8 —0.9 eV lower in the plane-wave results as compared
to our results. This can be due to the use of slightly
different pseudopotentials.

The band structure for hexagonal ZnS resulting from
our calculations with the Zn' + pseudopotential is shown
in Fig. 1 together with the density of states (DOS) as cal-
culated using the Raubenheimer-Gilat scheme. We have
used 1156 k points for sampling. Around —12.5 eV, we
obtain the two sulfur s bands which show weak disper-
sions. Next, we observe at the top of the heteropolar gap
the ten, mostly Zn 3d-derived, valence bands which are
centered around —5. 8 eV. They are split into two
groups of bands leading to a double-peak structure in the
DOS. The d bands are very narrow and show only very
weak dispersion. Their width is roughly 1 eV. This
bandwidth results from the p-d hybridization with the S

zns DOS (ar b. unitsj

0— 0 )
tU

x0. 1

——12

A L tvI t A H K

FIG. 1. Band structure and density of states for hexagonal
ZnS calculated with a Zn' + pseudopotential. Additionally a
Lorentzian-broadened DOS (@=0.3 eV) is plotted. The un-
broadened DOS resulting for the d bands is scaled down by a
constant factor of 0.1.
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3p bands and from the obviously weak second-nearest-
neighbor cation-cation d-d interaction. The calculated d
bands result 3.2 eV higher in energy than observed exper-
imentally. ' This is certainly due to shortcomings in
LDA when highly localized states are to be described.
Similar discrepancies have been found in local spin densi-
ty (LSD) calculations for 3d transition metal oxides (see,
e.g. , Ref. 34). Furthermore, part of the discrepancy
could be related to the fact that in photoemission mea-
surements of highly correlated electrons from narrow d
bands electronic relaxation effects (hole relaxation )

occur which give rise to relaxation shifts. They are
neglected in a one-particle band model. The following six
valence bands are mainly S 3p-derived states and the
lower conduction band has strong Zn 4s contributions.
In order to estimate the importance of p-d hybridization
we have analyzed the various contributions to the wave
functions of the six uppermost valence bands. Charac-
teristic results for a few k points are shown in Table III.
We see that there is about 15% d admixture in many of
the S 3p-derived valence bands except for some cases,
where the d admixture is much larger (M&, and I 3, ) due
to resonant p-d coupling. The amount of only 15% p-d
hybridization explains the relatively narrow width of the
d bands of only 1 eV. For cubic II-VI compound semi-
conductors the effects of p-d coupling have been analyzed
in detail by Wei and Zunger.

In spite of the difference between the measured and
calculated d-band positions, originating from correlation
effects ignored in LDA, the explicit consideration of the
Zn 3d electrons as valence electrons dramatically im-
proves the quality of our results. The lattice constants
agree extremely well with the measured data, the energies
of the sulfur s states are correct„and a number of calcu-
lated eigenvalues agree nicely with experiment. Further-
more, the hybridization interaction of the d electrons
with anion p electrons leads to a repulsion of the involved
states. In consequence an increased width of the upper
valence bands and a decrease of the optical gap results.
The latter occurs because the S 3p states are pushed up in
energy towards the Zn 4s-derived conduction bands by
the p-d interaction. Finally, there is an important formal

TABLE III. Wave-function analysis for the upper six valence
bands of wurtzite ZnS at representative k points. The percental
orbital contributions are given.

aspect to be noted. If a Zn + pseudopotential is em-
ployed, treating the Zn 3d electrons as core electrons,
this implies a linearization of the explicitly nonlinear ex-
change and correlation energy. In consequence, errors in
the calculated eigenvalues due to significant overlap be-
tween the 3d electrons and the p valence electrons occur.
These errors are automatically avoided when the Zn' +

potential is used. In summary we conclude that the ex-
plicit inclusion of the Zn 3d —S 3p interactions by the use
of a Zn' + pseudopotential is essential for a correct
description of ZnS. This finding is confirmed by addi-
tional calculations which we have carried out in order to
test a partial core-correction scheme which avoids
linearization of the exchange and correlation energy but
neglects the p-d hybridization. Our results are in accor-
dance with the findings of Engel and Needs who have
shown for cubic ZnS that the inclusion of partial core-
corrections leads to an increase of the lattice constant
from 4.72 (Zn +

) to 5.19 A. This value is still 4% smaller
than the experimental value of 5.404 A. ' Using Zn' +

pseudopotentials Martins and Troullier obtain a lattice
constant of 5.35 A and we find a lattice constant of 5.36
A.

B. ZnO

In ZnO the energetic separation between the p- and d-
valence electrons is very small, so that pronounced effects
of the d states can be expected. Indeed, also in this case
we observe distinct differences between the results of the
calculations using Zn + or Zn' + ionic pseudopotentials,
respectively, which we will discuss now in direct compar-
ison without introducing the respective subsections as in
Sec. III A. The theoretical lattice constants as resulting
for the two potentials are given in Table IV together with
the results for ZnS discussed already in Sec. III A. The
calculated lattice constants of ZnO resulting with the
Zn + pseudopotential are as much as 18% too small as
compared to the experimental values. This underesti-
mate is even larger than for ZnS. Using the Zn' + poten-
tial we obtain theoretical lattice constants which nearly
coincide with the experimental values. Explicit inclusion
of the 3d states thus widens the ZnO lattice even more
than the ZnS lattice. This is a first hint to an increased
importance of the d states. The smaller lattice constants
of ZnO as compared to ZnS (see Table IV) are due to the
fact that the 0 2p orbitals are more tightly bound and
thus stronger localized than the S 3p orbitals.

ZnS S(3p ) S(3s ) Zn(3d ) Zn(4s ) Zn(4p )

~ 5, 6U

Ml,
M3,
M„
M2,
M3„
M4v

13,
r,.r„
r„

41.3
77.6
26.9
39.2
61.3
72.2
63.8
76.2

7.5
75.2
82.8
80.8

4.7
0.0
2.9
2.4
0.4
0.0
0.1

0.0
1.0
0.0
0.0
0.0

22.6
13.9
46.7
22.0
1 1.3
6.6

17.4
1 1.7
80.9
12.4
13.5
16.5

22.9
0.0

21.0
29.8

5.9
0.0
0.2
0.0
9.8
0.0
0.2
0.0

8.3
8.5
2.5
6.6

21.0
21.2
18.5
12.0
0.7

12.5
3.5
2.7

ZnS

Zn'+

3.34
5.43

z 12+

3.79
6.19

Expt.

3.82
6.26

ZnO 2.65
4.24

3.23
5.18

3.25
5.21

TABLE IV. Lattice constants of wurtzite ZnS and ZnO (in
0

A). The theoretical values are calculated with the use of Zn +

and Zn"+ pseudopotentials, respectively. The experimental
data are taken from Ref. 13.
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ZnO DOS (ar b. units)

The electronic band structure calculated with the
Zn' + pseudopotential is shown in Fig. 2 together with
the DOS. Around —18 eV we obtain two s bands origi-
nating from the s states at the two 0 atoms in the unit
cell. Next we observe from —6.5 to —4 eV ten bands
with strong d character originating mostly from the Zn
3d states. The next group of six valence bands mainly
stems from the 0 2p states and the lowest conduction
bands have strong Zn 4s contributions. We see in Fig. 2
that the top of the d bands now occurs just 4 eV below
the top of the valence bands limiting the width of the Zn
4s- and 0 2p-derived upper six valence bands to 4 eV. It
is perfectly reasonable that the d bands in the ZnO result
closer to the anion-p-derived valence bands than in ZnS
since the energy difference between the respective p and d
levels (see Table I) is only 1.2 eV in ZnO as compared to
3.3 eV in ZnS. The d bands show a remarkable disper-
sion and separate again into two groups of bands with a
total width of 2.5 eV. This strong increase in the d-band
width, as compared to ZnS, is due to a significantly
stronger p-d interaction in ZnO. ARPES data of Zwicker
and Jacobi show a double-peak structure in the energy
range between —9.5 and —6.0 eV originating from the
Zn 3d bands. The two groups of six and four d bands are
thus resolved in experiment. Also the calculated width of
2.5 eV agrees well with the data since the inherent
broadening of the spectra has to be taken into account
(see the broadened DOS in Fig. 2 for that matter). The
full width at half maximum in both the spectra and the
broadened DOS is 2.5 eV. The absolute position of the
calculated d bands is considerably higher than observed
in experiment, again. The explanation for this discrepan-
cy in terms of correlation effects in the d bands, given in
Sec. III A for ZnS, obtains equally well for ZnO. But in
the latter case the d bands reside energetically about 1.5
eV closer to the anion-derived p bands. The inaccuracies
in the description of the d bands, therefore, have a much
stronger inhuence on the anion-derived p valence bands

TABLE V. Electronic eigenvalues of ZnO obtained from
Zn + and Zn' + pseudopotential calculations (in eV). The last
column divers from the preceding one by the use of a X poten-
tial (a =0.9) instead of the Ceperley-Alder exchange-
correlation potential. A11 calculations are performed for the ex-
perimental lattice constants.

ZnO Zn z 12+ X

r„
I3,
E (Zn3d)
I3,
r„
Il,
r,.r„
13,

—17.08
—16.24

—4.32
—0.65

0.0
—0.11

2.13
6.64

—18.75
—17.97
—5.17
—4.03
—0.85
—0.12

0.0
0.23
4.71

—18.09
—17.42
—5.90
—4.65
—0.73
—0.05

0.0
1.58
6.04

in ZnO than in ZnS. This conjecture is borne out by the
eigenvalues given in Table V and, in particular, by the re-
sults of a wave-function analysis given in Table VI for a
few high-symmetry points. In Table V results of calcula-
tions with both the Zn + and the Zn' + pseudopotentials
are given. Similar differences in the results of these two
calculations can be observed, in general, as discussed for
ZnS in connection with Table II. Using the Zn + poten-
tial, we find a value of 2.13 eV for the fundamental gap
which is about 30% smaller than the experimental value
of 3.4 eV. ' Again this "degree of agreement" is purely
accidental. When the d bands are explicitly included in
the valence bands (see the Zn' + results in Table V) we
find the same type of changes as discussed already for
ZnS. There is, however, a noteworthy feature to be ob-
served. While the calculated gap energy for the Zn' +

potential was roughly 50% of the experimental value in
ZnS, it is now only about 7% of the experimental value.
We find a gap energy of only 0.23 eV (see Fig. 2 and
Table V), i.e., to say that the gap has almost closed. This
is due to the very strong p-d interactions which push the
O 2p-derived valence states very close to the Zn 4s-
derived conduction states. Exactly the same behavior has
been found in LSD results for 3d transition metal oxides
(see, e.g. , Ref. 34). In that case, the local spin density cal-

—6 —~~M=~~

ALIT'AHK t

2 )
OJ

——18

M&v

M3,
E(Zn 3d)
Mi,
M3,
Mi,
M2,
M3,
M4,
M),
M3,

—16.31
—16.05

—3.96
—3.03
—2.35
—1.63
—1.08
—0.58

7.16
8.50

—18.02
—17.78
—4.99
—3.76
—3.75
—2.95
—2.42
—1.35
—0.93

5.34
6.55

—17.46
—17.26
—5.74
—4.12
—3.44
—2.67
—2.03
—1.18
—0.77

6.49
7.90

FIG. 2. Band structure and density of states for ZnO calcu-
lated with a Zn' + pseudopotential. Additionally a Lorentzian-
broadened DOS (y =0.3 eV) is plotted. The unbroadened DOS
resulting for the d bands is scaled down by a constant factor of
0.4.

E(Zn 3d)

~ 5, 6U

—16.70

—2.62
—0.38

4.88

—18.37
—5.21
—2.37
—0.43

3.02

—17.76
—5.98
—2.35
—0.36

4.14
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TABLE VI. Wave-function analysis for the upper six valence
bands of wurtzite ZnO at representative k points. The percental
orbital contributions are given.

ZnO O(2p) O(2s ) Zn(3d ) Zn(4s ) Zn(4p )

A)3,
~ 5, 6u

Ml„
M3„
M),
M2,
M3,
M~„
r„
r„
I)„
r,„

28.4
68.4
10.9
35.0
41.0
57.7
54.3
67.0

5.4
66.5
73.8
69.5

3.4
0.0
2.0
0.9
0.1

0.0
0.2
0.0
0.7
0.0
0.0
0.0

45.7
27.7
80.6
44.5
41.3
27.4
34.2
26.0
91.8
27.4
23.5
29.4

18.4
0.0
5.1

14.1

5.5
0.0
0.0
0.0
2.1

0.0
2.0
0.0

4.1

3.6
1.3
5.5

12.0
14.9
11.2
7.0
0.0
6.0
0.7-

1.1

+
yH ~+

2
Q)

culations yielded metallic oxides in complete disagree-
ment with experiment. Self-interaction-correction ' (SIC)
calculations for those oxides and for a high-T, cu-
prate led to an opening of the gap and yielded results in
much closer agreement with experiment. The analysis of
the orbital character of some representative states, given
in Table VI, clearly shows a very significant amount of p-
d hybridization in the upper valence bands. The d ad-
mixture in many of these states amounts to almost 30%,
which is twice as large as in ZnS and some states at the
bottom of the p bands are resonant with the d level and
show extremely large d admixtures. So any inaccuracies
in the description of the highly localized Zn 3d bands by
the LDA are transferred to a certain extent into the 0
2p-derived valence bands by this strong p-d mixing. The
strong d admixture and the Zn 4p contributions in the
upper valence bands are of further importance in another
context. An earlier empirical tight-binding calculation of
surface states at ZnO (1010) retained only the 0 2p orbit-
als and another paper included hybridization between
Zn 4p and 0 Zp orbitals in the upper valence-band states.
The two approaches lead to convicting conclusions con-
cerning the energetic position of anion-derived surface
states near the gap energy region. ' In fact, our results
show that both empirical tight-binding Hamiltonians
used in Refs. 6 and 7 cannot describe the underlying
physics properly since they neglect the Zn 3d contribu-
tions to the bonding in ZnO.

Experimental ARPES data for ZnO are available along
the I M symmetry line. We compare these data in Fig.
3(a) with the electronic bands calculated with the Zn +

potential. The agreement of the band dispersions with
experiment is very poor and the calculated valence band
width is too small by more than 1 eV. In Fig. 3(b) we
compare the calculated bands for the Zn' + potential
with the same data set. Due to the p-d interaction the
upper four valence bands now show much stronger
dispersions. The agreement with experiment is consider-
ably improved. The energetic separation of the two
highest occupied bands could not be resolved in experi-
ment. The agreement between theory and experiment
for the lower two p-derived valence bands in Fig. 3(b) is
still very unsatisfactory, in particular in view of the fact

FIG. 3. Calculated electronic bands for ZnO along the X
symmetry line in comparison with experimental data of Ref. 2.
The bands have been computed using a Zn + potential in (a) and
a Zn' + potential in (b).

that the measured bands are not to be interpreted in
terms of Zn 3d bands. The latter were found between—9.5 and —6 eV in Ref. 2, as discussed already. These
two measured bands certainly are the lowest two valence
bands mostly derived from the 0 2p and Zn 4s states.
The p-d interaction increases the width of these bands
only little with respect to the results for Zn +. This is
partly a consequence of the d-band positions which are
too high in energy in our results.

We have tested band-structure changes if the d bands
are shifted to lower energies within LDA-type calcula-
tions. This can be achieved by carrying out LDA calcu-
lations using a Slater X potential instead of the
Ceperley-Alder exchange and correlation potential.
The value a= —,

' obtains to the "exchange-only" potential
derived for the homogeneous electron gas. By increas-
ing the potential parameter a we can simulate correlation
eA'ects, which are more important for extremely localized
than for extended states. With o, =0.7 we obtain a band
structure very similar to that using the Zn' + ionic pseu-
dopotential together with the Ceperley-Alder exchange-
correlation functional. For a=0.9 the d bands are shift-
ed downwards by 0.7 eV and separate from the lower s-
p-derived valence bands. This is accompanied by an in-
creased valence bandwidth of 4.6 eV. The size of the op-
tical gap increases to 1.58 eV. At the same time, the
dispersions of the mainly oxygen-derived states at the top
of the valence bands decrease and show less good agree-
ment with the experimental data. Using even larger
values for a, we find the d bands to shift further down in
energy and the optical gap to further open up. The width
of the upper six valence bands does become smaller
again. A better description of the upper valence bands
and of the d bands calls for an explicit inclusion of
many-body correlation eA'ects or, in particular, for an
exchange-correlation functional that allows for a better
description of highly localized and correlated states. One
promising road for such calculations going beyond LDA
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could be LDA-SIC calculations similar to the ones re-
ported by Svane and Gunnarson in Refs. 34 and 37 whose
results show a number of SIC-induced trends pointing al-
together in the right direction.

In spite of the shortcomings mentioned, our calcula-
tions with a Zn' ionic pseudopotential yield the correct
lattice constants and a reliable description of the occu-
pied states near the fundamental gap. This is of basic im-
portance for the determination of surface structures from
total energy minimizations and for the identification of
electronic surface states near the gap energy region. Fur-
thermore, our results are obtained by state of the art
LDA calculations and define an optimal starting point for
investigations of correlation effects in ZnO by going
beyond LDA using for example the LDA-SIC approach.

Finally, we show in Fig. 4 the total valence charge den-
sities for ZnS and ZnO as they result with the Zn + and
the Zn' + ionic pseudopotentials in direct comparison.
The plots clearly reveal the strong ionic character of
bonding in these hexagonal compound semiconductors.
When the Zn + potential is used, the valence charge den-
sity is almost spherically symmetric and strongly local-
ized around the anions. If the Zn' + pseudopotential is
used, the charge density around the anions is changed
only marginally. In this case, however, there occurs a
spherically symmetric high charge density at each Zn
cation which shows the closed shell of the Zn 3d elec-
trons. Interestingly enough, the total valence charge den-
sities in Fig. 4 indicate that the bonding in ZnS has more
covalent character than in ZnO.

IV. SUMMARY

In conclusion, we have reported the first ab initio stud-
ies of the wurtzite-structure compounds ZnS and ZnO.
We have shown that the explicit consideration of the Zn
3d electrons as valence electrons is a necessary step to-
wards a quantitative description of the structure and the
electronic properties of these compounds. There occurs a
considerable p-d interaction giving rise to about 15%
(30%) d admixture in the wave functions of the upper six
anion-p-derived valence bands in ZnS ( ZnO). The d elec-
trons increase the lattice constants by 13% and 22/o, re-
spectively, as compared to calculations with the Zn + po-
tential. Our calculated lattice constants agree extremely
well with experiment when the Zn' + ionic pseudopoten-
tial is used. For ZnS, the electronic band structure is
found to be in good general agreement with data for cu-
bic ZnS, except for the gap energy and the energetic po-
sition of the Zn 3d bands. These shortcomings both orig-
inate from the use of the LDA. For ZnO the uppermost
four valence bands are found in reasonable agreement
with experiment. In this case, not only the gap energy
and the position of the Zn 3d bands are unsatisfactory,
but also the energy position of the lower two mainly 0
2p-derived valence bands. It was argued that these
discrepancies originate from correlation effects. The Zn
3d eigenstates are strongly correlated and highly local-
ized. In ZnO they are nearly resonant with the 0 2p en-
ergy levels, in addition. Therefore the observed
discrepancies between our LDA results and the experi-
mental data are considerably larger in ZnO than in ZnS.
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APPENDIX: EVALUATION OF GAUSSIAN INTEGRALS
INVOLVING SEPARABLE PSEUDOPOTENTIALS

FIG. 4. Total valence charge densities for ZnS and ZnO.
The upper two contour plots result from the Zn + and the lower
two plots from the Zn' + pseudopotential calculations. Due to
the enormous differences between the charge densities of 0, S,
and Zn we have chosen three different spacings for the contours
to illustrate the structure of the densities. The values of the
maximum contours are 4.85, 0.85, and 0.17 for the Zn' +, 0
and S + ions. The units are e/a. u. ' Starting with the lowest
contour (0.01) a spacing of 0.02 is used up to 0.25. The follow-
ing contours are spaced by 0.15 and from the 0.85 contour by
0.8. It should be noted that the length scales are different for
ZnS and ZnO according to the different lattice constants.

The computational effort of an ab initio pseudopoten-
tial calculation is substantially reduced if separable in-
stead of the standard nonlocal pseudopotentials' '

are used. This holds for computations using a plane-
wave basis as well as for calculations carried out in a
G-aussian basis which is used in this work. The evalua-
tion of the Hamiltonian matrix elements involves in-
tegrals of the form

I "& = f f@*(r—A)Vzz(r, r')@&(r' —B)d rd r', (Al)

with Gaussian orbitals of symmetry type a (P) located at
A (B). Vxz is the nonlocal pseudopotential in the separ-
able form suggested by Kleinman and Bylander, '

VKB(r, r') = V„„,(r)5(r —r')
I

+ g g U&(r )R&(r ) Y& (e,y)
1 m= —I

X YI* (e', cp') U&(r')R&*(r') . (A2)

YI are the spherical harmonics and R&(r) are the solu-
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tions of the radial Schrodinger equation

+ +v"( ) R( )=& R( )
2M

(A3)

U, (r)=
Vt"(r ) V,.—„,(r )

PS
' 1/2

Rt"(r )[ Vt (r )
—

V&«,~(r)]Rt(r )r dr

for a standard pseudopotential. The U& are defined by

F(a, A, l, m )=f4*(r—A)Ut(r)Rt(r)Yt ~(B,tp)d r .

(A6)

The local part of (AS) is evaluated by transforming V~«„
into Fourier representation. The remaining integrals in-
volving two Gaussians and a plane wave are solved
analytically. U& and RI are given numerically on a dense
grid either from the table of Stumpf, Gonze, and
ScheIHer' or from the explicit solution of (A3). The radi-
al wave functions have the asymptotic form

(A4) lim Rt(r )~r
r~o

(A7)

Inserting VKB into the atomic problem (A3) it is easily
seen that the radial Schrodinger equation for each l is
satisfied by this construction. The choice of the local
part V&„,& is arbitrary. ' In many approaches' ' '

V&„,& was successfully set to the highest angular com-
ponent of the standard pseudopotential. However, in the
case of Zn' + we have chosen the 1=0 component as the
local potential in order to avoid ghost states' and in or-
der to create a very smooth local part of VKB. Due to the
separable form of VKB Eq. (Al) takes the form

I "t3 =f@*(r—A)v~«, &(r)@&(r—B)d r

We have fitted

N

Ut(r)Rt(r)=r gc, t exp( —y, tr )d r, (A8)

F(a, A, l, m)= g c, t f4*(r—A)rtY& (B,y)

X exp( y, tr )d —r . (A9)

using a nonlinear least-squares fit with N=10. The in-
tegrals (A6) take the form

with

I

+ g g F(a, A, l, m)F*(P, B, l, m),
I m= —I

(AS)
The products r 'YI (B,qr ) are transformed into Cartesian
coordinates and the integrals in (A9) have the same form
as the overlap integrals which are easily evaluated analyt-
ically.
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